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Abstract: The paper discusses the effects of mooring configurations on the dynamic response of
a submerged floating offshore wind turbine (SFOWT) for intermediate water depths. A coupled
dynamic model of a wind turbine-tower-floating platform-mooring system is established, and the
dynamic response of the platform, tensions in mooring lines, and bending moment at the tower
base and blade root under four different mooring configurations are checked. A well-stabilized
configuration (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30◦) is selected
to study the coupled dynamic responses of SFOWT with broken mooring lines, and in order to keep
the safety of SFOWT under extreme sea-states, the pretension of the vertical mooring line has to
increase from 1800–2780 kN. Results show that the optimized mooring system can provide larger
restoring force, and the SFOWT has a smaller movement response under extreme sea-states; when the
mooring lines in the upwind wave direction are broken, an increased motion response of the platform
will be caused. However, there is no slack in the remaining mooring lines, and the SFOWT still has
enough stability.

Keywords: floating offshore wind turbine (FOWT); mooring system; coupled dynamic response;
broken mooring line; safety factor

1. Introduction

Over recent years, harnessing of offshore wind power usually has been concentrated in shallow
water regions (<50 m) using fixed foundations, such as monopile, gravity, or jacket structures [1].
With the depletion of coastal resources, as well as the geographical and environmental constraints,
the development of offshore wind power is bound to reach deep water to access abundant wind
resources. Fixed foundations are limited at water depths of 30–50 m [2–5]. A series of floating wind
turbine concepts has been proposed at various stages of development, which can be divided into three
categories: spar, semi-submersible, and tension leg platform (TLP) [6–13]. In addition, the world’s
first commercial floating wind power project, Hywind Scotland pilot park, was put into operation in
2017 [14].

In recent years, several feasibility studies have been performed to investigate the economic
viability of FOWT and optimize the design of both support structures and mooring systems [15–17].
The offshore code comparison collaboration continuation (OC4) DeepCWind semi-submersible floating
offshore wind turbine (FOWT) model was simulated by Liu et al. [18]; a fully-coupled fluid-structure
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interaction system was analyzed in detail, and the impacts of wind turbine aerodynamics on the
behavior of the floating platform and the mooring system responses were examined. Benassai [19]
minimized the catenary mooring system weight for tri-floater floating offshore wind turbines and
pointed out that the platform admissible offset and mooring line configuration significantly influence
the weight of the mooring system. Yusuke [20] proposed a novel type of floating wind turbine with a
single-point mooring system and examined two different configurations of the single point mooring
system based on a tank test and a real sea test.

In order to ensure the FOWT safety, the aero-hydro-elastic-mooring coupled dynamic response of
a floating wind turbine under extreme sea-states has to be checked. Utsunomiya et al. [21] evaluated
the dynamic response of a spar-type FOWT under extreme sea-states using the dynamic analysis tool,
which consists of a multibody dynamics solver, aerodynamic force evaluation library, hydrodynamic
force evaluation library, and mooring force evaluation library. Mooring line damage is a key factor that
influences the safety of the whole system. Several related studies have been conducted on the damaged
mooring systems for floating offshore wind turbines. Benassai et al. [22] studied the performance
changes of the OC4 DeepCWind semisubmersible with one broken mooring line and found that an
accidental disconnection of one of the mooring lines changes the platform and turbine orientations,
which might cause large nacelle yaw error. Li et al. [23] established a coupled aero-hydro-elastic
numerical model to investigate the transient response of a spar-type FOWT in scenarios with fractured
mooring lines, and they found that in terms of drift distance, it might be more dangerous to shut down
the turbine when the wind load is in the opposite direction of drift. Ahmed et al. [24] established a
simplified three-degrees-of-freedom (3-DOFs) model to analyze the transient motion of a truss-spar
in the time domain after one or two mooring lines were broken. In the simulations, a quasi-static
approach was applied to calculate the mooring loads.

A submerged FOWT (SFOWT) with a taut mooring system was proposed to support a 5-MW
wind turbine for a water depth of 50–200 m [25–27]. This paper discusses the effects of mooring
configurations on the dynamic response of SFOWT. Fully-coupled aero-hydro-servo-elastic time
domain simulations were carried out using the code FAST [28] developed by NREL to simulate
the dynamic response of SFOWT. TurbSim [29] is used to generate the 3D turbulent wind field,
and Sesam/Wadam [30] is used to calculate the hydrodynamic coefficients of the SFOWT in the
frequency domain. The coupled dynamic responses of SFOWT with different mooring configurations
are investigated, and the dynamic responses of SFOWT with broken mooring lines are further analyzed
by selecting the optimal mooring configurations.

2. Theoretical Calculations for SFOWT

2.1. Equation of Motion in the Time Domain

The equation of motion of SFOWT can be expressed as follows [31]:

[M + A∞]
..
ξ+ Kξ = F1(t) + Fn

(
t,

.
ξ
)
+ Fc

(
t,

.
ξ
)
+ Fw(t) + Fm(t) (1)

where M is the mass matrix of SFOWT, A∞ is the added mass at infinity frequency, and ξ,
.
ξ, and

..
ξ

are the 6-DOF displacements, velocities, and accelerations of the platform, respectively. K is the
hydrostatic stiffness matrix. F1(t) is the first-order wave exciting forces. Fn

(
t,

.
ξ
)

is the nonlinear drag
force from Morison’s equation. Fw(t) is the wind-induced forces including aero-dynamic forces and
tower drag forces. Fm(t) is the restoring force resulting from the taut mooring lines. Fc
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)

is the
radiation damping force, which can be expressed as:
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where R(t) is the retardation function:

R(t) =
2
π

∫
∞

0
b(w) cos(ωt)dω (3)

where b is the linear radiation damping matrix.
The hydrodynamic coefficients, such as the added mass, radiation damping, hydrostatic restoring

stiffness, and first-order wave excitation force, are calculated in the frequency domain using the
potential-based 3D diffraction/radiation code Wadam and then applied in the time domain.

2.2. Mooring Loads for SFOWT

The total pretension of the mooring system FP is:

FP = (ρ∇−m)g (4)

where ρ is the density of sea water; ∇ is displacement; m is the total mass of the wind turbine system.
If mooring inertias and damping are ignored in a linear mooring system, the mooring load Ft

i can
be calculated as follows [32]:

Ft
i = FP

i −Kt
i jξ j (5)

where FP
i is the ith component of the total pretension; Kt

i j is the linearized restoring stiffness matrix of

the mooring system; ξj is the ith degree of freedom displacement.
The restoring stiffness matrix of the mooring system can be obtained by the following

formulas [27,33]:

Kt
i j =



k11 0 0 0 k15 0
0 k22 0 k24 0 0

k31 k32 k33 k34 k35 k36

0 k42 0 k44 0 0
k51 0 0 0 k55 0
0 0 0 0 0 k66


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Yaw

(6)

k11 = k22 =
FP

lz
+ ρgAw
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lz
(7)
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EA

l
+ ρgAw (8)
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k15 = k51 = −zGTk11 (12)

k24 = k42 = zGTk22 (13)
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k36 = k33
(
r2ξ6

)
/(2l) (18)

where B and G are the buoyancy and gravity of the SFOWT, respectively; l is the tether length; lz is the
mean vertical distance between the upper fairlead and seabed; E is the modulus of elasticity; A is the
sectional area of a mooring line; ρ is the water density; g is the gravitational acceleration; Aw is the
waterline area of SFOWT; r is the horizontal distance between the center of the column and the center
of the cylinder-shaped pontoon; Ix and Iy are the inertia moment of the waterline about the x-axis
and y-axis, respectively; Ixx and Iyy are the area moment of inertia of the SFOWT about the x-axis and
y-axis, respectively; ϕ and θ are the rotational angles of roll and pitch, zB, zE, and zG are the vertical
coordinates of the buoyancy center, the upper fairlead, and the center of gravity, respectively; δs is the
increment of the set-down motion, δs = l − lz; zGT is vertical distance between the upper fairlead and
the center of gravity.

3. Dynamic Response of SFOWT under Different Mooring Configurations

3.1. Structural Form of SFOWT

The SFOWT is shown in Figure 1, and its main parameters are listed in Tables 1 and 2.
The submerged platform was composed of one column and four separated cylinder-shaped vertical
pontoons connected by four rectangular horizontal pontoons. The column and pontoons were
interconnected by four pipe members and cross braces. The wind turbine was mounted on the column.
A NREL 5 MW baseline wind turbine was employed for the analysis, and its main parameters are
listed in Table 3 [34].
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Figure 1. Overall model of the submerged floating offshore wind turbine (SFOWT).

Table 1. Main parameters of the floating platform.

Parameter Value

Diameter of vertical pontoon 9 m
Height of vertical pontoon 12 m

Distance between vertical pontoons 40 m
Height of column 20 m
Column diameter 6 m
Mass of platform 2,734,200 kg

Mass moment of inertia in roll 7.818 × 108 kg m2

Mass moment of inertia in pitch 7.818 × 108 kg m2

Mass moment of inertia in yaw 1.359 × 109 kg m2

COG of the platform during operation (0, 0, −16.75 m)
Area of water plane during operation 51.45 m2
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Table 2. Main parameters of the mooring line.

Parameter Value

Diameter of mooring line 0.127 m
Mass of per unit length 116.027 kg/m

Breaking strength 13,249 kN
Axial stiffness of mooring line (EA) 2.47 × 109 N

Table 3. Main parameters of the NREL 5 MW wind turbine.

Parameter Value

Rated power 5 MW

Turbine control Variable speed,
collective pitch

Rotor diameter 126 m
Hub diameter 3 m

Hub height 90 m
Cut-in, rated, cut-out wind speeds 3, 11.4, and 25 m/s

Mass of impeller 110,000 kg
Mass of nacelle 240,000 kg
Mass of tower 347,460 kg

Centroid coordinates (−0.2 m, 0, 74 m)

3.2. Dynamic Response

The safety factor of a mooring line can be expressed as follows:

F =
PB

Tmax
(19)

where PB and Tmax are the breaking strength and maximum tension in the mooring line, respectively.
The requirements of the minimum safety factor in different states are listed in Table 4.

Table 4. Requirements of the minimum safety factors [35].

State Analysis Method Safety Factor

Normal operation state (NOS) Dynamic 1.67
Extreme sea-states Dynamic 1.3

Broken mooring lines Dynamic 1.0

The motion responses and internal force distributions of SFOWT under four different mooring
configurations are shown in Table 5 and Figure 2, with a draft of 22 m, a water depth of 100 m,
a wind speed of 11.4 m/s, a significant wave height of 3 m, and a peak period of 10 s generated by
the JONSWAP spectrum with a peak enhancement factor of 3.3. The directions of wind and wave are
along the X-axis. The sea-states are modeled using three-hour periods, and the statistical analysis was
carried out using the time-series of 4000–5000 s. The pretension in mooring lines is shown in Table 6.

Table 5. Mooring configurations.

Mooring Configuration No. of Vertical
Mooring Lines

No. of Diagonal
Mooring Lines

Inclination
Angle

Configuration 1 8 - -
Configuration 2 4 4 15◦

Configuration 3 4 4 30◦

Configuration 4 4 12 30◦
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Table 6. Pretension in mooring lines.

Mooring Configuration Pretension in Vertical Lines/kN Pretension in Diagonal Lines/kN

Configuration 1 3600 -
Configuration 2 3600 3727
Configuration 3 3600 4157
Configuration 4 1800 2078

Figures 3 and 4 show the time series of platform motion under different mooring configurations
and the corresponding motion statistics, respectively. The mooring lines provide a restoring force
for the platform, affecting its motion response. As can be seen from Figures 3a and 4a, the surge
equilibrium position under Configuration 1 had a larger displacement than the others; when there was
a diagonal mooring line, the maximum value and standard deviation of surge were in the order of
Configuration 2 > Configuration 3 > Configuration 4. In comparison to Configuration 2, the maximum
value and standard deviation under Configuration 4 were reduced by 95.9% and 96.4%, respectively.
The diagonal mooring lines provide a horizontal restoring force for the floating platform. As the tilt
angle of the mooring line increased, the horizontal restoring force provided by the mooring lines
increased. As shown in Figures 3b and 4b, the heave response of the platform under Configuration
2 was larger, because it had a smaller vertical restoring force than Configurations 1 and 4, and the
large surge motion also induced the large heave motion due to the set-down motion. Figure 3c,d and
Figure 4c,d show that the pitch and yaw responses were largest under Configurations 2, while the
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average of the pitch and yaw response was close to zero under the four configurations. As shown in
Figures 3 and 4, the SFOWT had a smaller response and a better performance under Configuration 4.

Figures 5 and 6 show the time series of bending moment at the root of the blade and tower base
under different mooring configurations and the corresponding statistics, respectively. There was little
change in the bending moment at the root of the blade, which was due to the bending moment being
dominated by wind load. The effect of the specific form of configurations was not obvious. The mean
value of the tower base bending moment was mainly wind-induced, while its standard deviation was
induced by both wind and wave loads; the standard deviation was also influenced by the motion
response of the platform. From Figures 5b and 6b, it can be observed that the maximum value and
standard deviation appeared under Configuration 2.
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Figure 3. Time series of the platform motion under different mooring configurations.
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mean value of the tower base bending moment was mainly wind-induced, while its standard 
deviation was induced by both wind and wave loads; the standard deviation was also influenced by 
the motion response of the platform. From Figures 5b and 6b, it can be observed that the maximum 
value and standard deviation appeared under Configuration 2. 
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Figure 4. Motion statistics of the platform under different mooring configurations.

The time series of tension in Mooring Lines No. 1 (vertical) and No. 5 (diagonal) under different
mooring configurations and the corresponding statistics are shown in Figures 7 and 8, respectively.
The dynamic response of the platform drove the movement of the mooring lines, and the tension was
influenced by wave loads. The smallest tensions appeared under Configuration 4.
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Figure 5. Time series of the bending moment at the root of blade and tower base under different
mooring configurations.
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Figure 6. Statistics of the bending moment at the root of blade and tower base under different
mooring configurations.
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Figure 7. Cont.
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Figure 7. Time series of tension on mooring lines in different mooring configurations.
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Figure 8. Statistics of tension in mooring lines under different mooring configurations.

The safety factor of mooring lines under different mooring configurations is shown in Figure 9.
It can be seen that only Configuration 2 cannot meet the specification requirements.
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Figure 9. Safety factor of mooring lines under different mooring configurations.
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4. Dynamic Response of SFOWT under Extreme Sea-States

The SFOWT under Configuration 4 (i.e., four vertical lines and 12 diagonal lines with an inclination
angle of 30◦), as shown in Figure 10, were further studied in once-in-one-year and 50-years sea conditions
of the East China Sea areas (see Table 7). Under extreme sea-states, the wind speed exceeded its cut-out
value, and the wind turbine was under the condition of shutdown. The time histories of wind speed
and wave elevation in the X-direction are shown in Figures 11 and 12, respectively; the power spectra
of the wind speed and wave elevation are shown in Figures 13 and 14, respectively. We can see that the
energy of the wind was mainly concentrated below 0.05 Hz, while the wave spectrum was mainly
concentrated around 0.1 Hz.
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Table 7. Environmental loads under extreme sea-states.

Extreme Sea-States Wind Speed (m/s) Hs (m) Tp (s)

Once-in-1-year 30 7.1 11.9
Once-in-50-years 49 13 15.5
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Figure 14. Power spectra of wave elevation.

The time series of platform surge motion and tension in the No. 1 mooring line under extreme
sea-states are shown in Figures 15 and 16, respectively. It can be seen that the surge response suddenly
increased around 300–340 s in the once-in-50-years sea condition, and the tension in the mooring line
also quickly increased and then fell. This is because the wave elevation increased suddenly around
300–340 s (Figure 12), which led to a decrease of the restoring force on the platform and an increase of
the motion response, and eventually caused a slack in mooring lines and instability of SFOWT in the
once-in-50-years sea condition.
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The increase in the pretension in the mooring line can effectively avoid the slack in mooring
lines and improve the movement performance of SFOWT. The vertical pretension was increased from
1800–2780 kN per mooring line by adjusting the ballast water of the platform. The corresponding
motion statistics and power spectra of platform motion under extreme sea-states are shown in
Figures 17 and 18, respectively. The platform had a small surge motion and a better heave performance
due to the growing pretension under extreme sea-states. The yaw of SFOWT was small in the two sea
conditions. In comparison to the once-in-one-year sea condition, the maximum value and standard
deviation of yaw under the once-in-50-years sea condition increased by 176.8% and 319.8%, respectively.

As the wind loads are much smaller than wave loads in extreme sea-states because the turbine is
parked, the spectra of motions were mainly dominated by the wave frequency response and resonant
response. From Figure 18, it can be found that the surge motion was mainly dominated by the
wave-frequency response; the heave motion was mainly induced by the wave-frequency response and
set-down effect; and the pitch motion was mainly induced by wave-frequency and surge resonant
response. The natural frequency on each DOF was higher than the wave frequency; the heave resonant
response was the highest, i.e., 1.0 Hz.
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Figure 18. Power spectra of the platform motion under extreme sea-states. 
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The statistics of tension in vertical mooring lines (Nos. 1, 5, 9, and 13) and diagonal lines (Nos. 4,
6, 12, and 15) under once-in-one-year and 50-years sea conditions are shown in Figure 19. As shown in
Figure 19, the No. 9 mooring line, which was located in the upwind direction of the SFOWT, had the
largest average and standard deviation of tension among the vertical mooring lines, and the No. 15
mooring line, which was also located in the upwind direction of the SFOWT, had the largest maximum
and standard deviation of tension among the diagonal mooring lines. In addition, the minimum
tension in each line under extreme sea-states was larger than zero, indicating that they can provide
enough stability.
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Figure 20 shows the safety factor of mooring lines under extreme sea-states, indicating that the
safety factor of each mooring line meets the design requirements in once-in-one-year and 50-years sea
conditions. The safety factor of the No. 15 mooring line was the smallest, i.e., 1.31.
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5. Dynamic Response of SFOWT with Broken Mooring Lines

There may be one or several broken mooring lines in a floating wind turbine under long-term
environmental loads. The once-in-one-year sea condition was chosen to simulate an accident during
operation [36]. Four cases were considered, as listed in Table 8.

The time series and motion statistics of platform motion with broken mooring lines are shown in
Figures 21 and 22, respectively. It can be seen that in the course of 4100 s, the motion responses on
all DOFs fluctuated and the amplitudes increased due to the wave frequency response. The motion
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response on each DOF of the platform in Case 1 was the largest. Because the No. 15 mooring line was in
the upwind wave direction, as it consistently experienced a larger wave impact, an increasing motion
response will be caused if it is broken, and the equilibrium position of yaw motion will be changed
when the platform is at a new horizontal location. If the No. 1 mooring line is disconnected, the motion
response will be smaller owing to its position in the downwind direction against the environmental
loads. In comparison to Case 1, the maximum value and standard deviation of yaw in Case 2 were
reduced by 83.5% and 60.2%, respectively.

Table 8. Conditions of broken mooring lines.

Case Broken Mooring Line

Case 1 No. 15
Case 2 No. 1
Case 3 Nos. 1 and 12
Case 4 Nos. 1 and 13
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Figure 21. Cont.
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Figure 21. Time series of the platform motion under the condition of broken mooring lines.
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Figure 22. Motion statistics of the platform with broken mooring lines.

In all four cases, the motion responses of the platform were relatively smaller on each DOF,
indicating that SFOWT had good stability in the condition with broken mooring lines.

The statistics of tension in vertical (Nos. 1, 5, 9, and 13) and diagonal (the one that has the
maximum tension in each group) lines in the four different conditions with broken mooring lines are
shown in Figure 23. When a certain line is broken, the tension in the mooring line with the same
fairlead will increase. The tension of the mooring line in the upwind wave direction will become larger
as it consistently experiences wave loads. The tension in the diagonal lines will be larger than those in
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vertical lines, which is due to the larger pretension in diagonal lines. In all four cases, there was no
slack in mooring lines, which remained tight all the time.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 21 of 23 
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Figure 23. Statistics of tension in mooring lines in conditions with broken mooring lines.

6. Conclusions

A coupled dynamic model of SFOWT was established in this paper, and simulations of four
different mooring configurations under normal sea conditions were performed. It was found that the
motion response of the platform was smaller and the stability of SFOWT was better under Configuration
4 (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30◦). In comparison to
Configuration 2 (i.e., four vertical lines and four diagonal lines with an inclination angle of 15◦),
the maximum value and standard deviation under Configuration 4 were reduced by 95.9% and
96.4%, respectively. Since only the safety factor under Configurations 2 did not meet the requirement,
the cross-sectional area of mooring line should be increased to reduce the tension. The safety factors
of the No. 1 (vertical) and No. 5 (diagonal) mooring lines under Configuration 4 were 4.52 and
4.23, respectively.

The well-stabilized Configuration 4 was selected, and the pretension was increased to control the
platform movement effectively by adjusting the ballast water of the platform. The coupled dynamic
responses of SFOWT under extreme sea-states were checked. As the wind loads were much smaller
than the wave loads in extreme sea-states because the turbine was parked, the spectra of the motions
were mainly dominated by the wave frequency response and resonant response. It was found that this
configuration can provide better surge and yaw performances, as well as better horizontal restraints;
moreover, the motion responses of SFOWT on six degree of freedoms were smaller.
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The influence of broken mooring lines on the SFOWT performance was investigated. Four failure
cases of mooring line were considered, among which Case 1, which was the No. 15 mooring line in the
upwind wave direction being broken, had the largest motion response. However, there was no slack in
the remaining mooring lines, and the SFOWT still had enough stability.
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