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Abstract: During emergency responses to oil spills on the sea surface, quick detection and
characterization of an oil slick is essential. The use of Synthetic Aperture Radar (SAR) in general and
polarimetric SAR (PolSAR) in particular to detect and discriminate mineral oils from look-alikes is
known. However, research exploring its potential to detect oil slick characteristics, e.g., thickness
variations, is relatively new. Here a Multi-Source Image Processing System capable of processing
optical, SAR and PolSAR data with proper statistical models was tested for the first time for oil slick
characterization. An oil seep detected by NASA‘s Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) in the Gulf of Mexico was used as a study case. This classifier uses a supervised
approach to compare stochastic distances between different statistical distributions (fx) and hypothesis
tests to associate confidence levels to the classification results. The classifier was able to detect zoning
regions within the slick with high global accuracies and low uncertainties. Two different classes,
likely associated with the thicker and thinner oil layers, were recognized. The best results, statistically
equivalent, were obtained using different data formats: polarimetric, intensity pair and intensity
single-channel. The presence of oceanic features in the form of oceanic fronts and internal waves
created convergence zones that defined the shape, spreading and concentration of the thickest layers
of oil. The statistical classifier was able to detect the thicker oil layers accumulated along these
features. Identification of the relative thickness of spilled oils can increase the oil recovery efficiency,
allowing better positioning of barriers and skimmers over the thickest layers. Decision makers can
use this information to guide aerial surveillance, in situ oil samples collection and clean-up operations
in order to minimize environmental impacts.

Keywords: oil slicks characterization; oil thickness; polarized SAR data; polarimetric SAR data
(PolSAR); statistical region-based classification; uncertainty maps; UAVSAR

1. Introduction

Petrogenic oil slicks in offshore areas can occur naturally through oil seeps or be caused by
anthropogenic activities related to oil exploration, production and transportation. Depending on the
amount and characteristics of the oil, as well as the sea state and drift direction, oil can reach coastal
regions, increasing environmental damages.

During emergency response, the oil containment and recovery are the main cleanup operations
with potential to minimize these impacts. The thickness of the oil slick has a significant effect on the
recovery efficiency rates, being higher over the thicker layers [1,2].
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Synthetic Aperture Radars (SAR) data are most frequently used by operational oil spill
surveillance service providers to detect and monitor oil slicks on the sea surface. Within the microwave
region of the electromagnetic spectrum, oil slicks and look-alikes dampen the sea surface roughness
and are detected as low backscatter regions [1–6].

Previous research [2,5,7] indicated a relationship between the oil slick thickness and the damping
effect on the sea surface roughness. Thicker layers cause more damping of the capillary and
gravity-capillary waves, and hence appear darker than thinner layers of oil in SAR imagery.

The potential of the polarimetric SAR (PolSAR) data in full, dual, and compact polarization
modes was indicated to distinguish petrogenic from biogenic oil slicks and other look-alikes in
some circumstances [8–10]. However, methodologies able to characterize oil slicks by extracting
additional information regarding the thickness variations within the slicks have been less explored
until recently [2,5,11–14].

PolSAR data has the potential to detect a wide range of scattering mechanisms that may be related
to oil slick thickness, weathering, as well as different concentrations of water in oil-mixtures and
emulsions [2,5,8,12,13]. However, there is evidence that low noise airborne SAR instruments are also
able to characterize oil slicks with single polarization SAR data. In these cases, the most sensitivity was
obtained transmitting and receiving the electromagnetic pulse in the vertical direction (VV). The VV
damping ratio, a contrast measure, or the VV intensity [2,11,13] can also be used.

The potential of SAR to detect and characterize an oil slick varies depending on several
factors [4,6,8,15] such as: (i) physical characteristics of oil and oil layer: the denser, more viscous
and thicker the oil, the higher the damping effect; (ii) Wind intensity: greater contrast within the limits
considered ideal for oil detection, between 3 and 10 m/s; (iii) Currents intensity and wave height: the
larger, the less the contrast of the slicks with the ocean; (iv) Radar frequency: the higher, the greater the
interference from adverse atmospheric conditions, but also the greater the sensitivity to ocean capillary;
(v) Polarization: the greater the number of polarimetric channels available, the greater potential to
detect different scattering mechanisms; (vi) Incidence angle: greater contrast of the slicks in the near
range within Bragg scattering limits, and; (vii) Signal to Noise Ratio (SNR): a higher SNR increases the
potential of each polarization channel to detect oil slicks at sea surface.

The numerous aerial and orbital platforms available, acquiring PolSAR and SAR data with
different configurations and formats (single look complex, intensity or amplitude) increase this
challenge, and there is a need to understand which is the better format and statistical model to
improve oil slick detection and characterization.

Considering all aforementioned factors, the better configuration to detect and characterize an
oil slick may be different according to different acquisition scenarios. From the operational point of
view, the use of only one polarization channel simplifies data acquisition, the statistical modeling
needed, and reduces the complexity and the time required for processing. However, in some cases the
polarimetric data may extract key information to characterize the oil slicks.

In this context, testing a Multi-Source Image Processing System developed to integrate SAR &
PolSAR data of different formats and with different statistical properties, aiming to discriminate
and characterize oil slicks, represents strategical research. This Multi-Source system, based on
information theory and using stochastic distances to perform the region-based classification process,
was previously developed [16–18]. The supervised classifier uses stochastic distances between different
statistical distributions (fx) and hypothesis tests to classify the regions and associate confidence levels
to the classification results. The multi-source approach permits the integration of SAR (intensity and
amplitude), PolSAR (single look complex) and optical data considering proper statistical modelling for
each type of data, and processing single or multi-source data in a customized computational system.

Previous research using satellite acquired PolSAR data [5,19] has shown the potential of this
system, not to characterize, but rather to discriminate oil slicks considering different oil types. In that
research, it is shown that the polarimetric information provided improvements that are statistically
significant in terms of accuracy. It also shows that the classification performance is dependent on the
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input data format and, consequently, on the statistical modeling used to represent the diversity of
formats properly.

The objective of the work reported here is to evaluate the potential of the Multi-Source Image
Processing System to characterize thickness variations within the oil slick, indicating the better format
and statistical modeling for this application, considering as a study case an oil seep detected by NASA’s
UAVSAR, with components ranging from thin sheen through thick emulsions [2]. As the system is
being tested for the first time with this focus, a complete scientific investigation using the amount of
available data and combining all formats is recommended.

To accomplish this investigation, the polarized information in intensity format as well as all
polarimetric complex information contained in the PolSAR data was considered by using the full
and dual-polarization (dual-pol) covariance matrices. The integration of the uncertainty levels in the
interpretation process provided additional information to more reliably indicate the regions of likely
thicker oil within the slick.

The fast processing of multiple products, all of them integrated to generate operational maps to
inform the position, area and likely thicker oil layers, constitutes an important method to be used by the
contingency team during the clean-up operations. This specific demand for spatial intelligence during
oil spill emergencies emphasizes the importance of developing and testing robust image processing
systems, as proposed in this research. As indicated by reference [2], once validated, a system like that
could be implemented on an aircraft and incorporated into an on-board processor (OBP) to be used
operationally, transmitting all information in near real time (NRT) to the incident command system
(ICS).

2. Statistical Modeling Classification Based on Stochastic Distances

The statistical classifiers require proper models to represent the statistical nature of the pixels
(or image regions). Depending on the sensor used (optical, microwave, etc.), the acquired data
format (polarimetric, intensity, amplitude, etc.) and the scene backscattering characteristics, different
probability density functions (fx) are needed to represent and process the data properly [20].

Research to develop and test computational systems able to process this diversity of data
is essential, especially considering the wide range of remote sensors available operating in
multi-frequency and multi-resolution. Optimized systems to integrate different data sources, as
well as to deliver operational reports in near real time, are needed to plan and implement response
actions during emergencies involving oil spills.

In this way, a Multi-Source Image Processing System able to utilize this data diversity and
complexity has been developed and tested by the Brazilian Institute for Space Research (INPE) [16–18]
in different real applications, including oil slick detection. The Multi-Source statistical region-based
classifier performs a supervised classification using stochastic distances (d) and statistical tests (S),
considering proper statistical modeling for different data formats [16–18]. Its architecture (Figure 1) is
designed in four processing modules according to the statistical distribution (fx) of the input data:

• Polarimetric: consider as input full or dual-pol covariance matrices in a complex format, assuming
that the data comes from a Scaled Complex Wishart distribution (fx = SCW);

• Intensity Pair: consider as input a pair of SAR images in intensity format, assuming as statistical
distribution the multi-look Intensity Pair (fx = IP);

• Intensity Single-channel: consider as input each channel individually in intensity format,
assuming the Gamma distribution for the data (fx = G);

• Multivariate Amplitude: consider as input optical and/or SAR data in amplitude format,
assuming the Multivariate Gaussian (fx = MG) as statistical distribution.

This is an innovative approach that permits us to process and integrate different data types in a
single computational system, considering two approaches: (i) Mono-Source: process each data type



J. Mar. Sci. Eng. 2019, 7, 36 4 of 14

independently, and; (ii) Multi-Source: integrate the mono-source classifications searching for the best
classification performance.

Figure 1 illustrates the architecture of the Multi-Source Image Processing System, indicating the
proper statistical modeling for each data type and the stochastic distances available for each module.
The type of mathematical solution used—analytical or numerical—was also indicated.

In order to understand the trade-off between each data type in capability to characterize an oil
slick, a mono-source approach, with proper statistical modeling, was used to process three different
types of SAR & PolSAR data, those being: (i) Polarimetric full & dual-pol; (ii) intensity pairs (Intensity
Pair); and (iii) single-channel intensity (Intensity single-channel).

Figure 1. The Multi-Source image processing architecture indicating the four module configurations.

A region-based classification provides K disjoint segments, R1, . . . Rk; and a set of training samples
defined for each class. The data (pixels) in the segment k are denoted by Zik, with k = 1, . . . , K and
i = 1, . . . , Nk, where Nk is the number of pixels within the segment k.

It is important to highlight that Zik is a matrix whereby the SAR data can be represented in
complex, intensity or amplitude format assuming different statistical distributions (fx). In this way,
assuming that Zik (k = 1, . . . , K) follows a fx distribution with parameters Σk and L (number of looks),
the maximum likelihood (ML) estimator of Σk is:

Σ̂k = N−1
k ∑Nk

i=1 Zik, (1)

The purpose of the classifier is to classify each of the k segments into one of the C classes, assuming
that (i) the training samples follows a fx distribution with parameter L and ΣCj , with j = 1, . . . , C;
and (ii) the ML estimator of ΣCj , based on samples of size Mj, is denoted by Σ̂Cj . This classification is
performed calculating stochastic distances (d) between different statistical distributions (fx) associated
to each region Rk (k = 1, . . . , K) and to each training sample of class Cj. Then, using these distances
and the results given in references [21,22], a statistic Skj is used to perform a statistical test to verify the
hypothesis that Σk = ΣCj for all k, j (k = 1, . . . , K and j = 1, . . . , C).

At the end of the process, each segment Rk is assigned to a class which presents: (i) the lower
distance (d) between Σ̂k and Σ̂Cj , (ii) the lower or equivalently statistical test (Skj), and a higher
associated p-value pkj. The Bhattacharyya stochastic distance (dB) was used because it is available in
all modules (Figure 1), being the only option to compare the classifier potential combining all data
formats and polarimetric channels.

For the Polarimetric module, the dB between two SCW distributions (dWB), one associated to
segment k and the other associated to the class j, is given by [21]:

dWB
(
Σ̂K, Σ̂j

)
= L

 log
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∣∣+ log
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∣∣∣
2

− log

∣∣∣∣∣∣∣
 Σ̂−1

K + Σ̂−1
Cj

2

−1
∣∣∣∣∣∣∣
, (2)
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For the Intensity Single-channel module, the dB distance was derived between Gamma
distributions (dGB), being [18]:

dGB
(
Σ̂K, Σ̂j

)
= log


(

Σ̂K + Σ̂Cj

)L

2L
(

Σ̂KΣ̂Cj

)(L/2)

, (3)

Under the conditions stated by [11,12], the hypothesis test H0 : Σk = ΣCj can be performed using
the test statistics Sfx defined by each stochastic distance. The equations developed for the statistical
tests between SCW distributions (SWB) and between the Gamma distributions (SGB) are given in the
Equations (4) and (5), following [16,18]:

SWB

(
Σ̂K, Σ̂Cj

)
=

8NK Mj

NK + Mj
dWB

(
Σ̂K, Σ̂Cj

)
, (4)

SGB

(
Σ̂K, Σ̂Cj

)
=

4NK Mj

NK + Mj
dGB

(
Σ̂K, Σ̂Cj

)
, (5)

The equations for the Intensity Pair module were defined by reference [23], being the distance
(dIPB) and statistical test (SIPB) derived from a Bivariate Gamma distribution extracted from the SCW
distribution. However, the distance and the statistical test need an extensive and complex numerical
solution, available in reference [16].

The null hypothesis is rejected at α significance level if the probability
Pr
(

χ2
ν > S f x

(
Σ̂K, Σ̂Cj

))
≤ α, where χ2

ν represents a chi-square distribution with ν degrees
of freedom, where ν is the number of parameters of the distribution. The classification based on a
minimum test statistic consists in assigning the segment (Rk) to the class Cl if:

S f x
(
Σ̂K, Σ̂Cl

)
< S f x

(
Σ̂K, Σ̂Cj

)
, ∀j 6= l, (6)

When a segment Rk is assigned to the class l, the p-value (pk,l) is calculated as:

pKl = Pr
(

χ2
ν > S f x

(
Σ̂K, Σ̂Cl

))
, (7)

It is a measure of certainty that the segment k belongs to the class l. At the end of the process,
the classification and the uncertainty (1 − pkl) maps are provided. To illustrate the region-based
classification, Figure 2 indicates the class assignment process considering only one segment as
an example.

Figure 2. Demonstration of the region-based classification method: The algorithm calculates the
distance (d), the statistical test (S) and p-value between the segment analyzed (a) and the training
samples collected for each class (b). The class of the training sample, which presented the lowest d,
the lowest S and the highest p-value in relation to the segment will be assigned to this segment (c).
In this example, the segment used (a) was classified as Oil 1 (c), presenting the lowest d, the lowest S
and the highest p-value related with this class.
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3. SAR & PolSAR Data Description and Methodology

During Hurricane Ivan in 2004 a persistent seep source developed following damage caused to
production infrastructure in the Mississippi Canyon 20 area of the Gulf of Mexico. This study case
used L-Band PolSAR data acquired over this region on 17 November 2016 by the NASA’s UAVSAR
sensor. In this occasion, a large oil slick with thickness ranging from thin sheen through thick emulsion
was detected [2].

In this study, a Multi-source Image Processing System—able to process different data formats,
with different statistical properties—was tested to characterize and extract regions with different oil
thicknesses using both UAVSAR SAR & PolSAR data. The goal was to differentiate sheen from thicker
layers, as well as indicate the better format and statistical modeling to do this.

The PolSAR data provides the amplitude and phase information, while the polarized SAR
data only provides the amplitude of the backscattered signal. The electromagnetic pulse can be
transmitted and received by the antenna in different directions, Vertical (V) or Horizontal (H), being:
(i) co-polarized—transmitting and receiving in one single direction (VV or HH), or; (ii) cross-polarized
– transmitted and received in orthogonal directions (HV) or (VH). Different combinations are possible,
defining the SAR systems as: (i) single: VV, HH or HV; (ii) dual: HH-HV, HH-VV or VV-HV, and;
(iii) full (quad): HH-HV-VH-VV. The term ´polarimetric‘ is applied only when the amplitude and phase
information are available. For monostatic antennas, HV is considered equivalent to VH, configuring
a full polarimetric system with 3 bands HH-HV-VV. Details about different mathematical forms to
represent SAR and PolSAR data including the scattering matrix, covariance matrix (C) and others can
be found in reference [24].

Standard full-polarimetric UAVSAR products in ground projected format (grd) contain the
calibrated complex cross products HHHH, HVHV, VVVV, HHHV, HVHV and HVVV used to
calculate the elements of the multi-looked covariance matrix (C). The PolSAR image was acquired
with 20 km swath width, incidence angle 22◦ (near range) to 67◦ (far range), and 7 m spatial
resolution after multilooking, and the intensity products were extracted from the main diagonal
of the covariance matrix.

To perform the case study, three types of data were used as input. The Polarimetric module used
as input the covariance matrices in a full-pol (C3: HH-HV-VV) and dual-pol (C2: HH-HV or HH-VV or
VV-HV) format. The Intensity Pair module uses as input pairs of intensity images (IP) combining the
polarized channels as indicated: HH-HV or HH-VV or VV-HV. The Intensity Single-channel module
processes each channel individually using the intensity (I) format as input. The segmented image,
the training and test samples are also needed as input to process the classification in all modules.
Figure 3 depicts the classification methodology, indicating the input and output data.

Figure 3. The statistical region-based classification methodology, indicating the input and output data.

The segmented image (Figure 4) was obtained applying the multi-level region-growing algorithm,
MultiSeg [25]. MultiSeg is a hierarchical segmentor which uses the information contained at the top
level to segment the subsequent levels through a pyramidal compression, integrating region growing
and clustering techniques, edge detection, minimum area threshold and homogeneity tests to split
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& merge pixels in segments. The cartoon model, used in this work, considers that the image is formed
by homogeneous regions, being themselves clustered according to predefined parameters. The larger
the similarity index, the greater the area of the generated segments. In this study case the following
parameters were considered: (i) 5 levels of compression; (ii) minimum area of 20 pixels; (iii) 1 dB of
similarity degree, and (iv) 9.17 equivalent number of looks.

Figure 4. (a) Multiresolution Segmentation, (b) details about dark spots detection, and (c,d) Centroids
position of the training (c) and test (d) samples.

The segmentation process was completely unsupervised and considered as input the three
polarized channels HH-HV-VV in intensity format. The algorithm automatically recognized
11,772 representative segments (Figure 4a), which delineated even the smaller dark regions (Figure 4b)
originated by the influence of the internal waves and currents. This result is relevant considering that
without representative segments it is impossible reach a good classification accuracy.

Considering the aforementioned oil slick properties, three classes were defined, namely, (i) Ocean,
(ii) Oil 1: representing the thicker layers (crude oil or emulsion), and (iii) Oil 2: representing the thinner
layers (sheen). The classes definition was reinforced by previous research which detected thickness
variations within the same oil slick using the VV damping ratio [2]. As described by reference [2],
the VV damping ratio is the contrast between the clean sea water vs. slicked water, using the VV
channel in intensity format (VVclean/VV).

The samples collection considered that thicker layers cause more damping, appearing darker
than thinner layers, as observed previously [2,7,11–13]. Therefore, the training and test samples were
collected manually, based on the interpreter’s experience, searching for darker areas to represent the
thicker oil (class Oil 1) and the less dark areas to represent the thinner oil (class Oil 2). The ocean
samples were collected over the brighter areas in the background. Figure 4c,d illustrates the centroids
position of the training (TRN) and test (TST) samples collected per class, being the total number
of pixels collected per class: 1887 for Ocean-TRN, 1890 for Oil 1-TRN, 1886 for Oil 2-TRN, 1887 for
Ocean-TST, 1890 for Oil 1-TST and 1886 for Oil 2-TST.

The class assignment process associates the class of the training sample to the analyzed
segment, considering the lowest statistic and the highest p-value, all computed for each segment
k (k = 1, . . . , 11,772) and each class Cj (j = 1, . . . , 3). The statistical reports, as well as the classification
and uncertainty maps, are the classifier output. The validity of the mineral oil slick characterization



J. Mar. Sci. Eng. 2019, 7, 36 8 of 14

was evaluated considering visual interpretation, statistical accuracy indexes and the statistical
uncertainty levels.

It is important to note that the proposed methodology is designed to be applied when mineral oil
slicks are confirmed in the field, determining a real emergency situation. In this context, the goal is to
characterize the oil slicks and extract additional information such as the relative thickness variation
within the slicks. The spatial location, the area of the slicks, as well as identifying the thickest layers
are all extremely important data to support decision making during clean-up operations.

4. Oil Slick Characterization

The classification results obtained for all formats tested are available in Table 1 and Figure 5
providing (i) the overall accuracies, (ii) the variances of the overall accuracies, (iii) the Kappa coefficient
of agreement, and (iv) the Kappa Variance. The Kappa coefficient is another index to do the accuracy
assessment in remote sensing data classification. An explanation can be found in references [26–28].

The oil slick characterization using a statistical approach and applying stochastic distances
achieved global accuracies above 99% for all data types. However, the best result was obtained by
the IP: HH-VV (99.84%). This result is statically equivalent to C3: HH-HV-VV (99.70%), C2: HH-VV
(99.68%) and I: VV (99.68%) (Table 1: results highlighted in blue) and statistically superior to the
remaining results, at the 95% confidence level.

Despite these differences, the results obtained by the best data formats were very similar and
statistically equivalent. Therefore, for this study case, the oil slick characterization can be done
using a fully polarized data, as well as using only the VV channel in intensity, as these results are
statistically equivalent.

Table 1. Statistical evaluation of the classification results.

Overall Accuracy Variance Kappa Kappa Variance

Full-Pol HH-HV-VV 0.9970 5.28 × 10−7 0.9955 1.19 × 10−6

Dual-Pol

HV-VV 0.9938 1.09 × 10−6 0.9907 2.44 × 10−6

HH-HV 0.9935 1.14 × 10−6 0.9902 2.58 × 10−6

HH-VV 0.9968 5.64 × 10−7 0.9952 1.26 × 10−6

Intensity Pair

HV-VV 0.9954 8.09 × 10−7 0.9931 1.82 × 10−6

HH-HV 0.9935 1.14 × 10−6 0.9902 2.58 × 10−6

HH-VV 0.9984 2.82 × 10−7 0.9976 6.31 × 10−7

Intensity
Single-Channel

HH 0.9811 3.28 × 10−6 0.9716 7.37 × 10−6

HV 0.9793 3.58 × 10−6 0.9690 8.05 × 10−6

VV 0.9968 5.64 × 10−7 0.9952 1.26 × 10−6

The classification maps and the detected area (km2) per class are available at Figure 5a–d, only the
best overall accuracies are considered statistically equivalent. It is interesting to note that the potential
to recognize different patterns within the oil slick was more stable for the thicker layers of oil,
represented by the class Oil 1 (red regions). For this class, the detected area was very similar between
these different data types, ranging between 13 and 14 km2.

A higher confusion visible in the background of all classification maps was observed between the
classes Oil 2 (orange regions) and Ocean (blue regions). However, a higher instability was observed
for the I: VV and C2: HH-VV, which presented higher classification noise in the background generated
by the confusion between these classes, returning the smaller oceanic areas (≈156 km2).

To conduct a detailed analysis regarding the confidence levels applied to oil slick characterization,
only the C3 classification result was considered (Figure 6).
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Figure 5. Classification results obtained by the better overall accuracies, all of then indicated as
statistically equivalent: (a) covariance matrix full-pol (C3: HH-HV-VV): (b) covariance matrix dual-pol
(C2: HH-VV), (c) Intensity Pair (IP: HH-VV), and (d) Intensity Single-channel (I: VV).

The criteria used for this choice were: (i) the best results are very similar so it is feasible to choose
any one of them to evaluate details, (ii) the C3 classification had lower confusion between the classes
Ocean and Oil 2, (iii) using covariance matrix results, it is possible to discuss the results in terms of
scattering mechanisms if the returns are significantly above the noise floor.

Figure 6a illustrates the oil slick detected by the UAVSAR using the VV channel. The classification
map (Figure 6b) and uncertainty map (Figure 6c) are available only for the result C3. In Figure 6c low
uncertainties are represented in black, while high uncertainties are represented in white. Figure 6d–g
provides details of the oil slick classification along selected ocean features, allowing us to compare the
dark spots backscattering, the classification results and the uncertainty levels.

The results show the potential of the Multi-source Image Processing System for characterizing the
oil slick. The two oil classes show general differences with respect to their location within the slick,
likely related to oil thickness variations, with Oil 1 class (red regions) likely related with the thicker
layers, as discussed below, and the thinner layers, represented by the Oil 2 class (orange regions),
spreading around the thicker layers.

Usually the thickest layers are concentrated at the center of the slicks, becoming gradually thinner
towards the edges, where the spreading mechanisms are stronger, as shown in Figure 6d. However,
the presence of the intense oceanic fronts and currents may create convergence zones (Figure 6e,g),
which influence the dispersion, shape and concentration of the thickest layers within the oil slicks.
A similar effect occurs when internal waves or fronts are observed (Figure 6f). In the UAVSAR data
used for this study, these two patterns are present, influencing the concentration of the thickest oil
layers within the slick.

The first pattern is visible in the Figure 6d and the second in Figure 6e,g, where the thickest layers
are concentrated near the borders in the convergence zones, being influenced by the currents, as well
as following the geometry of the oceanic fronts (Figure 6 e,g) and the internal waves (Figure 6f). This is
consistent with the oil being trapped by the internal waves and concentrated along the oceanic fronts.
The detection of zones within slicks was also demonstrated in other published research using only
the VV channel [2,11,13] or including the polarimetric information [5,12]. The authors of reference [2],
evaluating the same slick as the one studied here, showed that the VV-intensity contrast between clean
and slicked water (damping ratio) could be used to identify likely concentrated oil along convergence
features in the scene.
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Figure 6. Classification results obtained by the covariance matrix (C3: HH-HV-VV): (a) Oil Slick study
case; (b) Classification map; (c) Uncertainty map; (d–g) three image regions in detail.

Regarding the classification uncertainty levels, for all classes, most of the regions show low
uncertainties in the class assignment process. These regions are seen in dark in the uncertainty
map (Figure 6c) and within detailed regions shown in Figure 6d–g. The ocean class has the greater
uncertainty variability, with the higher incidence of regions with intermediate and high uncertainties.
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Almost all regions classified as Oil 1 presented low uncertainty levels, as seen in Figure 6d–g.
Oil 2 regions returned mainly low uncertainty levels but with some regions of moderate and high
uncertainties, albeit lower than that observed for the ocean class. This makes sense considering that
the thickest oil layers likely evolve in thin layers through spreading and some weathering processes,
increasing the uncertainties during the class assignment process.

It is important to note that the multilevel segmentation algorithm was essential to provide the
high level of accuracy achieved by the statistical region-based classifier. The satisfactory delineation of
smaller dark paths was obtained through a hierarchical process, splitting and merging pixels from
segments, according to statistical tests applied along the five compression levels.

Over the slick-free ocean, where the homogeneity is higher, the segmentor was able to merge more
pixels in larger segments and to reduce the classification noise in the background (Figure 7a). However,
the lower homogeneity within the oil slick generated a higher number of smaller segments, making
it feasible to delineate and to detect small thicker layers (in red, Figure 7b). Figure 7b–f exemplify in
details the potential of the tested method to characterize the oil slick, indicating the contour of the
segments and the regions classified as Oil 1 (thicker layers: red) and Oil 2 (thinner layers: orange).

Figure 7. Oil slick characterization illustrating details of the segmented and classified regions over:
(a) slick-free ocean regions, and; (b–f) oil slick covered regions with different thicknesses, sizes
and geometries.

This type of information, organized in thematic maps and integrating in situ measurements about
the sea state and meteorological conditions, is a valuable instrument to guide the response actions in
the field. During emergencies involving rapid spillage of large volumes of oil or continuous long-term
spills, the action of wind and currents can form kilometer-long slicks, which can be fragmented, contain
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weathered oil, and drift in multiple directions depending upon the time on surface and changing
winds and currents. Especially in these situations, using remote sensing instruments to rapidly identify
the location of the thicker oil layers is highly valuable to efficiently and effectively guide the aircraft
flight planning and oil dispersion or recovery activities.

5. Conclusions

The Multi-source Image Processing System provided promising results in separating the slick
into two classes of oil and differentiating sheen from thicker oil, a distinction that is important to
responders. The classifier was able to detect zoning regions within the slick and to identify specific
locations - convergence zones - where the oil was concentrated by the influence of the oceanic waves
and currents. These areas are likely sites of the thicker oil layers. The statistical analysis showed that
this method could classify most of the regions within oil slicks containing sheen and thicker layers
with high global accuracy and low uncertainty levels. Further study in controlled releases of known
amounts of oil or with in situ validation data would provide more stringent validation, but those
studies are costly and their data are not often available.

In this study case, oil slick characterization is possible using fully polarized data, as well as only the
VV channel in intensity format, with both being statistically equivalent. Other research using UAVSAR
data characterized oil slicks using only the VV through the damping ratio [2,11,13]. One reason for this
is the higher signal-to-noise ratio (SNR) provided by airborne SAR sensors compared with satellite
SAR sensors [2]. Because polarimetric data contains all possible information about the sea surface
backscattering, it is an important data source for understanding different scattering mechanisms. Thus,
given that UAVSAR provides a complete polarimetric dataset, it is interesting to explore the possible
combinations of multi-polarization and polarimetric data.

The equivalence of the classification using the three types of input data tested does not invalidate
the results and importance of the Multi-Source classifier. Different classification accuracies may be
reached by oil slicks detected in different wind and current conditions, acquired by airborne or satellite
sensors, in multi-frequency, multi-resolutions and with different acquisition geometries. Within this
broader trade space, polarimetric data may contribute to better discriminate and characterize oil
slicks detected under diverse and unknown conditions, which is the situation faced by operational
surveillance agencies, including differentiation of different types of surface slicks, such as from biogenic
and petrogenic oils.

In particular during environmental emergencies when any and all remote sensing data are used
for responses, the possibility to use and integrate all data available, including polarimetric and optical
data, within the same processing system has both tactical and strategic advantages. The system tested
was shown capable of extracting essential information on the location of relatively thicker oil from
each SAR data set both individually and in combination, offering the capability to customize an
operational tool to deliver to the incident command system (ICS) in near real time thematic maps and
accuracy reports.

For the operational activities, the use of only one polarization channel simplifies the data
acquisition, the statistical modeling needed, as well as the complexity and the time required for
processing. In some cases, the polarimetric data may extract key information to characterize the
oil slicks, but at the expense of increasing the time needed to process and evaluate the results.
This reinforces the relevance and importance of continuing this avenue of research into SAR and
PolSAR-based oil classification, and suggests extending it to include study cases acquired with
multi-frequency, polarimetry, or different resolution, and including optical imagery. Therefore,
consolidating a database with several examples of mineral oils and look-alikes validated in the
field using a multi-sensor approach would be of high value to evaluating the full potential of the
proposed system.

Considering that oil thickness has a significant effect on recovery efficiency, the possibility to
identify the thicker layers of the spilled oil using SAR and PolSAR data is a significant contribution to
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ongoing efforts to improve emergency responses. Methods that work to locate the thickest oil layers
irrespective of the particular type of available remote sensing data will aid in directing responders to
the best regions for barriers and skimmer deployment, thereby increasing the oil recovery efficiency
and ultimately minimizing environmental impacts.
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