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Abstract: This paper presents the theoretical background, the numerical implementation, and
the applications of a new software that has been developed in recent years for the analysis of
wave-structure interactions. The software is developed in the frequency domain, as a preprocessor
of computing the wave excitation force, the added mass, and the wave radiation damping, for the
input to a time-domain solver via the Fourier cosine and sine transforms. In addition, it can also
predict the motion responses of a marine structure with sufficient accuracy, with or without the
presence of a mooring system. Unlike other frequency-domain software, such as WAMIT® and
Hydrostar®, the present software currently employs the least squares method in association with a
partially extended boundary integral equation method to remove the so-called “irregular frequencies”.
Calculation of the free-surface Green’s function employs a combination of fast-convergent series
expansions in different parametric sub-regions. The solution of the resultant linear algebraic system
employs the lower-upper (LU) decomposition method. Symmetry properties can be exploited, and the
open multi-processing (OpenMP) parallelization technique can be applied to reduce the computation
burden. The accuracy and the efficiency of the developed software are finally confirmed by numerical
validations on three benchmark cases of a floating ellipsoid, a truncated circular cylinder and the
OC4 DeepCwind semisubmersible floating wind turbine. A free executable version of the software is
available to the research communities with a hope of facilitating the advancements in the researches
that are relevant to ocean engineering and marine renewable energies.

Keywords: marine hydrodynamics; offshore engineering; offshore renewable energy; potential flow
theory; Green’s function; free surface; computation method

1. Introduction

Safety and performance are always considered as the first priorities for a marine structure when it
is in operation. The sea circumstances can be varied depending on the site location, weather condition,
and many other factors. It is preferable for assessments with sufficient reliability to be done before
the operation or even before the construction of the marine structure is taken into action. To this
end, laboratory experiments are usually performed in advance for model calibrations, wave/load
measurements, and system evaluations, etc. However, due to the expensive cost, instead of carrying
out the model test for all sea conditions, a reliable numerical tool to assist the assessment in association
with a model test in some critical sea conditions are normally employed, which can therefore reduce
the overall cost.

So far, to evaluate the overall performance of large marine structures, the boundary integral
equation method (BIEM) based on the potential flow theory may still be the first choice over other
computational fluid dynamics (CFD) methods based on the N-S equations [1]. This is due to the fact
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that the viscous term in the N-S equations is not dominant for such a large marine structure when
its cross-section diameter D far exceeds 0.15L (in which L is the wavelength) [2]. It should be noted
that applying a CFD method is, of course, the best choice for consideration of the accuracy, but the
tiny improvement of the accuracy in computation of such a marine structure can hardly compensate
the time-consuming computational cost. This problem is especially magnified when the integral
performance of the marine structure needs to be quickly evaluated with respect to a batch of input
environmental conditions and parameters. In such cases, the computation time of applying a CFD
method is incredibly excessive and still not acceptable on up-to-date modern computers.

The BIEM is fundamentally based on the Green’s theorem, by using a free-surface Green’s function
that satisfies boundary conditions on the free surface, the seabed, and the far field, the unknowns are
reduced to those merely on the immersed body boundary such that the computational burden can be
reduced significantly. The remaining computational cost involves two aspects, i.e., the calculation of
the free-surface Green’s function and the solution of the resultant linear algebraic system. There are
several existing numerical algorithms for fast evaluation of the free-surface Green’s function, e.g.,
Newman [3,4], Telste and Noblesse [5], and Wu et al. [6] for the deep water, and Newman [3,4],
Chen [7,8], and Liu et al. [9,10] for the finite-depth water. Worth noting is that Telste and Noblesse [5]
and Liu et al. [10] also released their open-source codes respectively for the deep water and the
finite depth water. In respect to the solution of linear equations, there are basically two branches of
approaches to choose, i.e., the direct solution methods and the indirect iterative methods. The direct
methods, such as the Gauss elimination method, requires a computational effort of
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By taking advantage of the above formulation, the singularities encountered in the boundary integral 
equations can be evaluated successfully without difficulties. 

 
Figure 3. Illustration of the local coordinate system of each panel, in triangular shape or quadrilateral 
shape, respectively. The origin o normally locates at the centroid of each panel, and the positive ζ-axis 
points to the normal direction of the panel. The sequence of vertices is arranged in accordance with 
the normal direction that points into the inside of the body. 

2.4. Solution of the Linear Algebraic System 

In order to solve the linear algebraic system Equation (8), a direct solver such as Gauss 
elimination will commonly be adopted. These direct solvers are generally robust but require 𝒪ሺ𝑁ଷሻ 
computations (N denotes matrix size). For a large-scale computation of complex three-dimensional 
offshore structures, a direct inversion or inefficient iteration of such a large, dense system of linear 
equations with 𝒪ሺ𝑁ସሻ unknowns for a set of wave frequencies seems prohibitively time consuming 
even with modern computers. On the other hand, although some iterative methods, such as the 
GMRES method [11], can reduce the effort to 𝒪  ሺ𝑁ଶሻ operations; however, these kinds of iterative 
methods can easily have a problem of ill preconditions. In addition, considering the usual cases when 
the radiation-diffraction problem needs to be solved with multiple wave headings for each single 
wave frequency, the computation effort of using either a direct method or an iterative method is still 
not acceptable because it needs to successively solve the linear equations for every wave heading. For 
this reason, the LU decomposition is adopted in the solver, since it only needs to decompose the left-
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(N3) operations
where N is the dimension of the linear systems. The iterative methods, such as the generalized
minimum residual (GMRES) method [11], can reduce the effort to
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2.4. Solution of the Linear Algebraic System 

In order to solve the linear algebraic system Equation (8), a direct solver such as Gauss 
elimination will commonly be adopted. These direct solvers are generally robust but require 𝒪ሺ𝑁ଷሻ 
computations (N denotes matrix size). For a large-scale computation of complex three-dimensional 
offshore structures, a direct inversion or inefficient iteration of such a large, dense system of linear 
equations with 𝒪ሺ𝑁ସሻ unknowns for a set of wave frequencies seems prohibitively time consuming 
even with modern computers. On the other hand, although some iterative methods, such as the 
GMRES method [11], can reduce the effort to 𝒪  ሺ𝑁ଶሻ operations; however, these kinds of iterative 
methods can easily have a problem of ill preconditions. In addition, considering the usual cases when 
the radiation-diffraction problem needs to be solved with multiple wave headings for each single 
wave frequency, the computation effort of using either a direct method or an iterative method is still 
not acceptable because it needs to successively solve the linear equations for every wave heading. For 
this reason, the LU decomposition is adopted in the solver, since it only needs to decompose the left-
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a problem of ill preconditions. Meanwhile, taking into consideration the fact that, normally, the
radiation-diffraction problem needs to be solved with multiple wave headings for each single wave
frequency, the computation effort of using such an iterative method is still high because it needs to
successively solve the linear equations for every wave heading.

In addition, another computational issue that should be given attention is the suppression of the
so-called “irregular frequencies”. The discrete boundary integral equation is ill-conditioned and not
uniquely solvable at these frequencies. The occurrence of such phenomena was firstly discovered
by Ref. [12] and later studied by several scholars. There are basically two branches of numerical
methods to remove these irregular frequencies: modification of the integral operator or modification
of the domain of the integral operator [13,14], and extension of the boundary conditions in Dirichlet or
Neumann type [15–17]. Although the first branch of methods can theoretically find the unique solutions
at all frequencies, they have a critical numerical drawback in calculating the double derivatives of
free-surface Green’s function. The second branch of methods requires the solution of a set of completely
extended boundary integral equations for which an additional computational effort of evaluating the
logarithmic singularity on the free surface is necessary.

This paper presents a new software that solves the above challenging issues. It has been developed
for years and tested repeatedly via a series of research and industrial projects. The calculation of
free-surface Green’s function employs a combination of series expansions in different parametric
subregions with the aid of the epsilon acceleration algorithm, while compromising the accuracy and
efficiency of calculations. The solution of the resultant linear algebraic system adopts the lower-upper
(LU) decomposition method, which needs to be evaluated only once for the left-hand side matrix
over a distribution of wave headings. Removal of the irregular frequencies uses a partially extended
boundary integral equation method in association with the least squares method, which reduces
the computational effort and avoids evaluation of the logarithmic singularity on the free surface.
In addition, symmetry properties are exploited wherever possible for bodies with 1~2 symmetry
planes, and the open multi-processing (OpenMP) parallelization technique is applied to the codes in
order to reduce the computation time on multi-core machines. The software is therefore named HAMS
(Hydrodynamic Analysis of Marine Structures). In the subsequent computations, the computer codes
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are compiled by Intel® Fortran Compiler 18.0 (Intel® Parallel Studio XE 2018) and Microsoft® Visual
Studio 2015.

The remaining part is organized into the following sections: The background theory and the
mathematical algorithms of wave-structure interactions are introduced in Section 2. The special
techniques of numerical implementation are introduced as separate topics in Section 3. Validation of
the software for a simple analytical geometry is given in Section 4.1. Application of the software to
marine hydrodynamics of a complex floating structure is carried out in Section 4.2. The conclusions
are given in Section 5.

2. Theory and Algorithm

2.1. Governing Equation and Boundary Conditions

The flow is assumed to be inviscid, free of separation or lifting effects, irrorational, and
incompressible. In this potential flow framework, the flow can be described by a velocity potential
φ(x, y, z) which can be further decomposed into three parts: the incident wave potential φi(x, y, z),
the diffracted wave potential φd(x, y, z), and the radiated wave potential φr(x, y, z):

φ = φi + φd + φr. (1)

Mathematically, the above velocity potentials satisfy the Laplace equation in the entire fluid domain(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
φ(x, y, z) = 0, (2)

subjecting to boundary conditions respectively at the free surface, on the body surface, at the sea
bottom, and in the far field, as shown in Figure 1, which can be expressed as

∂φ
∂z

∣∣∣
z=0

= vφ

∂φ
∂n

∣∣∣
SB

= Vn

∂φ
∂z

∣∣∣
z=−h

= 0 or lim
z→∞

(
∂φ
∂z

)
= 0

lim
R→∞

[√
vR
(

∂φ
∂R − ivφ

)]
= 0


, (3)

where v = ω2/g is the wave number in deep water, g is the acceleration of gravity, Vn denotes the
normal velocity at a point on the immersed body boundary SB, h is the water depth in case of finite
depth water, and R denotes the horizontal distance from the body.

The last boundary condition in Equation (3), also referred to as the Sommerfeld radiation condition,
shows that the velocity potential gradually decays with the horizontal distance and eventually vanishes
in the far field. It should be noted that the Sommerfeld radiation condition applies only to the scattered
potential (including diffracted and radiated wave potentials).

If further using subscripts from 0 to 7 to denote the incident wave potential, the six components
of the radiated wave potential, and the diffracted wave potential, then the total velocity potential is
expressed as

φ = φ0 + φ7 − iω
6

∑
k=1

ξkφk, (4)

where the constant ξk (k = 1,2, . . . ,6) denotes the complex amplitudes of the body oscillation motion in
its six rigid-body degrees of freedom, and φk (k = 1, 2, . . . , 6) denotes the corresponding unit-amplitude
radiation potentials. In the framework of the Airy wave theory, the incident wave potential φ0 is
defined by

φ0 = − igA
ω

evzeiv(xcosβ+ysinβ) (5)
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for infinite depth water and

φ0 = − igA
ω

cosh k(z + h)
cosh kh

eik(xcosβ+ysinβ) (6)

for finite depth water, where β is the angle between the direction of propagation of the incident wave
and the positive x-axis, and k is the real positive root of the water wave dispersion equation.
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Figure 1. Definition of the coordinate system in the three-dimensional space. Q denotes the source
point on the immersed body boundary SB, and P denotes the field point anywhere in the fluid domain.

2.2. Mixed Source/Dipole Formulation and Discretization of the Integral Equations

By applying Green’s theorem, the radiated and diffracted wave velocity potentials on the
immersed body surface SB are solved by the mixed source/dipole boundary integral equations.
The integral equation satisfied by the radiation velocity potential on the body boundary takes the
form of

2πφk(x) +
x

SB

φk(x)
∂G(ξ; x)

∂nξ
dSξ =

x

SB

Vn,k(ξ)G(ξ; x)dSξ , (k = 1, 2, · · · , 7), (7)

where ξ denotes the source point, x denotes the field point, and Vn,k denotes the kth component of the
body surface boundary condition.

The boundary surfaces are discretized into a set of quadrilateral or triangular plane panels to
approximate the exact geometry. The vertices of each panel are numbered in the counter-clockwise
direction when the panel is viewed from the fluid domain. The radiation and diffraction velocity
potentials are also represented by piecewise constant functions over each panel. By applying such
a “collection method”, as shown in Figure 2, the boundary integral equations (Equation (7)) are
discretized into

2πφk(xi) +
Np

∑
j=1

Dijφk
(
xj
)
=

Np

∑
j=1

SijVn,k
(
xj
)
,
(
i = 1, 2, · · · , Np; k = 1, 2, · · · , 7

)
, (8)

where Np is the number of panels. The integrations of sources and dipoles over each panel are
represented by

Sij =
x

SB,j

G(ξ; xi)dSξ , (9)

Dij =
x

SB,j

∂G(ξ; xi)

∂nξ
dSξ , (10)

where SB,j denotes the jth panel surface.
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In the boundary integral equations (Equation (7)), numerical evaluation of free-surface Green’s
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J0(µR)dµ (11)
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Collection points 

∞
0
(µ + v)cos hµ(z + h)cos hµ(ζ + h)

µsin hµh− vcos hµh
e−µh J0(µR)dµ (12)

for finite water depth, where the path of the contour integral passes below the pole at µ = v in Equation
(11) and at µ = k in Equation (12). J0(x) is the Bessel function of zero order. r is the distance between
the source point and the field point, r1 denotes the distance between the field point and the image of
the source point with respect to the mean free-surface, and r2 denotes the distance between the field
point and the image of source point with respect to the sea bottom:

r = {R2 + (z− ζ)2}1/2
, (13)

r1 = {R2 + (z + ζ)2}1/2
, (14)

r2 = {R2 + (z + ζ + 2h)2}1/2
. (15)

Currently, the algorithm in Ref. [18] has been applied to evaluate Equation (11), and a newly developed
special algorithm [10] has been applied to evaluate Equation (12).

Due to the strong singularity of the Rankine source r−1, the integration of it over each panel is
evaluated separately using an analytical algorithm [19]. To this end, as shown in Figure 3, a local
coordinate system, oξηζ, needs to be established for each panel by taking the ξoη plane at the panel
surface and the ζ axis along its normal direction. Assuming the field point in the new local system to be
(x, y, z), and the coordinates of vertices of each panel in a counter-clockwise direction to be (ξn, ηn, ζn),
where n = 1, 2, · · · , Nv, Nv is the number of vertices on each panel, the formulation for calculating the
Rankine part integration can be derived as follows:

Hij =
x

SB,j

∂

∂nξ

(
1
r

)
dSξ =

Nv

∑
n=1

[
arctan

(
cn,n+1Qn − Pn

zRn

)
− arctan

(
cn,n+1Qn+1 − Pn+1

zRn+1

)]
(16)
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Kij =
s

SB,j

1
r dSξ =

Nv
∑

n=1

[
(x−ξn)(ηn+1−ηn)−(y−ηn)(ξn+1−ξn)

Ln,n+1

]
log
(

Rn+Rn+1+Ln,n+1
Rn+Rn+1−Ln,n+1

)
− zHij (17)

where
Pn = (x− ξn)(y− ηn), (18)

Qn =
{
(x− ξn)

2 + z2
}1/2

, (19)

Rn =
{
(y− ηn)

2 + Q2
n

}1/2
, (20)

cn,n+1 = (ηn+1 − ηn)/(ξn+1 − ξn), (21)

Ln,n+1 =
{
(ξn+1 − ξn)

2 + (ηn+1 − ηn)
2
}1/2

. (22)

By taking advantage of the above formulation, the singularities encountered in the boundary integral
equations can be evaluated successfully without difficulties.
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Figure 3. Illustration of the local coordinate system of each panel, in triangular shape (a) or quadrilateral
shape (b). The origin o normally locates at the centroid of each panel, and the positive ζ-axis points to
the normal direction of the panel. The sequence of vertices is arranged in accordance with the normal
direction that points into the inside of the body.

2.4. Solution of the Linear Algebraic System

In order to solve the linear algebraic system Equation (8), a direct solver such as Gauss elimination
will commonly be adopted. These direct solvers are generally robust but require O

(
N3) computations

(N denotes matrix size). For a large-scale computation of complex three-dimensional offshore
structures, a direct inversion or inefficient iteration of such a large, dense system of linear equations
with O

(
N4) unknowns for a set of wave frequencies seems prohibitively time consuming even

with modern computers. On the other hand, although some iterative methods, such as the GMRES
method [11], can reduce the effort to O

(
N2) operations; however, these kinds of iterative methods

can easily have a problem of ill preconditions. In addition, considering the usual cases when the
radiation-diffraction problem needs to be solved with multiple wave headings for each single wave
frequency, the computation effort of using either a direct method or an iterative method is still not
acceptable because it needs to successively solve the linear equations for every wave heading. For this
reason, the LU decomposition is adopted in the solver, since it only needs to decompose the left-hand
side matrix once for each wave frequency. This decomposition can be applied to calculate the wave
forces for a distribution of wave headings via a forward and backward substitution for triangular
matrices (L and U), which can be solved directly without using the Gaussian elimination process.
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3. Numerical Techniques in Specialized Topics

3.1. Removal of Irregular Frequencies

Numerical solutions of Equation (7) possess substantial errors in the neighborhood of the so-called
“irregular frequencies”. This phenomenon is caused by the water-plane section of the members of
floating bodies that intersects the free water surface. The irregular frequencies actually coincide with
the eigenfrequencies of the corresponding sloshing modes of the interior tank (assuming flow filling
inside the tank).

In order to suppress these frequencies, a kind of partially extended boundary integral equation
can be developed, which assumes that the potentials on the interior water plane are zero. This method
originates from Ref. [20]. Therefore, by applying Green’s theorem in the interior domain of the
floating body, an additional boundary integral equation is introduced in a combined application with
Equation (7):

x

SB

φk(x)
∂G(ξ; x)

∂nξ
dSξ =

x

SB

Vn,k(ξ)G(ξ; x)dSξ , (k = 1, 2, · · · , 7, x ∈ SWP, ξ ∈ SB), (23)

where SWP denotes the interior water-plane area. By discretizing SWP into M elements, a set of
over-determined linear algebraic equations can be obtained as follows:

[A](M+N)×N{φ}N = {B}(M+N)×N . (24)

Equation (24) can be solved by the least squares method. Defining the square error function as

E =
M+N

∑
m=1

[
N

∑
n=1

Amnφk(xn)− Bk(xm)

]2

, (25)

and optimizing Equation (25) to be of minimum square error

∂E
∂φk(xn)

= 0, (n = 1, 2, · · · , N), (26)

a new set of equations which are free of irregular frequencies can be developed instead of Equation (8):

N

∑
n=1

{
M+N

∑
m=1

Amn Amp

}
φk(xn) =

M+N

∑
m=1

AmpBk(xm), (p = 1, 2, · · · , N), (27)

which is not over-determined and thus can be solved directly.
The present method for removing irregular frequencies avoids evaluation of the logarithmic

singularity [21] of free-surface Green’s function occurring in the limiting case when that panel is
on the free surface. This can be viewed as an advantage which makes the programming simpler.
Besides, since the size of the left-hand side matrix in Equation (27) is N × N, which is less than that of
(M + N) × (M + N) in Lee’s method [21], the additional numerical work on resolving a larger linear
algebraic system can be avoided.

3.2. Exploitation of Symmetrical Properties

The efficiency of the solution method for the boundary integral equations may dramatically
increase for bodies having one or two planes of symmetry, because the computation time and storage
are saved. In the analysis below, symmetry is therefore exploited wherever possible [22,23].
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The discretized form of the boundary integral equation, i.e., Equation (8) or Equation (27), can be
expressed in the following matrix form:

[A]{φ} = {B}. (28)

It is possible to partition the matrix A, the vector φ, and B according to the number of symmetry planes.
For the body having two planes of symmetry, the following partitions can be found

[A] =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

, (29)

{φ} =
{

φ1 φ2 φ3 φ4

}T
, (30)

{B} =
{

B1 B2 B3 B4

}T
, (31)

where A11 is the submatrix of coefficients associated with the discretization of boundary region 1, while
A12, A13, and A14 are corresponding submatrices arising from the coupling between the boundaries 1
and 2, 3, and 4, respectively. φ1, φ2, φ3, and φ4 are the vectors of components of the velocity potential
corresponding to elements in boundaries 1, 2, 3 and 4 respectively. Similarly, B1, B2, B3, and B4 are
the right-hand side vectors associated with boundaries 1, 2, 3, and 4 respectively. Additionally, the
following relations are necessary to be employed in the calculation:

A11 = A12 = A13 = A14

A21 = A22 = A23 = A24

A31 = A32 = A33 = A34

A41 = A42 = A43 = A44

. (32)

An orthogonal transformation matrix [R] can be introduced to reduce the size of the linear system
such that [

Â
]
=

1
Ns

[R][A][R], (33){
φ̂
}
= [R]{φ}, (34){

B̂
}
= [R]{B}, (35)

where Ns denotes the number of symmetry planes. This transformation enables the linear system
resulting into a simplified diagonal form:

Â(1) 0 0 0
0 Â(2) 0 0
0 0 Â(3) 0
0 0 0 Â(4)




φ̂(1)

φ̂(2)

φ̂(3)

φ̂(4)

 =


B̂(1)

B̂(2)

B̂(3)

B̂(4)

, (36)

which leads to {
φ̂(k)

}
=
[

Â(k)
]−1{

B̂(k)
}

, where k = 1, 2, · · · , Ns (37)

Combining Equation (37) with Equations (33)–(35), the solution of {φ} can be finally obtained with
sufficient accuracy. The partition process is also illustrated in Figure 4.
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validations on three benchmark cases of a floating ellipsoid benchmark case, a truncated 
circular cylinder and the OC4 DeepCwind semisubmersible floating wind turbine in practice. 
A free executable version of the software is available to the research communities with the a 
hope of facilitating the advancements in the researches that are relevant to ocean engineering 
and marine renewable energies. 
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Figure 4. Partitions of the computation domain (a) when the body has unique symmetry and (b) when
the body has two symmetries.

3.3. OpenMP Parallelization on Multi-core Machines

The problems to be solved are often of a very large size such that resolving the resultant linear
systems requires huge computational resources. Nowadays, with the facility of a fast multi-core
computer, it is natural to maximize the advantages of the current hardware technology in our
computations. A large portion of programs that people write and run daily are serial programs,
especially in the marine hydrodynamic field as far as the author knows. The serial program runs on a
single computer, typically on a single processor, which might be considered as a waste of computational
resources. For this reason, it is better to code the program in parallel mode, which will enable the
program to run simultaneously on multiple processors. Taking into consideration that in a typical case,
the number of panels involved in the hydrodynamic computation is usually below 10~30 thousand,
and that off-the-shelf computation machines contain multiple processors, the OpenMP technique is
evidently the most suitable for the work in the present study.

The OpenMP standard for Fortran was first released in 1997. It is a standard application
programming interface (API) for writing shared memory parallel applications in C, C++, and Fortran.
OpenMP has the advantage of being very easy to implement on currently existing serial codes and
allowing incremental parallelization [24]. It also has the advantage of being widely used, highly
portable, and ideally suited to multi-core architectures, which are becoming increasingly popular in
up-to-date desktop computers.

As shown in Figure 5, an OpenMP program usually begins with a single process called the master
thread. The master thread executes sequentially until a parallel region is encountered. At this point,
the master thread “forks” into a number of parallel worker threads, each of which shares a portion of
the computation task. The instructions in the parallel region are then executed by the team of worker
threads. At the end of the parallel region, the threads synchronize and join to become the single master
thread again [24].
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Figure 5. Schematic of the two main OpenMP parallel processes in the HAMS (Hydrodynamic Analysis
of Marine Structures) program.

Based on the Amdahl’s Law, if we suppose p (0 < p < 1) part of the program can be run in parallel,
on an Nt-thread computational platform, the speed-up ratio Rs can be expressed as

Rs =
1

(1− p) + p
Nt

. (38)

This means that the maximum speed-up ratio will be Nt by letting p approach unity. However,
since the sequential part of work in typical cases is not always zero, this maximum speed-up ratio will
generally not be easily reached. Nevertheless, enhancing the serial code to minimize the sequential
work is quite necessary to improve the computational speed.

4. Applications to Waves–Structure Interactions

4.1. Computation of an Analytical Geometry for Verification

A numerical benchmark case is performed on a floating ellipsoid (since the geometry of which
can be precisely expressed) to demonstrate the validity of the developed solver. The geometry is firstly
meshed by 20 × 20 panels (20 in longitude and 20 in latitude directions) on the immersed body surface,
and additional 10 × 20 panels (10 in longitude and 20 in latitude directions) at the interior waterplane
to suppress the so-called “irregular frequencies”. To check its symmetrical property, the other two
meshes that have one symmetry plane and two symmetry planes are also employed for comparison in
altogether 300 panels and 150 panels, respectively. All the meshes are shown in Figure 6, where lengths
of the major axis and the minor axis of the ellipsoid are L/A = 1.0 and B/A = 0.5, respectively, and
normalized by the unit amplitude of a regular incident wave coming towards the positive x-direction.

Figure 7 shows the effect of the irregular frequencies. In the vicinity of the irregular frequencies,
un-removal of them results in sharp leaps and declines within small intervals, leading to substantial
numerical errors. In contrast, the “Removed” method based on the modified boundary integral
equation obtains smooth results in the entire neighborhood. It is interesting to see that the irregular
frequencies are different in the horizontal and the vertical exciting forces since they correspond to
solutions of the interior sloshing problem in different modes.

A comparison of the hydrodynamic coefficients against the normalized length vL is given in
Figure 8. The rotation center of the torque is defined at the origin. The present numerical results show
good coincidence with the analytical results obtained by Kudoh (1978) [25], in both the translational
mode and rotational mode. Meanwhile, the comparison also shows that although utilization of the
symmetrical properties decreases the computation burden, it does not affect the accuracy of results.
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in both the translational mode and rotational mode. Meanwhile, the comparison also shows 
that although utilization of the symmetrical properties decreases the computation burden, it 
does not affect the accuracy of results. 
 

  

  
Figure 8. Added mass and radiation damping coefficients of a floating ellipsoid as a function 
of the angular wave frequency 𝜔: (a) diagonal terms of the surge added mass and radiation 
damping due to surge motion and (b) cross terms of the surge added mass and radiation 
damping due to pitch motion. 
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Figure 8. Added mass and radiation damping coefficients of a floating ellipsoid as a function of the
angular wave frequency ω: (a) diagonal terms of the surge added mass and radiation damping due to
surge motion and (b) cross terms of the surge added mass and radiation damping due to pitch motion.

4.2. Computation of a Truncated Circular Cylinder

Circular cylinder is another common element in the offshore structures. In this test, a truncated
circular cylinder with a radius of 1.0 m and a draft of 0.5 m is chosen as a basic example, as displayed
in Figure 9. Thanks to its two symmetry planes, a quarter of the cylinder is discretized into 16 × 8 × 8
constant panels (16 in circumferential, 8 in radial, and 8 in vertical directions) of a quadrilateral or
triangular element shape. To remove the irregular frequencies, the water-plane area is discretized into
16 × 8 constant panels (16 in circumferential, and 8 in radial directions). Computations are performed
using the HAMS solver as well as the commercial software WAMIT®, and Hydrostar®, for comparison.

Hydrodynamic quantities involving added mass and wave damping are compared between the
computation results derived from the three software. Dimensional results are shown against the wave
angular frequency ω in Tables 1 and 2. In Table 1, the computations are carried out in the deep water,
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while in Table 2, the water is shallow with a depth of h = 1.0 m. The tables illustrate that no matter if
the water depth is infinite or finite, the results from HAMS and WAMIT® are much closer between
each other against the wave frequency, while those from Hydrostar® are a bit shifted away. It may
possibly be due to Hydrostar® being based on the source distribution method while the other two are
based on the mixed source/dipole method in calculating the wave potentials.
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Table 1. Hydrostatic quantities of the truncated circular cylinder calculated by HAMS, WAMIT®, and
Hydrostar®, under the infinite water depth.

A11 (kg) B11 (kg/s)

ω HAMS WAMIT® Hydrostar® HAMS WAMIT® Hydrostar®

0.2 6.7543 × 102 6.7568 × 102 6.9207 × 102 1.7266 × 10−5 1.7268 × 10−5 1.8018 × 10−5

0.4 6.7910 × 102 6.7936 × 102 6.9587 × 102 2.2008 × 10−3 2.2011 × 10−3 2.2972 × 10−3

0.6 6.8554 × 102 6.8579 × 102 7.0252 × 102 3.7342 × 10−2 3.7344 × 10−2 3.8977 × 10−2

0.8 6.9525 × 102 6.9549 × 102 7.1257 × 102 2.7704 × 10−1 2.7705 × 10−1 2.8915 × 10−1

1 7.0898 × 102 7.0922 × 102 7.2679 × 102 1.3046 × 100 1.3046 × 100 1.3616 × 100

1.2 7.2764 × 102 7.2788 × 102 7.4612 × 102 4.6032 × 100 4.6031 × 100 4.8047 × 100

1.4 7.5214 × 102 7.5238 × 102 7.7152 × 102 1.3292 × 101 1.3291 × 101 1.3876 × 101

1.6 7.8308 × 102 7.8334 × 102 8.0363 × 102 3.3087 × 101 3.3080 × 101 3.4547 × 101

1.8 8.2032 × 102 8.2058 × 102 8.4225 × 102 7.3328 × 101 7.3303 × 101 7.6586 × 101

2 8.6221 × 102 8.6241 × 102 8.8561 × 102 1.4765 × 102 1.4757 × 102 1.5426 × 102

2.2 9.0462 × 102 9.0476 × 102 9.2939 × 102 2.7338 × 102 2.7317 × 102 2.8566 × 102

2.4 9.4047 × 102 9.4056 × 102 9.6610 × 102 4.6820 × 102 4.6770 × 102 4.8918 × 102

2.6 9.6011 × 102 9.6010 × 102 9.8548 × 102 7.4309 × 102 7.4201 × 102 7.7582 × 102

2.8 9.5346 × 102 9.5338 × 102 9.7703 × 102 1.0927 × 103 1.0906 × 103 1.1391 × 103

3 9.1418 × 102 9.1415 × 102 9.3441 × 102 1.4891 × 103 1.4858 × 103 1.5488 × 103

Table 2. Hydrostatic quantities of the truncated circular cylinder calculated by HAMS, WAMIT®, and
Hydrostar®, under a finite water depth h = 1.0 m.

A11 (kg) B11 (kg/s)

ω HAMS WAMIT® Hydrostar® HAMS WAMIT® Hydrostar®

0.2 8.3818 × 102 8.3854 × 102 8.6347 × 102 5.9702 × 10−1 5.9721 × 10−1 6.2698 × 10−1

0.4 8.5111 × 102 8.5148 × 102 8.7701 × 102 4.8315 × 100 4.8329 × 100 5.0754 × 100

0.6 8.6790 × 102 8.6824 × 102 8.9452 × 102 1.6554 × 101 1.6558 × 101 1.7395 × 101

0.8 8.8657 × 102 8.8693 × 102 9.1401 × 102 3.9904 × 101 3.9913 × 101 4.1945 × 101

1 9.0548 × 102 9.0584 × 102 9.3367 × 102 7.9279 × 101 7.9292 × 101 8.3352 × 101

1.2 9.2291 × 102 9.2323 × 102 9.5164 × 102 1.3917 × 102 1.3918 × 102 1.4633 × 102

1.4 9.3720 × 102 9.3726 × 102 9.6595 × 102 2.2390 × 102 2.2386 × 102 2.3536 × 102

1.6 9.4581 × 102 9.4593 × 102 9.7449 × 102 3.3699 × 102 3.3692 × 102 3.5412 × 102

1.8 9.4700 × 102 9.4728 × 102 9.7517 × 102 4.8075 × 102 4.8064 × 102 5.0489 × 102

2 9.3921 × 102 9.3948 × 102 9.6609 × 102 6.5558 × 102 6.5535 × 102 6.8779 × 102

2.2 9.2083 × 102 9.2108 × 102 9.4576 × 102 8.5924 × 102 8.5877 × 102 9.0016 × 102

2.4 8.9104 × 102 8.9127 × 102 9.1343 × 102 1.0865 × 103 1.0857 × 103 1.1362 × 103

2.6 8.4981 × 102 8.5006 × 102 8.6922 × 102 1.3295 × 103 1.3283 × 103 1.3873 × 103

2.8 7.9810 × 102 7.9838 × 102 8.1423 × 102 1.5780 × 103 1.5761 × 103 1.6426 × 103

3 7.3805 × 102 7.3801 × 102 7.5047 × 102 1.8209 × 103 1.8180 × 103 1.8902 × 103
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4.3. Computation of a Complex Marine Structure

To illustrate the capabilities of the HAMS preprocessor in the wave-structure interaction analysis,
the floating foundation of the complex OC4 DeepCwind semisubmersible floating wind turbine is
presented herein as a benchmark test in practice. The platform consists of a central column, three outer
offset columns, and a host of slender bracings to connect between the columns and make the floating
structure sufficiently stiff. Geometrical specifications of the DeepCwind semi-submersible are found in
Ref. [26].

A hydrodynamic mesh is only generated for the wetted part of the floater, and the waterplane at
the cross-sections of the columns intersecting the mean sea surface. Around 3000 panels are chosen as
an appropriate number of panels for the following computation, as displayed in Figure 10. Each of the
three footings is discretized into 38 × 8 × 4 constant panels (38 in circumferential, 8 in radial, and 4 in
vertical directions) of a quadrilateral or triangular element shape. Each of the three outer offset columns
and the central column are discretized into 20 × 4 × 8 panels and 12 × 2 × 12 panels, respectively.
The bracings are also meshed by sufficiently dense panels. A symmetry plane x-z is applied to
remarkably reduce the computation time. Computation results using the same hydrodynamic mesh
from the commercial software Hydrostar® are also given to validate the present numerical results.
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Figure 10. Hydrodynamic mesh of the immersed part of the OC4 DeepCwind floater, for use in HAMS
and Hydrostar®.

Hydrostatic properties including displacement, center of buoyancy, water plane, restoring, etc., of
the OC4 DeepCwind floater have been calculated by HAMS and Hydrostar®, as displayed in Table 3.
These properties are evaluated based on the input hydrodynamic mesh of the immersed part of the
floater. The comparison shows that the results generated by the two software are very close to each
other, with quite small relative errors. A sound accuracy of the hydrostatic properties ensures a good
prediction of the motion responses in subsequent calculations.

Table 3. Hydrostatic properties of the OC4 DeepCwind floater calculated by HAMS and Hydrostar®.

Properties HAMS Hydrostar® Relative Error

Displacement 1.3683 × 104 m3 1.3683 × 104 m3 0.00
z-Coordinate of the Buoyancy Center −1.3157 × 101 m −1.3185 × 101 m 2.12 × 10−3

Area of the Immersed Body Surface 6.5010 × 103 m2 6.5007 × 103 m2 4.61 × 10−5

Inner Water Plane Area 3.7027 × 102 m2 3.7128 × 102 m2 −2.72 × 10−3

Hydrodynamic Restoring in Heave 3.7219 × 106 N/m 3.7736 × 106 N/m −1.37 × 10−2

Hydrodynamic Restoring in Roll −3.7649 × 108 Nm/rad −3.6278 × 108 Nm/rad 3.78 × 10−2

Hydrodynamic Restoring in Pitch −3.7649 × 108 Nm/rad −3.6278 × 108 Nm/rad 3.78 × 10−2
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Figure 11 shows distributions of the wave excitation force in the x-direction on the OC4
DeepCwind floater with respect to the wave angular frequency and wave headings. Firstly, it is
seen that the distributions computed by respectively HAMS and Hydrostar® are in good agreement
with each other. Secondly, due to the symmetry of the OC4 DeepCwind floater, the distributions are
symmetric with respect to the line of the wave heading β = 180

◦
. It should be noted that there are

several major regions where the floater is acted on significantly by the wave force. The maximum
value occurs at the region of 170

◦
< β < 190

◦
and 1.0 < ω < 1.2. Outputting such distributions of

wave excitation forces may be of great importance to the design of such floaters in practice [27].J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 16 of 21 
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Figure 11. Modulus of the wave excitation force in x-direction acting on the OC4 DeepCwind floater
as a function of the wave angular frequency ω and wave headings β, computed by (a) HAMS and (b)
Hydrostar®, respectively.

Figure 12 shows the analysis of response amplitude operators (RAOs) on the motions of the OC4
DeepCwind floating wind turbine in no-wind and parking condition, and a comparison between the
present results and those computed by the commercial software Hydrostar®. The floating wind turbine
is moored with three catenary lines at the near bottom of the outer columns spread symmetrically
about the platform z-axis [26]. The mooring system is considered in the calculation, and the mooring
stiffness matrix is obtained via linearization of the mooring system. The motion RAOs are measured
by the motion response amplitude over the incident wave amplitude. The RAOs are plotted in the
logarithmic coordinate to clearly show the comparison. It is seen that the two results basically coincide
well with each other, except for some tiny differences below the scale of the 10−4 degree. The peaks
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at the resonance region (0.0 < ω < 0.5) predicted by the two software packages are also in quite good
agreement. The motion RAOs generally decreases with the increase of the wave angular frequency to
a negligible level when the wave angular frequency exceeds 2.0.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 17 of 20 
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Figure 12. Motion response of the OC4 DeepCwind floating wind turbine in no-wind and parking
conditions as a function of the wave angular frequency ω: (a) surge response; (b) heave response;
and (c) pitch response. The results denoted by symbols are computed by the commercial software
Hydrostar®.
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The computation time and the speed-up ratio of the present case against the number of OpenMP
threads for each wave frequency are shown in Figure 13. The elapsed time is an average of the
computation time for 60 wave frequencies. The speedup ratio is calculated by the ratio of the
computation time of a single thread over that of Nt OpenMP threads. It is found that the computation
time in either finite depth or infinite depth decreases with the increase of the number of threads.
The computation time in finite depth is a bit less than two times of that in infinite depth. For instance,
when eight threads are used, the computation time for every frequency is 9.10 s for the finite depth
and 4.86 s for the infinite depth due to the fact that the calculation of the finite depth Green’s function
is much more time-consuming than that of infinite depth. The speedup ratio generally increases
proportionally with the number of threads but seems to drop a bit when the number of threads exceeds
six. Moreover, it is worth noting that the speed-up ratio is less than the number of threads because not
all of the codes in the solver can be run in parallel, as indicated in Equation (38).J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 19 of 21 
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Figure 13. Computation efficiency of the HAMS solver for each wave frequency against the number of
threads in finite and infinite depth, respectively.

5. Concluding Remarks

A new software is presented herein for analysis of wave-structure interactions in the frequency
domain. To give a clear map of how the software has been developed, the background theory as
well as its numerical methodologies and techniques have been introduced in detail. The irregular
frequencies have been removed based on the partially extended boundary integral equation method,
and symmetry properties can be exploited to reduce the computation burden significantly. The
free-surface Green’s function is calculated by a combination of series expansions in both infinite
depth and finite depth. OpenMP parallelization is employed to speed up computations on multi-core
machines. The accuracy and the efficiency of the developed software were confirmed by numerical
validations on three benchmark cases of a floating ellipsoid, a truncated circular cylinder and the OC4
DeepCwind semisubmersible floating wind turbine.
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Nomenclature

API Application Programming Interface
BIEM Boundary Integral Equation Method
CFD Computational Fluid Dynamics
GMRES Generalized Minimum Residual
JONSWAP Joint North Sea Wave Observation Project
LU Lower–Upper
N-S Navier-Stokes
OpenMP Open Multi-Processing
RAO Response Amplitude Operator
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