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Abstract: It is well known that path planning has always been an important study area for
intelligent ships, especially for unmanned surface vehicles (USVs). Therefore, it is necessary
to study the path-planning algorithm for USVs. As one of the basic algorithms for USV path planning,
the rapidly-exploring random tree (RRT) is popular due to its simple structure, high speed and
ease of modification. However, it also has some obvious drawbacks and problems. Designed to
perfect defects of the basic RRT and improve the performance of USVs, an enhanced algorithm of
path planning is proposed in this study, called the adaptive hybrid dynamic stepsize and target
attractive force-RRT(AHDSTAF-RRT). The ability to pass through a narrow area and the forward
speed in open areas of USVs are improved by adopting the AHDSTAF-RRT in comparison to the
basic RRT algorithm. The improved algorithm is also applied to an actual gulf map for simulation
experiments, and the experimental data is collected and organized. Simulation experiments show
that the proposed AHDSTAF-RRT in this paper outperforms several existing RRT algorithms, both in
terms of path length and calculating speed.

Keywords: path planning; USV; RRT; AHDSTAF-RRT; improved algorithm; dynamic stepsize;
target attractive force

1. Introduction

With the increasing frequency of human activities, the rapid consumption of global energy,
and the harsh deterioration of environment, the development and application of water surface and
marine areas is becoming increasingly extensive [1–3]. Most water operations and tasks need to be
accomplished by ships, due to the special working environment of water. At the same time, unmanned
equipment is becoming more and more widely used in our society, with the breakthroughs brought
about by multiple theories and the development of related technologies, such as artificial intelligence,
bionic intelligence, and control science [4]. With the drive of engineering application demand in
some bodies of water-such as shoals, lakes, and rivers-there has been an increasing development of
unmanned surface vehicles (USVs) in recent decades [5]. The applications of USV include national and
civilian uses [6]. Successful applications can be found in diverse areas, such as the replenishment of
underway ships, marine exploration, maritime search and rescue, the fishery industry, coastal patrolling,
and hydrologic monitoring [7].

The path-planning research of USVs not only determines the level of autonomy of the vehicle,
but also influences the reliability of a mission and the likelihood of success [8]. As the algorithm is
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the most critical part of USV path planning, this must be elucidated [9]. Optimizing safety, energy
consumption, and travelling time are the main aims of a path-planning algorithm.

To address a vehicle’s path planning, many kinds of path-planning algorithms have been proposed
by researchers [10]. Zeng et al. presented an online dynamic path re-planning system for an autonomous
underwater vehicle [11]. Aghababa applied a numerical solution of the nonlinear optimal control
problem (NOCP) to determine optimal paths in environments with obstacles [12]. Warren presented an
algorithm using artificial potential fields to aid in path planning [13]. Petres et al. presented a novel fast
marching (FM)-based approach to address path planning [14]. In the sense of energy saving, the effect
of the sea current in path planning was presented and an A* search algorithm with a time-optimal
cost was proposed by Garau et al. [15]. Several computational approaches comprising evolutionary
methods have been applied in path planning for marine vehicles. Song et al. proposed an algorithm
combining nonholonomic constraints of vehicles with a double extended rapidly-exploring random
tree (RRT), which not only improves the efficiency of searching but also guarantees the feasibility of
the path at the same time [16]. Singh et al. proposed a grid-based path-planning approach for USVs
considering static and moving obstacles together with sea surface currents [17]. Du et al. proposed an
algorithm combining the environmental constraints and the constraints of intelligent vehicles with
RRTs [18].

The advantage of the RRT algorithm is that it can be used to plan a path in a complex environment
without building a spatial modeling [19,20]. Meanwhile, the RRT-based path-planning method also
has some deficiencies, such as high randomness, inflexible stepsize, slow rate of calculation, and so
on. The route generating from path planning is seriously affected by these deficiencies [21]. In the
sense of optimizing route generation, improving the speed of calculation, maximizing ease of control,
and saving energy, these deficiencies of RRT should be overcome by forming a new algorithm that is a
hybrid of superior mechanisms.

Some improved methods have also been used by many studies. Lin et al. proposed an adaptive
RRT algorithm based on dynamic stepsize for path planning, in order to solve the problem that the
traditional RRT algorithm easily falls into a local minimum area when applied to unmanned aerial
vehicles [22]. Melchior et al. defined a new fractional attractive force for robust path planning of
mobile robot, and this method obtained robust path planning despite robot mass variations [23].
Liu et al. introduced an algorithm based on RRT by adding a gravity component of the target to solve
the disadvantages of the high randomness and long path length [24]. Cao et al. added a dynamic
stepsize and target gravity to the basic RRT algorithm. They applied this to the path planning of an
agricultural mechanical arm and obtained a good result for litchi picking [25].

However, it should be noted that some shortcomings still exist in these traditional RRT algorithms,
such as the high randomness of the search tree growth directions, especially when these path-planning
algorithms are applied in certain open areas [26]. In addition, there is often a complex environment
with many narrow areas and open areas in the USV’s workspace. To deal with these deficiencies
of the existing RRT-based algorithms, a novel algorithm is proposed in this paper that is improved
through a hybrid of the basic RRT and two mechanisms: dynamic stepsize and target attractive forces.
The proposed algorithm is used to improve the performance of USV tasks in a complex workspace.
To verify the effect of the enhanced algorithm, this algorithm must be applied to a simulation experiment
before being put into a real ship. A real map of a gulf which has a complex terrain was selected as the
simulation area, and some necessary processing was done on this map for simulation. In addition,
there were some points set for testing according to actual work requirements. Simulation results show
that the proposed algorithm definitely optimizes the path-planning algorithm for USVs, especially in a
few particular areas.

This paper is organized as follows. In the current section, the necessity of path-planning research
has been described with the relevant development and background of USVs. In Section 2, the problem
definition is presented and some symbols are defined. In Section 3, the basic RRT path-planning
algorithm is given, its merit and demerits are analyzed, and the proposed adaptive hybrid dynamic
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stepsize and target attractive force-RRT(AHDSTAF-RRT) is also described in detail. In Section 4,
after describing the experimental preparation, the results of the simulation are presented and analyzed.
Finally, in Section 5, conclusions and further work are given.

2. Problem Definition

The setup of the path-planning algorithms addressed in this paper is described in this section.
The primary task of the path-planning problem is to find a feasible path from the initial state to the
goal region in the shortest distance and least amount of computation time possible [19,27].

The optimal path-planning problem is formally composed of a cost function, boundary conditions,
and parameters to optimize the cost function. The state space, or configuration space, is represented
by the set X ∈ Rn, n ∈ N and n ≥ 2, where x ∈ X is a particular configuration of the USV and n is the
dimension of state space. Xobs is the set of states representing obstacle configurations and are forbidden
regions for the USV, and Xobs ⊂ X in general. The set of states X f ree denotes the traversable states for
the USV. Let Tree represent the RRT’s tree growing from the initial and goal state. Let V and E be the
vertices andedges of Tree such that Tree = (V, E) ⊂ X f ree. Let xstart ∈ X f ree and xgoal ∈ X f ree represent
the initial and goal state, respectively.

Definition 1. Feasible path planning is performed to find a feasible path τ, such that
τ : [0, 1]→

{
τ(0) = xstart, τ(1) = xgoal

}
∈ X f ree , let τ be a collision-free path be denoted by τ : [0, 1] ∈ X f ree,

for a given path planning problem
(
X f ree, xstart, xgoal

)
.

Definition 2. For a given path planning problem
(
X f ree, xstart, xgoal

)
, let c(τ) be the cost to reach xgoal along a

path τ. The cost function c(τ) can hence be formally determined by the following:

c(τ) =
∫ 1

0
|τ|, {τ : [0, 1]|τ(0) = xstart, τ(1) = xgoal, τ : [0, 1]→ X f ree} (1)

3. Path-Planning Algorithms and Improvements

Path planning is a critical step for the USV, as the level of endurance, efficiency, and autonomy
of a USV are affected by the path-planning strategy [28]. In this section, the basic RRT algorithm
and two improved RRT algorithms are first presented based on the current path-planning research.
Building off the presented algorithms, the adaptive hybrid dynamic stepsize and target attractive
force-RRT(AHDSTAF-RRT) is proposed, and the procedures of the AHDSTAF-RRT are also introduced.

3.1. Basic RRT Algorithm

LaValle proposed a concept of a rapidly-exploring random tree (RRT) as a randomized data
structure that is designed for a broad class of path-planning problems [29]. Basic RRT is a data structure
and algorithm that is designed for efficiently searching non-convex high-dimensional spaces, and it is
constructed incrementally in a way that quickly reduces the expected distance of a randomly-chosen
point to the tree.

The basic RRT algorithm, presented in Algorithm 1, is a qualified path-planning algorithm.
The basic RRT begins with a tree rooted at the only start node xstart with no edge and incrementally
extends the tree of collision-free paths. When RRT connects a new state xnew, it needs to generate other
nodes to create its final path. First, a node would generated through goal node or from free space
randomly, called xsample; second, the nearest neighbor node of node xsample, xnear would be searched out
of existing tree; third, another node xnew would be searched in a circle with radius equaling one unit
stepsize and centered at xnear, to find node xnew that located in line between node xnear and node xsample,
and makes a path with the line segment from the node xnear to the node xnew; then the node xnew would
be abandoned if the line segment from node xnear to node xnew is not collision-free; or the node xnew

will be added to tree if the line segment is in the collision-free space; final, it would restart node xsample
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generating and xnew searching, until the distance between goal and node in the tree is smaller than
given value, which is end of this calculation.

Algorithm 1 Basic Rapidly-Exploring Random Tree (RRT)

RRTmain()
1. Tree = xstart

2. xnew = xstart

3. while Distance(xnew, xgoal) < ErrTolerancedo
4. xsample = SampleTarget()
5. xnear = NearestVertex(Tree, xsample)
6. xnew = ExtendTowards(xnear, xsample)
7. Tree.add(xnew)
8. end while
9. return Trajectory(Tree, xnew)

The pseudocode of SampleTarget(), which is one of functions in the basic RRT algorithm,
is presented in Algorithm 2.

Algorithm 2 SampleTarget()

1: if Rand()<GoalSamplingProb then
2: return xgoal
3: else
4: return RandomConfiguration()
5: end if

The algorithms discussed above contain the following functions:

• Distance: Given two states xnew and xgoal, it returns the distance between these two states by a
distance function. Euclidean distance is usually used for the distance function.

• SampleTarget: Given a graph configuration space, it returns a state xsample, which is either the state
xgoal or a state randomly selected from the configuration space.

• NearestVertex: Given a graph tree and a state xsample, it returns the state xnear that is the nearest
state to xsample on the graph tree.

• ExtendTowards: Given two states xnear and xsample, it returns a state xnew that is located on the
line segment from xnear to xsample, and such that the distance between xnear and xnew is equal to
unit stepsize.

The objective of the basic RRT algorithm is to start from an initial state xstart located in the
collision-free space and find a path to the goal state xgoal. This is done by continuously adding nodes
to the Tree, which is grown from the starting state xstart in the collision-free space until the distance
between the goal and a node in the Tree is within the visible range.

Time complexity and space complexity describe how much time and space, respectively,
are required by the given algorithm. Large O notation is often used to describe the complexity
of an algorithm [20,30].

The time complexity analyses of the basic RRT algorithm, as shown in Algorithm 1, are as follows.
Time complexity is usually defined as the number of calls for the most time-consuming procedure,
which is the procedure of adding the vertex xnew in basic RRT. For a problem with a data size of N
samples, the time it takes to add vertex xnew to the tree can be calculated as the sum of each step:

T(N) = Tsample(N) + Tnear(N) + Textend(N) + Tadd(N), (2)
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where Tsample, Tnear, Textend, and Tadd correspond to the functions in lines 4–7 of Algorithm 1, respectively.
With data size of N samples, Tsample, Tnear, and Tadd are all simple operations, and can be completed in
linear time; thus, the time complexity of them is O(N). The extension time, Textend, of the tree can take
considerably longer if collision checking or other intelligent extension strategies are used. However,
these calculations do not depend on the number of vertices already in the tree, and the time complexity
for inserting a vertex is O(N ∗ log(N)). Each time the nearest vertex has to be found, the distance from
the vertex xsample to all previously added vertices must be calculated. Thus:

Textend(N) = O(N ∗ log(N)). (3)

By adding the derived complexity for the sample, near, extend, and add operations, the combined
time complexity for the basic RRT algorithm is

T(N) = O(N) +O(N ∗ log(N)) +O(N) +O(N) ≈ O(N ∗ log(N)). (4)

Therefore, the time complexity of the basic RRT is O(N ∗ log(N)) for a data size of N samples.
Space complexity is defined as the amount of memory space used by the given algorithm.

Basic RRT maintains a tree Tree = (V, E), and the size of the tree determines the amount of memory
space. The space complexity of the basic RRT is |Tree| ∈ O(N), because the size of Tree can be calculated
as the sum of the absolute values of VN and EN : |Tree| = |VN |+ |EN |. Clearly, VN = N, and EN = N − 1.
Therefore, |Tree| = |VN |+ |EN | = 2N − 1 ∈ O(N), and the space complexity of the basic RRT is O(N).

3.2. Improved Methods of RRT

While a basic RRT algorithm alone is insufficient to solve a path-planning problem, it is customarily
considered as a component that can be incorporated into the development of a variety of different
planning algorithms. Therefore, relative to RRT’s shortcomings, which are randomness and a weak
ability to pass through a narrow area, two mechanisms-dynamic stepsize and forces due to target
attraction-are chosen and added to the basic RRT algorithm to solve its deficiencies.

3.2.1. Target Attractive Force-RRT

Due to the high randomness, there are many cases in which the RRT algorithm tree branches
grow in an irrelevant direction. To solve this deficiency, the mechanism of a target attractive force was
introduced into the basic RRT algorithm, forming the target attractive force-RRT(TAF-RRT) algorithm.

The following is the method of the basic RRT with a target attractive force added:

θ1 = arctan
((

xsample[1] − xnear[1]
)
/
(
xsample[0] − xnear[0]

))
, (5)

θ2 = arctan
((

xgoal[1] − xnear[1]
)
/
(
xgoal[0] − xnear[0]

))
, (6)

θ = k1θ1 + k2θ2, (7)

where:

• θ1 is the angle between the line pointing from xnear to xsample and the coordinate axis;

• θ2 is the angle between the line pointing from xnear to xgoal and the coordinate axis;

• θ is the final angle between the direction of the branch node growth and the coordinate axis;
• k1 and k2 represent the coefficients of θ1 and θ2, respectively. In general, k1 + k2 = 1.
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Every time a new node xnew generated, it would be slightly biased toward the target node xgoal
from the original direction toward the sample node xsample, with the bias angle θ generated by target
attractive force. Due to this mechanism added, the final collision-free path τ and cost of path c(τ)
would change each time the biases were added together after the process of path planning.

Compared to the basic RRT algorithm, branches of the TAF-RRT are more likely to grow in the
direction of the target in an open area after adding the target attractive force. Therefore, the randomness
and the length of the path created by this method are reduced. The number of branches represents the
successful attempts of connected samples to the tree before a feasible path generated by this algorithm.

3.2.2. Dynamic Step Size-RRT

Another problem with the RRT-based algorithm is that it is difficult to pass through narrow areas
of a map because the RRT-based algorithm when the stepsize p is too large. Another consequence of this
shortcoming is that the branches grow too slowly in an open area with a small stepsize, which results in
the lower speed of the algorithm. An approach is proposed that aims to solve this problem by adding
the mechanism of a dynamic stepsize.

The principle of this improved algorithm, dynamic stepsize-RRT(DS-RRT), is that the stepsize of
this algorithm is variable depending on different situations of the Tree, threshold d, and node xnear.
When branches growing in narrow area, the stepsize p will become smaller, and likewise will become
larger when they face an open field:

p =

{
p1, Distance(xnear, Xobs) < d
p2, Distance(xnear, Xobs) ≥ d

, (8)

After the dynamic stepsize mechanism is added, the modified algorithm has a better passage
ability in narrow area with smaller stepsize, and also has an higher speed in open area with larger
stepsize. Usually, with the fixed initial stepsize p0, the value of p1 is a half of p0, and the value of p2 is
1.0 to 1.2 times p0, which are generated by trial and error.

3.2.3. Adaptive Hybrid Dynamic Step Size and Target Attractive Force-RRT

To modify both deficiencies of the RRT algorithm mentioned above, the two described mechanisms
are simultaneously added to the basic RRT algorithm, forming the dynamic stepsize and target attractive
force-RRT (DSTAF-RRT) algorithm.

However, some test experiments show that the modified algorithm DSTAF-RRT sometimes
performs unsatisfactorily in segmental processes, especially in narrow areas, and sometimes even
worse than the singly-added mechanisms. Through analysis, it was found that the target attractive
force usually hinders the correct development of the tree in the narrow area, because the branch
nodes easily hit obstacles due to the attractive force impact and thus grow unhealthily. In view of
the above, the following proposal was proposed: when RRT branch nodes grow in a narrow area,
the dynamic stepsize mechanism should be added into the basic RRT algorithm and the weight of
the target attractive force should be reduced or even completely removed. Likewise, when RRT
branch nodes grow in a very open area, the target attractive force and dynamic stepsize should be
added simultaneously, and the weight of the target attractive force should be increased. Ultimately,
the adaptive hybrid dynamic stepsize and target attractive force-RRT (AHDSTAF-RRT), is born.
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Algorithm 3: AHDSTAF-RRT(Improved RRT)

Improved RRTmain()
1. Tree = xstart

2. xnew = xstart

3. while Distance(xnew, xgoal) < ErrTolerancedo
4. xsample = Sample Target()
5. xnear = NearestVertex(Tree, xsample)
6. if CheckObstacle(xnear, Xobs, d)
7. ExtendTowards←AttractiveForce(xgoal, xnear);
8. p = DynamicSize(T, Xobs);
9. else
10. ExtendTowards←Reduce AttractiveForce(xgoal, xnear);
11. p = DynamicSize(T, Xobs);
12. endif
13. xnew = ExtendTowards(xnear, xsample)
14. Tree.add(xnew)
15. end while
16. return Trajectory(Tree,xnew)

The AHDSTAF-RRT algorithm, presented in Algorithm 3, is similar to the basic RRT algorithm in
general, except in the critical steps where the adaptive hybrid adjustment is added through a judgement
program statement.

Algorithm 3 employs the following functions:

• CheckObstacle: Given the node xnear, obstacle Xobs, and threshold d, it returns whether the distance
between the node xnear and obstacle Xobs is bigger than the threshold d. This is used toadjustthe
values of the stepsize p and the attractive force. Usually the threshold d is 1.5 to 2 times larger
than the stepsize p, which is generated by trial and error.

• AttractiveForce: Given two nodes xgoal and xnear, this puts a minor force on xnew when connecting
xnew to xnear with the function ExtendTowards. The addition of a minor bias angle θ2 in the
ExtendTowards function represents the attractive force from the target.

• DynamicSize: Given a graph Tree and Xobs, it returns a dynamical value of the stepsize p.
It dynamically generates the stepsize p depending on its input status, providing a numerical
stepsize value which is relevant to the current situation.

A flow chart summarizing the improved AHDSTAF-RRT algorithm is shown in Figure 1.
The time complexity analysis of the improved RRT algorithm is as follows. The time it takes to

add xnew vertices to the tree can be calculated as the sum of the time for N samples of each of the lines
4–14 in Algorithm 3:

T(N) = Tsample(N) + Tnear(N) + Textend(N) + Tadd(N) + Tcheck(N). (9)

where Tsample, Tnear, Textend, and Tadd are the same as the basic RRT, respectively, so the time complexity
of Tsample and Tnear are O(N), and the time complexity of Textend also is O(N ∗ log(N)). The judgement
program statement of the improved RRT algorithm, CheckObstacle, is an additional step compared with
the basic RRT algorithm. Tcheck is the time complexity of this judgement program statement. Two branch
statements in the judgment program statement are the same time complexity, O(N). By adding the
derived complexity for the sample, near, extend, add, and check operations, the combined time
complexity for the improved RRT algorithm is calculated as the following:

O(N) +O(N) +O(N ∗ log(N)) +O(N) +O(N) ≈ O(N ∗ log(N)). (10)



J. Mar. Sci. Eng. 2019, 7, 132 8 of 14

Therefore, the time complexity of the improved RRT is O(N ∗ log(N)).
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The space complexity analysis of the improved RRT algorithm is as follows. Similar to the basic
RRT, the improved RRT algorithm also maintains a tree Tree = (V, E) and the size of Tree determines
the amount of memory space. Given |Tree| = |VN |+ |EN |, obviously the space complexity of the
improved RRT is also O(N).

It can be easily seen from the calculation that the improved algorithm keeps the same time
complexity and space complexity as the basic RRT, while improving the search speed and keeping the
terse advantage of the program statement.

This AHDSTAF-RRT algorithm, improved by adding the adaptive adjustment mechanisms,
must be applied in simulations and experiments to test its performance.

4. Simulation Results

It is essential to do an experiment by simulating an actual USV workspace to verify whether the
improved AHDSTAF-RRT algorithm is valid. The map area, process, and results of the simulations are
included in this section.

4.1. Map Processing and Coordinate System Establishment

The Xinglin Gulf, which is located north of Xiamen, is chosen as the task simulation area due to
its complex terrain environment. The map must be processed before it can be used in the simulation
experiments. The process of map sharpening is shown in Figure 2. An image of the Xinglin Gulf with
a size of 1500 × 1500 pixels is obtained after the map processing.



J. Mar. Sci. Eng. 2019, 7, 132 9 of 14J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 9 of 14 

 

  

(a) (b) 

  

(c) (d) 

Figure 2. Map processing. (a) First step: extracting the image from the map network; (b) Second step: 
sharpening the image. (c) Third step: painting the image with white and black color; (d) Final step: 
removing some noisy points from the image. 

It is important to establish a coordinate system for map after the map processing and test point 
selection. The top left vertex of the map is set to the origin of the coordinates, with the 𝑥,𝑦 axis 
point from origin toward bottom and right respectively. After processing, this image is transformed 
into a two-dimensional array space 𝑋  with obstacle space 𝑋 = 1  and collision-free space 𝑋  = 0, which has a coordinate system and size of 1500 × 1500 pixels. 

4.2. Simulation Experiments of the Algorithm Applied to the Xinglin Gulf Map 

The test points are selected according to the technical specifications of actual water sampling. It 
is well known that sources of water pollution are often in the shore areas of water, therefore all 
selected test points are located in shallow water areas close to the shore. With the vector space 𝑋, 
the selection of test points refers to an actual water sampling work, and there are six test points and 
six path segments which appear from these points being connected in turn. The coordinates of 
Xinglin Gulf test points are listed in Table 1, and the locations of the test points in vector space 𝑋 of 
map image are shown in Figure 3. 

From Figure 3, it can be easily seen that the test points are all located in the shore areas of the 
Xinglin Gulf, with several narrow regions between them. The purpose of this selection is to test 
whether the performance of the proposed algorithm is improved. 

Figure 2. Map processing. (a) First step: extracting the image from the map network; (b) Second step:
sharpening the image. (c) Third step: painting the image with white and black color; (d) Final step:
removing some noisy points from the image.

First, a map of Xinglin Gulf is extracted from the map network and then made into an image with
a suitable size, as shown in Figure 2a. After this processing step, information of collision-free space,
obstacle space and comparing rule are saved. Second, this image needs to be sharpened to make its
outlines clearer and prepare it for the next step, as shown in Figure 2b. Next, special areas of the image
need to be painted with a suitable color, usually black and white, as shown in Figure 2c. Usually white
represents collision-free space and black represents obstacle space. Finally, some noisy points need to
be removed from this image and the image is converted into binary data so that it can be correctly read
by a computer, as shown in Figure 2d. It is necessary to explain that this method of map processing
only applies to the simulation experiment to verify the effectiveness of the algorithm proposed in this
study, while there are other methods to process maps for real tasks.

It is important to establish a coordinate system for map after the map processing and test point
selection. The top left vertex of the map is set to the origin of the coordinates, with the x, y axis
point from origin toward bottom and right respectively. After processing, this image is transformed
into a two-dimensional array space X with obstacle space Xobs = 1 and collision-free space X f ree = 0,
which has a coordinate system and size of 1500 × 1500 pixels.
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4.2. Simulation Experiments of the Algorithm Applied to the Xinglin Gulf Map

The test points are selected according to the technical specifications of actual water sampling. It is
well known that sources of water pollution are often in the shore areas of water, therefore all selected
test points are located in shallow water areas close to the shore. With the vector space X, the selection of
test points refers to an actual water sampling work, and there are six test points and six path segments
which appear from these points being connected in turn. The coordinates of Xinglin Gulf test points
are listed in Table 1, and the locations of the test points in vector space X of map image are shown in
Figure 3.

Table 1. Coordinates of test points.

Point Coordinates

Point 1 (175,640)
Point 2 (380,560)
Point 3 (540,460)
Point 4 (572,150)
Point 5 (860,440)
Point 6 (1,340,500)
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From Figure 3, it can be easily seen that the test points are all located in the shore areas of the
Xinglin Gulf, with several narrow regions between them. The purpose of this selection is to test
whether the performance of the proposed algorithm is improved.

After the test point selection and the determination of the simulation task, five different
path-planning algorithms were applied to the simulation of the Xinglin Gulf map in order to test their
performance: the basic RRT, DS-RRT, TAF-RRT, DSTAF-RRT, and AHDSTAF-RRT. To avoid the single
test randomness, each algorithm will simulate 20 times, and result of each simulation will be recorded
to calculate the average quantity.

When these RRT-based algorithms perform path planning, the tree branches extend from the
root node xstart to search the space of map until the tree stops near the target node xgoal. The number
of branches represents the successful attempts of connected all random samples to the tree before a
feasible path generated by RRT-based algorithms, therefore it could also stand for the computational
time cost level. The average lengths of the paths determined from the different algorithms simulated
on the Xinglin Gulf map are shown in Table 2, and the average number of branches for each algorithm’s
growth in the simulation experiments is shown in Table 3.
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Table 2. Average length of each path through five different algorithms simulated on the Xinglin Gulf
map. DS: dynamic stepsize; TAF: target attractive force; AH: adaptive hybrid.

Path Number 1 2 3 4 5 6

Origination Point 1 Point 2 Point 3 Point 4 Point 5 Point 6
Destination Point 2 Point 3 Point 4 Point 5 Point 6 Point 1

RRT 297.98114 294.80789 374.09753 529.68422 889.99309 2203.9932
DS-RRT 279.66584 285.57145 373.00868 521.402 856.35898 2039.7009

TAF-RRT 293.88918 314.30826 361.82602 530.41869 917.33472 1848.7661
DSTAF-RRT 292.28904 282.49893 362.41963 503.50753 950.4972 1814.8503

AHDSTAF-RRT 269.72686 252.4269 354.02617 484.70416 807.00211 1737.9915

Table 3. Average number of branches for each algorithm’s growth in the simulation experiment.

Path Number 1 2 3 4 5 6

RRT 142.2 475.8 222.3 120.1 422.0 1733.6
DS-RRT 145.3 80.3 141.1 105.5 386.3 610.4

TAF-RRT 242.6 987.1 688.7 112.1 1512.4 727.7
DSTAF-RRT 190.5 186.9 148.6 106.7 316.7 446.5

AHDSTAF-RRT 87.3 66.1 133.7 101.6 270.5 428.8

Histograms comparing the results are shown in Figure 4, the average length of each path through
the different algorithms histogram is shown in Figure 4a, and the average number of branches for each
algorithm’s growth is shown in Figure 4b.
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(a)Lengths of each path; and (b) number of branches of each path.

It can be obviously seen that the basic RRT performed worst in terms of the average length of each
path compared with the other improved algorithms. On the other hand, the AHDSTAF-RRT has the
best performance among these algorithms, having the lowest average length cost for each test. In terms
of the average number of branches, the TAF-RRT algorithm and DSTAF-RRT perform poorer than the
basic RRT in narrow areas, which confirms our previous statements. Furthermore, the AHDSTAF-RRT
performs among best of these algorithms in terms of the average number of branches.

The final simulation experiment of five algorithms is shown in Figure 5. Each path is composed of
six segmented paths, which start point and goal point are respectively set in Table 1 and Figure 3. It is
easily seen from Figure 5 that the basic RRT has a high randomness. Additionally, a feasible path in the
map of Xinglin Gulf generated by the AHDSTAF-RRT algorithm, which performed better than the
other four algorithms both in terms of length and computational rate.
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5. Conclusions

An RRT-based optimal path-planning algorithm is proposed in this paper, namely the adaptive
hybrid dynamic stepsize and target attractive force-RRT(AHDSTAF-RRT). The main idea of this
improved algorithm is that it adds two mechanisms—a dynamic stepsize and a target attractive
force—into the basic RRT algorithm in the procedure of new node generation and tree growth.
This improves on the basic RRT while retaining its beneficial characteristics. Both in terms of length
and number of branches, it is obvious that the proposed AHDSTAF-RRT algorithm has created an
enhanced path-planning method while keeping the same time and space complexity as the basic RRT.
Furthermore, the improved algorithm is not only able to find a better solution to pass narrow areas but
is also able to pass open areas with a higher computational speed. In addition, AHDSTAF-RRT is still a
tree-extending algorithm, and it can also be combined with any sampling strategy or graph-pruning
algorithm to take advantage of any other excellent properties.

In future research, more advantageous mechanisms will be adapted into this algorithm to improve
its path-planning performance and computational speed, more complex environments will be studied,
and more experiments will be done to observe its passing ability and performance. In addition, with a
view to the motion control of USVs, there is a great deal of work to do in the processing of curved
sliding after path generation.
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