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Abstract: Estimates of surge-based flood depth exceedance curves are useful to inform flood risk
management strategies. Estimated return periods associated with flood depth exceedances naturally
vary over time, even under assumptions of stationarity, due to the irreducible randomness associated
with storm events as new observations accrue with each passing year. We empirically examine the
degree to which best-estimates of coastal Louisiana floodplains have changed over time and consider
implications for risk management policies. We generate variation in estimated 100-year flood depths
by truncating a historical data set of observed tropical cyclones to end in years ranging from 1980 to
2016, adopting three procedures for updating various inputs to an existing flood risk model using the
truncated data set to identify which factors are most important in driving variation in risk estimates
over time. The landscape used for modeling hydrodynamics is kept constant, allowing us to isolate
the impacts of randomness in storm occurrence from other factors. Our findings indicate that the
100-year floodplain extent has substantially expanded in populated areas since 1980 due to these
effects. Due to the low frequency at which flood maps are updated, it is possible that thousands
of coastal residents are misclassified as being outside of the 100-year floodplain relevant to flood
insurance rates and other regulations.

Keywords: flood risk analysis; flood mapping; storm surge; uncertainty; natural variability; Louisiana

1. Introduction

Floodplain managers and decision-makers commonly define the geospatial extent of flooding with
a specific annual exceedance probability (AEP) for use in flood risk management policies. For example,
in the United States, the Federal Emergency Management Agency (FEMA) defines various flood
zones based on estimates of the 1% AEP, or “100-year,” and 0.2% AEP, or “500-year,” floodplains [1,2].
Structures located within these zones are subject to additional regulations related to flood insurance
policies, building codes, and development restrictions, depending on the degree of risk. A number
of methods are commonly used to identify statistical floodplains; while the specifics vary, this task
typically involves aggregating information about flooding resulting from a set of storms, observed
or simulated, with different characteristics. The number of storms sampled can vary by orders of
magnitude, from single storms in the case of Standard Project Hurricanes [3,4] to hundreds or thousands
of storms using methods such as the joint probability method [5,6].

The U.S. Department of Homeland Security found in 2017 that 58% of FEMA’s flood maps were
out-of-date and potentially inaccurate, which could make communities more vulnerable to losses in the
event of a flood [7]. When Hurricane Harvey impacted the Gulf coast in 2017, some affected communities
were operating under flood maps that went into effect in the 1980s [2]. The probability of flooding,
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and thus the extent of floodplains, can change for many reasons, including nonstationarity in climate
conditions [8–11], environmental forcings such as land subsidence [12,13], and urbanization [14].
Projections of future risk, which are useful for investment and policy planning, are even further
complicated by deeply uncertain future forcings (e.g., radiative forcing, collapse of ice sheets) [15,16].

Even if we ignore these nonstationarities in the physical system, the best estimates of flooding
return periods are limited by small samples of extreme historic events. This is particularly true with
respect to storm surge-based flooding from tropical cyclones; the low frequency of these storms means
that communities may not be impacted for years at a time. Since 1950, only 18 tropical cyclones have
made landfall near Louisiana with central pressures of 985 mb or less [17], roughly corresponding to
the threshold between a Category 1 hurricane and a tropical storm on the Saffir–Simpson scale1.

With a sparse time-series such as this, each new year that passes has the potential to alter best
estimates of the annual exceedance probability (AEP) function of surge-based flood depths through
two mechanisms. Firstly, any new storm that arrives can change estimates of the relative likelihood of
storms occurring with different characteristics (e.g., central pressure deficit or storm track at landfall)
that would result in different storm surge and wave impacts. Secondly, we can update an estimate of
the underlying mean inter-arrival rate of tropical cyclones every year, even if no storms make landfall
impacting a particular study region.

Changepoint analysis using Markov chain Monte Carlo methods have identified changes over
time in the mean inter-arrival rate of hurricanes in the Atlantic basin [18], and many studies have
examined changes in storm parameters such as intensity [19–22]. Other examples in the literature
examine the impact of periodic or nonstationary processes such as the North Atlantic Oscillation on
the statistical return periods of storm surge [23]. Ceres et al. (2017) utilize a simulation study to
conclude that, in practice, it can be difficult to detect “substantial but gradual” changes to 100-year
surge elevations [24]. In this paper, we examine the policy-relevant spirit of this issue using a different
approach, by empirically investigating the extent to which best estimates of AEPs of surge-based
flooding have changed over time from 1980 to 2016 in coastal Louisiana. By holding factors such as the
topography/bathymetry of the coastal landscape and local sea level constant, we are able to isolate
the natural variability of best estimates associated only with stochasticity in tropical storm arrivals
and characteristics.

2. Methods

As described in this paper, we have used the Coastal Louisiana Risk Assessment (CLARA)
model to produce best estimates of annual exceedance probabilities for storm surge-based flooding
throughout the Louisiana coastal zone. The corresponding author and colleagues at RAND
Corporation originally created CLARA as a planning-level risk model to support the development of
Louisiana’s Comprehensive Master Plan for a Sustainable Coast [25,26]. The Master Plan recommends
approximately $50 billion of investments in flood risk reduction and coastal restoration projects over
a 50-year planning horizon. CLARA utilizes surge and wave outputs generated by the coupled
Advanced Circulation (ADCIRC) [27] and Simulating Waves Near-Shore (SWAN) [28] hydrodynamic
models [29] to train response surfaces predicting surge elevations and free wave crest heights as a
function of tropical cyclone parameters such as central pressure deficit, radius of maximum windspeed,
forward velocity, storm track, etc. [30] ADCIRC and SWAN are commonly coupled for predicting
surge and wave behavior, both in the analysis of historic individual events [31,32] and in studying
risk/vulnerability or, more generally, hydrodynamic behavior in specific locations [33]. The ADCIRC
mesh and digital elevation model used in this study to obtain topographic and bathymetric elevations

1 In the Coastal Louisiana Risk Assessment model, landfall is represented by crossing 29.5 degrees N latitude. Storms making
landfall between 94.4 and 88.5 degrees W are assumed to have potential storm surge impacts on Louisiana.
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correspond to a representation of the coastal landscape in 2015. This mesh was used as the baseline
“current conditions” case for Louisiana’s 2017 Master Plan update [34].

When considering interactions with engineered protection elements such as levees and floodwalls,
the model also estimates a full surge hydrograph over time and wave periods. This serves to estimate
interior stillwater elevations resulting from surge and wave overtopping, breachwater associated with
system failures, and rainfall (net of water volumes removed by pumping stations). Flood depths
generated by multiple “synthetic storms” are then statistically aggregated to produce estimates of
annual exceedance probabilities.

The ADCIRC mesh used to provide surge runs for individual storms in this study was validated
using hurricanes Gustav, Ike, Katrina, and Rita; newly-constructed protection features were removed
to better reflect the landscape on which these recent storms occurred [34]. Flood depths and damage
for individual storms in CLARA were validated using Hurricane Isaac and 100-year flood depths
under the current landscape by comparison with recently-published effective flood insurance rate
maps [35]. Population counts are based on 2010 U.S. Census and American Community Survey data
projected forward to the 2015 model baseline, and geospatial locations of populations and assets
within census units are derived from the LandScan global population dataset (approximately 90 meter
resolution) [35,36]. Full details related to the CLARA model’s methodology, validation, and so forth
can be found in Fischbach et al. (2012), Johnson, Fischbach, and Ortiz (2013), and Fischbach et al.
(2017) [30,35,37].

For each synthetic storm being simulated, CLARA utilizes Monte Carlo methods to generate
a frequency distribution of flood depths at each point in a mixed-resolution grid of approximately
100,000 points in the Louisiana coastal zone2. We ran a set of 446 storms developed in previous
studies by the U.S. Army Corps of Engineers to span the parameter space of plausible Gulf hurricane
characteristics impacting coastal Louisiana [38]3; the parameters of these storms at landfall are listed
as Table S1 in the Supplementary Information. The cumulative distribution function (CDF) for flood
depths d conditional upon a storm occurring, FS(d), is formed by combining the distribution of flood
depths associated with each storm with a best estimate of the relative likelihood of storms such as
those simulated occurring [35].

Mathematically, where Si denotes one of the 446 storms and Di represents the set of flood depths
that could result from storm Si, the CDF is

FS(d) = P(D ≤ d) =
446∑
i=1

∑
D∈Di, D≤d

P(Si)·P(D|Si)

2.1. Estimating Relative Likelihoods of Simulated Storms

To obtain the probability masses associated with each of the 446 discrete storms, shown as P(Si) in
the previous equation, we follow the joint probability method with optimal sampling (JPM-OS) [39,40].
This approach parameterizes storms according to their central pressure, radius of maximum windspeed,
forward velocity, landfall location, and heading angle at landfall. We then assume a joint probability
distribution, Λ, that treats the marginal distribution of each parameter, Λi, as conditionally independent
of others and conformant to a particular functional form; where cp is the central pressure, r the radius

2 In densely populated areas where 2010 U.S. Census blocks are less than one square kilometer in area, the CLARA grid
includes one grid point representing the centroid of each block. Where census blocks are larger, CLARA defaults to a
regularly-spaced grid with a 1 km resolution. Although the model includes grid points located over open water, as well as
points in coastal Mississippi and east Texas, results in this paper are generally restricted to points classified as land located
within Louisiana.

3 The 446-storm set is intended to represent storms with central pressures of 985 mb or less, roughly the threshold between a
tropical storm and Category 1 hurricane on the Saffir–Simpson scale.
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of maximum windspeed, v f the forward velocity, x the longitude of storm eye at landfall, and θl the
heading angle at landfall, the probability distribution function, as given by Resio (2007), is

Λ
(
cp, r, v f , θl, x

)
= Λ1·Λ2·Λ3·Λ4·Λ5

Λ1 = f
(
cp

∣∣∣x) = ∂
∂x

{
exp

{
− exp−

[
cp−a0(x)

a1(x)

]}}
Λ2 = f

r|cp) =
1

σ(cp)
√

2π
e
−

(r(cp)−r)2

2σ2(cp)

Λ3 = f
(
v f

∣∣∣θl
)
= 1

σ
√

2π
e−

(v f (θl)−v f )
2

2σ2

Λ4 = f (θl|x) = 1
σ(x)

√
2π

e
−

(θl(x)−θl)
2

2σ2(x)

Λ5 = f (x) = Φ(x)

The overbars indicate an average value of the dependent variable corresponding to a specific value
of an independent variable. The variables a0 and a1 are the location and scale parameters of the Gumbel
distribution, and Φ(x) is the frequency of storms making landfall per year near longitude x. The joint
marginal distributions are truncated to restrict their domains to plausible values (e.g., truncating Λ2 to
exclude negative values for the radius of maximum windspeed).

We fit maximum likelihood estimators for the parameters defining the joint probability
distributions using the historical record of observed storms in the National Oceanic and Atmospheric
Administration’s (NOAA) North Atlantic Hurricane Database (HURDAT). The parameter space is
then partitioned into discrete cells, such that each synthetic storm in the 446-storm suite is assumed to
represent the behavior of all storms within parameters contained within that cell. For example, the
storm suite consists of storms with central pressures of 900, 930, 960, and 975 mb. As such, storms
with a central pressure of 930 mb are assumed to produce surge and wave behaviors representative of
any similar storms with central pressures between 915 and 945 mb (i.e., cell boundaries are defined by
parameter values equal to the average values for storms in adjacent cells) [35,39]. Thus, the probability
mass P(Si) assigned to a given storm is found by integrating the joint marginal distribution over the
bounds of the cell represented by that storm.

2.2. Calculating Annual Exceedance Probabilities

Once the CDF conditional upon a storm occurring has been estimated, this needs to be converted
to a CDF for flood depths occurring in any given year. We do this to then extract annual exceedance
probabilities (AEP). Following the procedure detailed in [35], we model the arrival of storms as a
Poisson process with a mean inter-arrival rate α. Consequently, the probability of observing i storms in
a given year is

P(i) = e−α
αi

i!
The probability of the maximum flood depths in a given year being less than or equal to some

value d is equal to the probability that all storms occurring in that year produce flooding less than or
equal to d. Thus, by the law of total probability, the annual CDF, FA(d), can be given by

FA(d) =
∞∑

i=0

FS(d)
i
·P(i) = e−α

∞∑
i=0

FS(d)
i
·αi

i!

Finally, the exceedance values corresponding to the n-year return period are then extracted from
the annual CDF by finding the depth value dn satisfying FA(dn) = 1− 1/n.
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2.3. Experimental Design

We use historic storm data from HURDAT, starting in 1950, to estimate both the joint probability
distribution of storm parameters and the mean inter-arrival rate. To test the extent of variability
in best estimates of risk over time, we truncated the data set to end in a year ranging from 1980 to
2016, then regenerated the AEP curve for surge-based flood depths at each point across the Louisiana
coastal zone4. We produced curves where one or both of the joint probability fit and inter-arrival
rate were based on the truncated data set, allowing us to identify the relative contribution of each
factor, and/or interactions between factors, to variability in risk estimates. The inter-arrival rate is
estimated solely using the occurrence of storms in the HURDAT data set; we do not incorporate other
meteorological information. As such, estimates corresponding to any given year do not explicitly
account for multi-year cycles affecting cyclonic activity, such as the El Niño–Southern Oscillation
(ENSO) [41,42], except inasmuch as they show up in the historic HURDAT observations.

We present results focused on estimates of the 50-, 100-, and 500-year flood depths. Estimates
using the full historic data set from 1950 to 2016 served as a “gold standard” reference for comparison.
Although the CLARA model can produce confidence intervals around estimated flood depth
exceedances, we report median estimates to reflect the kind of single point estimate that is commonly
used by FEMA and other agencies to produce floodplain maps and policy-relevant metrics such as
base flood elevations. In areas enclosed by ring levee protection systems, we used CLARA’s “IPET
Low” scenario assumptions about the probability of system breaches as a function of overtopping rates
and geotechnical characteristics [35].

The full coastal Louisiana study region is shown in Figure 1. For the purposes of Louisiana’s
coastal Master Plan, the coastal zone is divided into 54 “risk regions” [43]. These roughly correspond to
regions defined by parish and then further subdivided by major bodies of water (e.g., the Mississippi
and Atchafalaya rivers) or by protection features such as levees and floodwalls. Figure 1 shows the
risk region boundaries; highlighted in brown are four risk regions in Plaquemines Parish, for which
we show illustrative results later on in the paper.
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4 The years 1950 and 1980 were chosen because at least 30 years of data were necessary to have enough landfall events for the
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3. Results and Discussion

To understand the effects of updating our best estimates of the tropical cyclone mean inter-arrival
rate and/or the relative likelihoods of synthetic storms using additional years of observed data,
we compared the median estimated flood depths based on each truncated data set to the median flood
depth exceedances calculated from all available data. Figure 2 shows the estimated median flood
depths for all three return periods of interest based on all HURDAT data from 1950 to 2016.
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In large parts of the coast, 100-year flood depths exceed three meters, indicated by yellow or
orange hues. While most of these areas are unpopulated wetlands or open water, this does indicate the
potential for variability in best estimates to have substantial impacts on building codes for the new
development or retrofits. Reducing flood vulnerabilities to such a high elevation above grade might
require the first floor of buildings to be non-habitable space such as a garage or storage area [44].

Comparisons with the median estimates displayed in Figure 2 were made by finding the difference
between the estimates from the full data set (1950–2016) and the estimates from each truncated dataset.
Because the 1% AEP, “100-year,” flood depths are most commonly used to establish risk standards for
insurance and policy purposes, we primarily focus on this particular return period. Figure 3 depicts the
differences in the 100-year flood depth estimates for three years—1985, 1995, and 2005—as compared
to the reference case ending in 2016. The values from the truncated case are subtracted from the
reference values, so regions with positive values (blue) have greater estimated 100-year flood depths
now in the reference case than a best estimate would have indicated in an earlier era. Alternatively,
negative values (orange) indicate depths in the truncated case larger than the reference standard. This
figure reflects estimates of both the mean inter-arrival rate and joint probability distribution using the
truncated time series. Because of its importance in the regulation of critical infrastructure risk, we have
also included a similar figure for the 500-year flood depths as supplementary information (Figure S3).

As seen in Figure 3, there does not appear to be a region that consistently over- or under-estimates
100-year flood depths relative to the 2016 reference case. Although the comparison maps from 1985 and
1995 seem to overestimate in similar geographic regions, they are quite different from the comparison
map from 2005, whose estimates appear to differ little from the 2016 estimates. Of course, we expect that
differences will diminish as the truncated end year approaches 2016. While these individual years and
the 100-year return period are not necessarily representative of the full set of calculated results, Figure 3
indicates that variability in risk estimates may not exhibit systematic spatial or temporal patterns.

To further analyze possible geographic patterns, we examined differences in best-estimates within
parishes5 and between protected and unprotected communities. We can look at aggregate patterns of
bias within the risk regions defined by the Master Plan. Figure 4 summarizes the root mean squared
deviation (RMSD) of 100-year flood depths, relative to the reference results, over all CLARA grid
points located within the four risk regions comprising all parts of Plaquemines Parish (southeast of
New Orleans and extending to the Gulf of Mexico) not contained within the Greater New Orleans
Hurricane & Storm Damage Risk Reduction System (HSDRRS). Where ỹ indicates the reference value
for 100-year flood depths, yi,t the best-estimate at grid point i in year t, and |A| the number of grid
points in risk region A, the RMSD is defined by

RMSDA,t =

√∑
i∈A(ỹ− yi,t)

2

|A|

5 County-level units of governance in Louisiana are known as parishes.
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Figure 4. Root mean squared deviation (RMSD) of 100-year flood depth predictions over time, with
Plaquemines Parish risk regions exterior to the Greater New Orleans Hurricane & Storm Damage Risk
Reduction System (HSDRRS).

As indicated in the legend, different lines indicate whether the mean inter-arrival rate (“frequency”),
joint probability fits (“likelihoods”) or both factors were estimated using the truncated data set.
Supplementary Figure S4 depicts similar information at the 500-year return period.

Within Plaquemines Parish, best-estimates of 100-year flood depths within Braithwaite exhibit
much more variation over time than other risk regions. The Braithwaite region is protected by a levee
system, but it is not part of the federally-accredited HSDRRS and is not certified to provide protection
against 100-year storm surge events. Our conjecture based on the analysis of flood depth exceedances
in the reference case is that the region has 1% AEP flood depths close to zero, and non-linearities in
overtopping and fragility mechanics produce a steep increase in the exceedance curve near the 1% AEP
point. This results in a greater sensitivity in best estimates of 1% AEP depths to changes in assumptions
about storm frequency or the relative likelihood of different types of storms when compared to regions
that are either unprotected or have protection against greater-than-100-year surge events.

We also find a pattern that updating the joint probability fits only using the truncated data set
(“likelihoods”) generally produces less deviation from the reference values than using the truncated
data to update the underlying storm frequency estimate (or both parameters). This holds true in other
risk regions not shown in Figure 4 and suggests that best estimates of flood depth exceedances may be
more sensitive to stochasticity in the estimated mean inter-arrival rate of storms than to variation in
the parameters of storms that do occur.
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Although we did not uncover clear geospatial or temporal patterns to variation in flood depth
exceedances, we can examine more closely how the evolving estimated 100-year floodplain6 might
impact the citizens of coastal Louisiana. After all, individuals who are determined by FEMA or another
agency to be living within a 100-year floodplain are often required to purchase flood insurance or face
other regulations on construction. Figure 5 summarizes the estimated 100-year floodplain over each
year from 1980 to 2016, showing whether a point is (i) always classified as being inside the floodplain,
(ii) always classified as being outside the floodplain, or (iii) is classified as inside and outside of the
floodplain in at least one year. Supplementary Figure S5 shows the same demarcation of variability
but at the 500-year return period.
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As shown, the vast majority of coastal Louisiana’s land area is either always or never classified
as being in the 100-year floodplain. However, for some portions of land in between these regions,
their floodplain status varies as more storm data becomes available over time. For people living in
this variable region, updating 100-year flood depth estimates more frequently might make a large
difference in terms of whether or not they are required to have flood insurance.

Figure 6 summarizes changes in floodplain extent at the 50-, 100-, and 500-year return periods.
The top pane shows the total coastal land area classified as falling within the floodplain, while the
lower pane shows the populated area within the floodplain7. The actual values for each year and
return period are provided in tabular format as supplementary material. We see that some of the
increases in floodplain extent correspond to years where storms made landfall, followed by gradual
decays throughout subsequent years of quiet hurricane seasons in the Gulf. For example, the peak
estimate of the 100- and 500-year floodplain extent occurred in 2012, when Hurricane Isaac hit. This
observation is consistent with the finding that risk estimates are sensitive to the mean inter-arrival rate
of tropical cyclones. Since 1980, the populated extent of the 50-year floodplain has grown by about 6%,
the 100-year floodplain by 5%, and the 500-year floodplain by 3%. Uncertainty in the floodplain extent
predicted by CLARA is shown in supplementary figures that add confidence bounds for the 10th and
90th percentile estimates around the median values portrayed here (Figure S1 for total land area and
Figure S2 for populated area).

6 The 100-year floodplain is defined as the spatial extent of areas with at least a 1-in-100 probability of experiencing flooding
in a given year.

7 The location of populated areas within census blocks containing multiple CLARA grid cells was determined using the
LandScan daytime and nighttime population data sets, which have an approximately 90-meter resolution. See Section 2.1 of
Fischbach et al. (2017) for further detail.
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Figure 6. Floodplain extent by year, total land area (top) and populated area (bottom).

Given the age of many FEMA-defined effective flood insurance rate maps (FIRMs) [2]8, this
presents major implications for individuals living in these areas. They may have a mistaken impression
of safety if misclassified as outside of the 100-year floodplain; alternatively, individuals misclassified as
living within the floodplain may bear costs or regulations to which they should not be subject. Setting
aside prescriptive questions about flood insurance and other policy mechanisms for risk management,
this suggests that existing policies may not be implemented effectively.

One possible way to address (i) the natural variation in the best-estimates of floodplain extent,
(ii) the infrequency of updating estimates, and (iii) the trending growth in floodplain extent would
be to use a lower-AEP floodplain to set policy. For example, when faced with an expanding and
uncertain true 100-year floodplain, setting flood insurance requirements based on the best-estimate
125-year floodplain might allow for less frequent updates while maintaining the intended level of
flood protection further into the future. To investigate this question, we tallied the coastal population
that would be misclassified as being within or outside of the 100-year floodplain (relative to the 2016
reference standard) when using floodplains of various return periods based on a truncated time series.
The results are shown in Figure 7.

8 At the time of writing this manuscript, FIRMs in a number of populated communities have not been updated since 1985.
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negatives (top) and false positives (bottom).

Two examples illustrating how to interpret this figure are as follows. In the top pane, the top
line indicates that a 100-year floodplain defined in 1985 would result in about 20,000 “false negatives”
in 2016: people classified as living outside the 100-year floodplain who really are inside a 2016
best-estimate. On the bottom pane, approximately 11,000 individuals who live within the 125-year
floodplain, as estimated in 2005, would be classified in 2016 as “false positives,” in that they live
outside of the 2016 100-year floodplain. As expected, the number of false negatives converges to zero
over time, as all individuals living within the 100-year floodplain are eventually correctly identified
with more data. However, as the best-estimate floodplains converge to their reference 2016 floodplains,
the number of false positives associated with using less frequent AEPs to represent a future 100-year
floodplain increases.

Consequently, as the floodplain grows, more people would be required to carry flood insurance.
However, if flood risk estimates are not updated frequently, expansion of the floodplain might not be
realized with enough time to ensure that these individuals are accurately informed of their risk. While
false positives indicate that some homeowners are paying for flood insurance unnecessarily, houses
incorrectly classified as being outside of the 100-year floodplain are at greater risk of experiencing
flood damage without insurance. The total misclassified population is shown in Figure 8.
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Our analysis suggests that estimates of the 100-year floodplain may only minimize misclassifications
for a duration of about 10 years, compared to floodplains defined by 125-year or less frequent return
periods. This supports the existing guidance from the National Flood Insurance Reform Act of 1994 to
“assess the need to revise and update all floodplain areas and flood risk zones” every five years [45].
Decision makers with different preferences for avoiding false positives or false negatives, or those
faced with another frequency of risk updates, may prefer to adopt a different strategy.

4. Conclusions

The small sample of historic storms impacting coastal Louisiana results in substantial variation
in the best estimates of annual exceedance probabilities over time. Different regions across the coast
experience differing levels of variation in terms of over- and under-estimating these probabilities.
However, spatial and temporal patterns in this variation are not obvious, aside from a general trend of
expansion in coastal floodplains. Despite this lack of a clear pattern, we find that best estimates of the
50-, 100-, and 500-year floodplains exhibit variation over time, even when the landscape and other
environmental factors are held constant.

Given that our experimental design was more controlled than the real environment, we expect
that our results underestimate true variation in the coastal floodplain, with further expansion of the
floodplain contributed by sea level rise, subsidence, and erosion. In contrast, the state’s investments in
risk reduction and coastal restoration counteract these impacts in some parts of the coast. Our analysis
reinforces other studies suggesting that coastal floodplains are growing over time, and this growth has
policy impacts on the individuals living in these regions. We conclude that a more conservative estimate
of a policy-relevant floodplain may be useful for futureproofing flood insurance and construction
regulations in a regime where updates to best estimates are carried out infrequently. Alternatively,
it may be appropriate to utilize other approaches to estimate the mean inter-arrival rate of storms;
rather than using a rate calculated using the entire historic data set to date, flood risk maps may be
more robust with the use of a moving average or a rate predicted using a trend analysis applied to
truncations of the historic data set.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/7/5/145/s1,
Figure S1: Total land area of floodplain extent by year and return period. The dark line indicates median estimates,
while the shaded area indicates the range between 10th and 90th percentile estimates, Figure S2: Populated
land area of floodplain extent by year and return period. The dark line indicates median estimates, while the
shaded area indicates the range between 10th and 90th percentile estimates, Figure S3: Difference in 500-year
flood depth estimates (reference minus truncated time series), Figure S4: Root mean square deviation (RMSD) of
500-year flood depth predictions over time in Plaquemines Parish risk regions exterior to HSDRRS, Figure S5:
Variability in 500-year floodplain classification, 1980 to 2016, Table S1: Storm parameters at landfall for storms in
the 446-storm suite.
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