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Abstract: In this work, a collaborative experimental study has been conducted to assess the effect
an imposed internal pressure has on the controlling the hydrodynamic performance of a compliant
composite hydrofoil. It was expected that the internal pressure together with composite structures
be suitable to control the hydrodynamic forces as well as cavitation inception and development.
A new concept of morphing hydrofoil was developed and tested in the cavitation tunnel at the
French Naval Academy Research Institute. The experiments were based on the measurements of
hydrodynamic forces and hydrofoil deformations under various conditions of internal pressure.
The effect on cavitation inception was studied too. In parallel to this experiment, a 2D numerical
tool was developed in order to assist the design of the compliant hydrofoil shape. Numerically,
the fluid-structure coupling is based on an iterative method under a small perturbation hypothesis.
The flow model is based on a panel method and a boundary layer formulation and was coupled
with a finite-element method for the structure. It is shown that pressure driven compliant composite
structure is suitable to some extent to control the hydrodynamic forces, allowing the operational
domain of the compliant hydrofoil to be extended according to the angle of attack and the internal
pressure. In addition, the effect on the cavitation inception is pointed out.
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1. Introduction

In naval applications, it is crucial to make strategic decision to reduce the fuel oil consumption
of ships and therefore to decrease their CO2 emissions. The demand for the reduction of fuel oil
consumption and CO2 emissions is greater than ever before [1]. Underlying the need for improved
performance, better comfort, and stability, the use of new concepts of innovative hydrofoils or propeller
blades can be an option to enhance the hydrodynamic performance and reduce the consumption
of ships.

Using this new concept should allow to control the forces (lift and drag) for various operating
conditions to be controlled. However, this can lead to cavitation onset at high speed and moderate
angles of incidence but also at low speed and high angles. Improving the hydrodynamic performances
and delaying the cavitation inception requires the modification of shape, hence the idea of using
morphing hydrofoils.
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The aim objective of the current research focuses on aerodynamic and hydrodynamic performance
31 enhancement. In the energy field, we find the works of Aramendia, which analyzed the effect of
Gurney flap (GF) length on the lift/drag ratio CL/CD of blades. They have proved numerically the
capability of the GF to improve lift/drag ratio of passive and active flow control [2,3].

Currently, hydrofoils use mechanical systems as a flap to modify their shape and to control
their performance. Morphing structures could be an interesting route to change the hydrofoil
performance [4].

In aerodynamic applications, the use of morphing structures has proved its effect in flying
performance [5]. Brailovski et al. [6] have studied the effect on the aerodynamic performance and
foil mechanical properties of a flexible suction side powered by two actuators numerically. In another
study [7], the gap present at the spanwise ends of the control surfaces is replaced by a smooth,
three-dimensional morphing transition section. The passive control of this compliant morphing flap
transition has the advantage of increasing the lift and reducing the drag. We can not talk about the
benefits of morphing structures on aerodynamic performance, not to mention the effect of various
variable camber continuous trailing edge flap (VCCTEF) on the lift and drag forces [8]. It was noted
that the best stall performance (L/D) was demonstrated by the circular and parabolic arc camber flaps.

Even if, the main objectives of the hydrodynamic applications are similar to those of the
aerodynamics, many of the techniques employed in aerodynamic applications cannot be transferred to
naval ones. So, it is necessary to take into account the differences between the fluid properties and the
cavitation phenomena in naval applications.

To meet hydrodynamic requirements, adaptive composites are used in many marine technologies,
including propulsive devices, underwater vehicles, and propellers. In [9], the authors summarized
the progress on the numerical modeling, the experimental studies, design, and optimization of
adaptive composite marine propulsors and turbines. Firstly, they have presented the differences
between adaptive aerodynamic and hydrodynamic lifting surfaces. Therefore in the hydrodynamic
applications, the local pressure fluctuations led to the formation of cavitation [10], which can lead
to load fluctuations, vibrations and performance decay. Furthermore, they discussed the current
challenges in the numerical modeling, experimental studies, design, and optimization of the adaptive
marine propulsors and turbines. The major challenge in the numerical and experimental modeling is
the three-dimensional viscous fluid-structure interaction [11] and the cavitation [12].

The cavitation inception is influenced by several factors. Amromin [13] indicate that the
flow-induced vibration of hydrofoils affects pressure pulsations on their surfaces which depends
on the hydrofoil material and influences the cavitation inception and desinence.

Many of the recent developments have focused on the use of composite materials over
traditional metallic materials. The composite materials have many advantages, including higher
strength-to-weight ratios, better fatigue characteristics, higher durability. They provide resistance to
salt water and improve the resistance to corrosion [14].

The effect of material and Reynolds number on the hydrodynamic performance of hydrofoils
was investigated experimentally by Zarruk et al. [15]. They studied the performances of flexible
hydrofoils of similar geometry made of stainless steel, aluminum and a composite of carbon-fiber
reinforced plastic with layup orientations at 0◦ and 30◦. They concluded that the composite
hydrofoils have the best hydrodynamic performance, showing the potential of a tailored hydroelastic
composite hydrofoil. The hydro-elastic behavior of flexible propellers has also been analyzed by
Maljaars et al. [16]. They compared the results of a boundary element method (BEM) and a
Reynolds-averaged-Navier-Stokes (RANS) simulations with the calculation of measured open water
diagram and the open water curves. They found that the two results of these analyses concurred.

In [17], the cantilevered rigid and compliant three-dimensional hydrofoils were studied in a
cavitation tunnel in order to analyse the cloud cavitation behavior. The rigid hydrofoil was made
of stainless steel and the compliant one of a carbon and glass fiber-reinforced epoxy resin with the
structural fibers aligned along the spanwise direction to avoid material bend-twist coupling. The tests



J. Mar. Sci. Eng. 2019, 7, 423 3 of 19

were carried out at a Reynolds number of 0.7 × 106, an incidence of 6◦ and cavitation number of 0.8.
The compliant hydrofoil was seen to dampen the higher frequency force fluctuations while showing a
strong correlation between normal force and tip deflection. Furthermore, the 3D nature of the flow
field causes complex cavitation behavior with two shedding modes on both models. Another type of
cavitation has been studied by Zhu et al. [18]. They evaluated the hydrodynamic performances of a
propeller with winglets numerically and they compared them to those of the benchmark propeller
(MAU5-80). They concluded that the presence of the winglets reduces the vapor volume and alleviates
the tip vortex cavitation (TVC).

The bend-twist coupling effects on the hydroelastic response of composite hydrofoils have
been experimentally studied [19]. The authors concluded that bend-twist coupling affects the
deformation of the hydrofoils which modify the hydrodynamic performance. The effect of material
bend-twist coupling on the cavitating response of adaptive composite hydrofoils has also been analyzed
experimentally [20] for three identical unloaded hydrofoils. Two hydrofoils of composite material
and another rigid one of stainless steel (SS) were tested in the same cantilevered configuration.
They concluded that material bend-twist coupling has an effect on the hydrodynamic load coefficients,
cavitation inception and the maximum cavity length compared to a SS hydrofoil.

In order to assess the effect of the cavitation on the structural response, Ducoin et al. [21]
have studied the displacement of a flexible hydrofoil in a cavitating flow. They found that
the hydrodynamic loading unsteadiness increases the vibrations experienced by the hydrofoil.
Numerically, Garg et al [22,23] have developed a shape optimization tool to predict the hydrodynamic
performance including the cavitation inception conditions.

In order to control the lift generated by hydrofoils on boats, Giovannetti et al. [24] have
numerically and experimentally analysed hydrofoil geometry designed to reduce the lift coefficient
passively by increasing the flow velocity. This study was conducted with the use of wind tunnel
experiments including deformation measurements, which concurred with the numerical results. They
found that the twist deformations resulted in a reduction in the effective angle of attack by 30% at
higher flow velocities, which significantly reduced the foil’s lift and drag.

Numerical predictions of the hydrodynamic forces, deformations and cavitation performance for
a NACA 0009 hydrofoil and an optimized hydrofoil which have been studied by Garg et al. [22,25]
are compared to the experimental ones. The predicted hydrodynamic coefficients (CL, CD, and
CM) and the tip bending deflections are concur with measured values for both the baseline and the
optimized hydrofoils across a wide range of lift conditions. The mean difference between the numerical
predictions and the experimental measurements for mean CL, CD, and CM for the optimized hydrofoil
is noted. This indicates that values are 2.96%, 5.10%, and 3.0%, respectively. The mean difference in
the tip bending deflections is 3.45%.

The French Naval Academy Research Institute (IRENav) is interested in the study of the deformed
hydrofoils and their performances. Fluid-Structure Interaction has been investigated experimentally by
studying the structural response of a flexible lightweight hydrofoil undergoing various flow conditions
including cavitating flow by Lelong et al. [26,27]. An optimization of the design of the shape and
the elastic characteristics of a hydrofoil equipped with deformable elements giving flexibility to the
trailing edge was developed by Sacher et al. [28].

IRENav, the Research Institute in Civil Engineering and Mechanics (GeM) and IFREMER have
initiated a research program related to compliant hydrofoils for naval applications. The objective is
to characterize a compliant composite hydrofoil driven by an internal low pressure regarding the lift
and drag forces as well as cavitation inception. This paper presents the experimental study performed
in the hydrodynamic tunnel at IRENav. The hydrofoil manufactured at GeM was firstly tested in the
open air to assess the effect of the internal pressure on hydrofoil deformations by the use of the digital
image correlation (DIC-3D) system. Then, the hydrofoil was tested in the cavitation tunnel at IRENav
where the lift and drag coefficients and the hydrofoil deformations were measured. In accordance
with the experiments, a numerical approach based on a fluid-structure coupling algorithm has been
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developed. The paper describes the experimental setup, the numerical fluid-structure interaction (FSI)
algorithm and presents the main results.

2. Experimental Setup

The experiments are carried out in the cavitation tunnel at IRENav (Figure 1). The tunnel test
section is 1 m long with a square section of 0.192 m side (Figure 2). The inflow velocity ranges
between 0.5 and 12 m/s. The pressure in the tunnel test section ranges from 100 mbar and 3 bar
to control the cavitation which is given by a cavitation number defined by Equation (1) and the
measured turbulence intensity in the test section is 2% at 5 m/s. This cavitation number can therefore
be compared with the opposite of pressure coefficient −Cpmin defined as the minimum of the pressure
coefficient (Equation (2)).

Figure 1. Hydrodynamic tunnel test section at IRENav with the compliant composite hydrofoil.

Figure 2. Tunnel test section characteristics with the compliant composite hydrofoil and Laser
displacement measurement system.

σ =
Pre f − Pv

1
2 ρV2

(1)

Cp =
P − Pre f

1
2 ρV2

(2)
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where Pre f is the pressure in the test section, Pv is the vapor pressure at the water temperature, P is
the local pressure, V is the inflow velocity, and ρ is the water density. Thus, when σ < −Cpmin, that
is to say when P < Pv, cavitation is expected to appear in the flow at the point where the pressure
coefficient is the lowest.

The compliant composite hydrofoil was manufactured at the Research Institute in Civil
Engineering and Mechanics (GeM). At rest, the compliant composite hydrofoil has a NACA 0012
section and a rectangular plan-form of 0.191 m span and 0.15 m chord length. It is cantilevered and
clamped on a cylindrical aluminum beam fitted to the hydrodynamic balance. The axis of rotation is at
X/c = 0.25.

The hydrofoil is composed of two walls, one rigid and one compliant, providing a cavity in
which vacuum can be applied to vary the shape. In the following part, pressure variation will always
correspond to a suction inside the hydrofoil compared to the atmospheric reference in the test section.
It is defined as ∆P (called internal pressure in the paper) and has a positive value as it decreases.
The pressure system, the compliant composite hydrofoil and the pneumatic actuator are presented
in Figure 3. The pressure inside the cavity is measured using a manometer.

The compliant wall is laminated with three carbon/epoxy plies oriented at 0◦/90◦ in the middle,
and thinner at the leading and trailing edges. These two edges are composed of two plies: one of
carbon/epoxy [0◦/90◦] and the second of glass fiber with an orientation at 45◦. The rigid side is
composed of five plies of carbon/epoxy with the layups orientations at 0◦ and 90◦ (Figure 4).

Figure 3. Compliant composite hydrofoil equipped with the control internal pressure system.

??

1 carbon ply
1 glass fiber

ply

?

3 carbon plies

6

?
? ?

5 carbon plies
6

Figure 4. Laminate structure of the compliant composite hydrofoil.

To assess the effect of the internal pressure on hydrofoil deformations in open air, the chordwise
displacement of skin is investigated using the digital image correlation (DIC-3D) system at GeM
laboratory (Figure 5). The digital image correlation is well known as an effective method of obtaining
field surface displacements. This method is based on optimal strain measurements. It is a non-contact
technique and it is particularly suitable for flexible materials. It is based on the comparison of two
digital images features of the composite surface before and after loading, and total displacement and
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strain fields can be obtained. For this purpose, a two digital camera system has been used to monitor
the strain pre-gressing on the surface and a computer with DIC software. In order to produce fine
and exploitable details, a random pattern of paint is usually applied to the surface of the hydrofoil
(Figure 6). The software selects points in the reference image and follows them in the following images
thanks to a window defined around the points. The window consists of some pixels which grant a
unique greyscale intensity distribution to the window. To detect the area with the most similar intensity
distribution, which contains the required points, a cross-correlation method is used to scan the next
image. Thus, the movements of two separate points are followed by DIC and the last computes the
change in the distance between these points [29].

Compliant hydrofoil

CameraCamera
Figure 5. Digital image correlation (DIC) schematic at GeM (Saint-Nazaire, France).

Figure 6. Specimen prepared for DIC with random pattern paint on the surface.

The hydrofoil displacement is also investigated in open air by using a micrometric touch probe at
a discrete position (Z/c = 0.33, X/c = 0.63) for various imposed internal pressures of ∆P = 0.15 bar,
0.4 bar and 0.51 bar.

In the hydrodynamic tunnel, the static deformation is measured using a Laser distance
measurement system mounted on a 2D translation system on the upper side of the test section.
The system measures the vertical position of the hydrofoil suction side along sections scanned through
the span from the root to the tip. It continuously monitors displacement according to a sampling
frequency chosen by the user (set to 50 Hz). The system allows us to scan the hydrofoil surface for a
given flow condition along various sections selected along the span. In this case, nine sections from
the root to the tip are selected. At first and for the ∆P∗ = 0, the distance measurements are carried out
without a flow, in order to determine the rest position of the hydrofoil. Measurements are repeated
under a flow at 5 m/s. The results of the laser distance measurements are presented in Figure 7. It is
shown that the velocity has no effect on the hydrofoil displacement. After, for the same inflow velocity,
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the distance measurements are carried out for various internal pressures. The deformation is obtained
by comparing the scans between referenced and tested internal pressures.

Figure 7. Results of the laser displacement measurement system without flow and Re = 0.75 × 106.

In the hydrodynamic tunnel, measurement of hydrodynamic forces is conducted using a
hydrodynamic balance at various conditions of internal pressure and angle of attack and different flow
velocities. Firstly, the hydrodynamic forces are measured for a velocity of 5 m/s corresponding to a
Reynolds number of 0.75 × 106. Secondly, they are measured for a velocity of 6.67 m/s and 9 m/s
which correspond to 106 and 1.35 × 106 Reynolds numbers respectively. This increase in velocity is in
order not to increase the incidence too much and in order to analyze the cavitation inception for low
cavitation numbers.

The 5-component hydrodynamic balance has a range of up to 1700 N for the lift force, 180 N
for the drag and a 43 N m for the pitching moment. It is fixed into a supporting frame, mounted on
bearings, and driven in rotation by a Baldor motor. The stepper motor allows for 600,000 impulsions
per rotation, meaning a resolution of 6 × 10−4◦. The foil is fastened into the balance, secured by a
tightly fitted key/nut system [30]. As the test section is horizontal, the geometric 0◦ angle of attack of
the hydrofoil is visually controlled using the water surface at mid height of the test section when filling
the tunnel. Furthermore, as the hydrofoil is symmetric, the zero-lift angle is used for the positioning of
the final angle of attack.

3. Uncertainties

The experimental uncertainties consist the precision of the hydrodynamic balance, pressure
sensors, Laser distance measurement system, digital image correlation (DIC-3D) and micrometric
touch probe.

In the cavitation tunnel, the uncertainties of velocity and pressure measurements are based on the
accuracy of the pressure sensors. The latter is about 0.04 bar. For the measurements of hydrodynamic
forces and from the document provided by the manufacturer of the hydrodynamic balance, the
uncertainties are about ±1.02 N for the lift, ±0.324 N for the drag and ±0.26 N.m for the pitching
moment. The uncertainty on the displacement measurements in the test section is about ±0.046 mm.

For open air measurements, the uncertainty of the digital image correlation (DIC-3D) system is
about ±0.002 mm for the in-plane displacements and ±0.004 mm for the displacements out of the
plane. The micrometric touch probe precision is about ±0.01 mm.
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4. Numerical Approach

The numerical study consists of 2D simulation to investigate the effect of a static internal
pressure on the structural response of the compliant hydrofoil as well as the impact on
hydrodynamic performances.

The flow model of the XFOIL solver and the finite-element method of the ANSYS-Mechanical
solver are used for the FSI analysis. The FSI algorithm is based on an iterative method between the
two solvers with a small perturbation hypothesis. The flow model is based on the coupling between a
panel method with a boundary layer model. More details concerning Xfoil are given in [31]. The panel
method accelerates the flow calculations as compared to finite volume methods.

The numerical model of the hydrofoil structure is calculated by ANSYS Mechanical using ANSYS
APDL (Ansys Parametric Design Language) with solid elements according to the preliminary hydrofoil
design. The original APDL script was modified to handle distinct geometry changes and meshing.
Solid elements PLANE183 (quadratic) are used to mesh the hydrofoil geometry.

The coupling algorithm is developed using Python-scripts. The fluid-structure coupling algorithm
is described in Figure 8. The FSI algorithm is initialized by a structural computation as the cantilevered
hydrofoil is submitted to an internal pressure only. It leads to displacements which produce to a new
hydrofoil shape. Then, the viscous flow around the new foil is solved. The computation returns a Cp

distribution and the forces of the hydrofoil. The external hydrodynamic pressure resulting from the
Cp distribution is applied during the structural resolution. The problem is solved using an iterative
method until the convergence on the maximum structural displacement and the lift coefficient CL
is reached.

Initial foil1 (i = 1)

Structure calculation (CSD)
Constant internal pressure

Foili (i = i + 1)

Displacement transfer

Fluid computation
Xfoil

Convergence?

Final Foil
END

Yes

Hydrodynamic
load transfer

No

Figure 8. Schematic algorithm of fluid-structure coupling with imposed internal pressure.
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The convergence to the equilibrium of the hydrofoil is obtained after a small number of iterations
showing that the method developed in this work has an advantage when compared to advanced
CFD-CSD solvers that require very significant CPU (Central Processing Unit) times.

In a first approach and to simplify the calculation, the hydrofoil material is considered as an
homogeneous elastic equivalent. The Young’s modulus input for the 2D section of the compliant
hydrofoil was adjusted until the maximum displacement of the hydrofoil in the simulations coincided
with the maximum displacement of the hydrofoil during the experiments for various internal pressures.
The equivalent Young modulus used in the computation was set to E = 70, 000 MPa and the equivalent
Poisson coefficient was set to 0.34.

The initial and deformed shapes of the hydrofoil at a 3◦ angle of attack, Re = 0.75 × 106 and an
imposed internal pressure of ∆P∗ = 1.92 are presented if Figure 9. The calculated maximum chordwise
displacement of the hydrofoil was found to be 3.3 percent of the chord length.

Figure 9. Initial shape and deformed shape of the hydrofoil at the first iteration, ∆P∗ = 1.92, α = 3◦

and Re = 0.75 × 106.

5. Results and Discussion

5.1. Hydrofoil Deformation and Hydrodynamic Forces

The effect of internal pressure on the hydrofoil deformation is investigated by using digital image
correlation (DIC-3D). For ∆P = 0.415 bar, the displacement field plotted against the foil coordinates is
presented in Figure 10. It is observed that the maximum displacement is 8.06 mm (5.3%c) located at
the center of the hydrofoil. The deformation is not uniform along the spanwise direction due to the
structural boundary conditions at the root and the tip.

The displacement of the hydrofoil as a function of the chord is taken at Z/c = 0.55 for four
internal pressures. It is plotted in Figure 11. It confirms the results of the 3D displacement field
presented in Figure 10. The hydrofoil displacement is not uniform along the chord which explains the
modification of the camber.
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Figure 10. DIC-3D displacement, ∆P = 0.415 bar.

Figure 11. Experimental hydrofoil displacement in open air plotted against the chord and the internal
pressure at Z/c = 0.55.

The hydrofoil displacements are also measured with a micrometric touch probe at X/c = 0.33
and Z/c = 0.63. The results are compared to the numerical simulation and to the measurements of the
DIC-3D system at the same point (Figure 12). As shown in Figure 10, the displacement is linear for
an internal pressure of up to ∆P = 0.4 barand reaches a limit value of about 0.045c. The numerical
results correspond to experimental ones for an internal pressure of up to ∆P = 0.4 bar showing that
the equivalent homogeneous model is fairly consistent with the experiment. Beyond ∆P = 0.4 bar,
the predicted deformation increases linearly exhibiting no saturation.
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Figure 12. Experimental and numerical displacement in open air at Z/c = 0.33 and X/c = 0.63.

The foil deformation is then analyzed using the scanning measurement system in the
hydrodynamic tunnel for a velocity of 5 m/s. The experimental deformed section is presented
in Figure 13 for an internal pressure ∆P∗ = 1.92 and compared to the numerical one. As depicted
in Figure 13, the experimental and numerical displacements have the same trend excepted at the
trailing edge where a significant difference is observed. This difference is due to the twist of the
hydrofoil in the experiment that is not observed with a 2D computation in the numerical study.
The connection between the core beam (Figure 9) and the low pressure side skin is indeed flexible and
allows the whole section to rotate around the cantilevered one.

Figure 13. Experimental and numerical foil sections, ∆P∗ = 1.92 and V = 5 m/s.

The hydrodynamic forces for different internal pressures are presented in Figure 14a–c. It is
reminded that when the pressure inside the cavity decreases, ∆P∗ increases. It is shown that the lift
coefficient and lift/drag ratio shift upwards as ∆P∗ increases with a slight change in the slope. For
the ranges of angles of attack and internal pressure of the present experiments, it is found that the lift
coefficient and lift/drag ratio increase linearly for both parameters. The results of Figure 14a can be
explained by the response surface of the compliant hydrofoil in terms of lift coefficient versus angle of
attack and the non-dimensional internal pressure. The operating domain of the compliant hydrofoil is
plotted as a function of the two independent variables in Figure 15.
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(a) Lift coefficient (b) Drag coefficient

(c) Lift/Drag ratio

Figure 14. Experimental lift and drag coefficients as a function of angle of attack and an internal
pressure at Re = 0.75 × 106.

According to theory, the lift coefficient depends on the maximum thickness and angle of attack
(Equation (3)). In this study, it depends on maximum thickness, angle of attack and internal pressure
(Equation (4)).

CL = 0.109(1 − kτ)α (3)

CL(α, ∆P∗) = CL(α, ∆P∗ = 0) + ∆CL(α, ∆P∗) (4)

If it is considered that the internal pressure changes the thickness (see Figure 12) and the camber
linearly, the maximum thickness and ∆CL depend only on internal pressure variation. A linear
approximation of the response surface (Figure 15) is shown in Equation (5).

CL(∆P∗, α) = 0.109(1 − k(τ + a∆P∗))α + b∆P∗ (5)

where ∆P∗ = ∆P
q is the non dimensional internal pressure and a = 0.013, b = 0.025 and k = 0.95 are

constants, which depend on material and hydrofoil design, determined from linear regressions on
experimental data.

This simple expression highlights the effect of the internal pressure on the lift slope and lift
coefficient described experimentally. The latter is equivalent to the shift of the zero lift angle as a result
of camber modification. The expression of the surface response depending on flow conditions and
design parameters can be very useful in the context of foil optimization methods. The same approach
could be used regarding the drag coefficient and the lift to drag ratio.
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Figure 15. Experimental surface response of the lift coefficient plotted against the angle of attack and
internal pressure at Re = 0.75 × 106.

The experimental and numerical lift coefficients are presented in Figure 16. The numerical lift
coefficient obtained from the FSI algorithm concurs with the experimental one but departs progressively
from the experiment as the angle of attack progressively increases. The reason fro the discrepancies can
be found in the analysis of the structure. Indeed, the experimental section shapes and displacements
of the compliant wall are extracted at mid-span for α ranging from −4◦ to 4◦ and they are shown
in Figure 17a,b for the positive and negative angles of attack respectively.

Figure 16. Experimental and numerical lift coefficients as a function of the angle of attack for an
internal pressure ∆P∗ = 1.92 and Re = 0.75 × 106. FSI computation and flow computation over the
experimentally deformed sections at mid-span.
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(a) Positive angle of attack (b) Negative angle of attack

Figure 17. Experimental mid-span shapes and associated displacements for ∆P∗ = 1.92,
Re = 0.75 × 106 and positive and negative angles of attack.

A close examination shows that a small flap effect is observed experimentally at the trailing
edge affecting the lift coefficient. This effect is not shown by the 2D structural solver where the
connection between the skin and the structural beam is considered as rigid. Moreover, experimentally
the whole section rotates around 0.25 X/c due to a slight twisting of the structural internal beam as
previously described. This is particularly observed for a positive angle of attack. The foil twisting
tends to reduce the angle of attack, therefore to decrease the lift coefficient. It is observed that the
FSI computation concurs very well the experiments for negative angles of attack when the twist can
be neglected. Furthermore, for positive angles of attack, the twist observed experimentally is not
seen into the FSI simulation. This is clearly shown in Figure 16 where the lift coefficient is computed
directly on the experimental deformed sections at mid-span. In this case, the numerical lift concurs
well the experiments all over the angle of attack range. The following parameters should be explored
as they can impact the numerical-experimental comparison as a structural model: geometry, material
properties (isotropic or orthotropic), structural boundary conditions, flow 3D effects and confinement
in the test section.

5.2. Cavitation Control

In addition, the effect of the internal pressure on cavitation is analyzed. The effect of the internal
pressure on the theoretical cavitation inception is numerically predicted using the FSI algorithm.
The lift coefficient versus the opposite of the minimum pressure coefficient (−Cpmin) for the compliant
hydrofoil under various internal pressures is shown in Figure 18. The internal pressure has a direct
influence on the theoretical cavitation inception, particularly for the lift coefficients above −0.1.

Experimentally, the cavitation inception for an internal pressure equal to ∆P∗ = 3.1, an angle of
attack α = 7.4◦ and a cavitation parameter σ = 3.8 at a Reynolds number of 106 is shown in Figure 19a.
For identical conditions, it can be shown that cavitation disappears (Figure 19b) by only decreasing
the internal pressure to ∆P∗ = 1.71. The corresponding hydrofoil shapes at cavitation inception and
desinence is shown in Figure 20. This shape modification of the hydrofoil leads to a slight decrease in
the lift coefficient from 0.805 to 0.754.
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Figure 18. Numerical cavitation bucket, Re = 0.75 × 106, ∆P∗ = 0, ∆P∗ = 1.92, ∆P∗ = 2.72 and
∆P∗ = 4.

(a). Cavitation inception
CL = 0.805
∆P∗ = 3.1

(b). Cavitation desinence
CL = 0.754
∆P∗ = 1.71

Figure 19. Cavitation inception and desinence on a compliant composite hydrofoil, Re = 106, α = 7.4◦

and σ = 3.8.
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Figure 20. Experimental hydrofoil shapes at cavitation inception and desinence at Re = 106, α = 7.4◦

and σ = 3.8.

From the theoretical cavitation bucket (Figure 18), it is noted that the internal pressure has an
effect on the cavitation inception for a positive lift coefficient. For this reason, the numerical and
the experimental cavitation buckets are compared for a Reynolds number Re = 1.35 × 106, positive
lift coefficient and two internal pressures. The numerical and experimental cavitation buckets of a
the symmetrical hydrofoil and a deformed one under internal pressure ∆P∗ = 0.59 are presented
in Figure 21. It is shown that the numerical results concur with the experimental ones for the range
of lift coefficient of the present analysis. Furthermore, it can be noted that the internal pressure has
an effect on the non-cavitation domain. The differences between the numerical and the experimental
results could be explained by some pressure fluctuations in the test section.

Figure 21. Experimental and numerical cavitation buckets of a symmetrical hydrofoil and a deformed
one under internal pressure ∆P∗ = 0.59, Re = 1.35 × 106.

6. Conclusions

In this paper, an experimental and numerical study has been presented in order to assess the
effect of the internal pressure on the hydrodynamic performance of a compliant composite hydrofoil.
The compliant hydrofoil was controlled by a cavity driven by pressure (suction). It was tested in a
cavitation tunnel at Re = 0.75 × 106 at different angles of attack. Firstly, the hydrofoil deformations
were measured in open air using digital image correlation (DIC-3D) and a micrometric touch probe.



J. Mar. Sci. Eng. 2019, 7, 423 17 of 19

Secondly, experiments were performed in a hydrodynamic tunnel where lift and drag coefficients
were measured using a hydrodynamic balance together with the compliant skin deformation using a
scanning laser measurement system.

A 2D numerical fluid-structure coupling is developed in accordance with the experiments.
It was based on an iterative method coupling the flow solver Xfoil and the structural solver
ANSYS-Mechanical. Experiments and simulations were carried out at different angles of attack
and various imposed internal pressures.

The experiments show that internal low pressure variation has a significant effect on the hydrofoil
shape and thus on the hydrodynamic forces. Experimentally, the internal low pressure variation leads
to section variations (thickness, camber) together with a slight overall twisting and a small flap effect
at the trailing edge. The increase of the suction in the cavity tends to increase the lift coefficient and the
lift/drag ratio but at the expense of increased minimum pressure and hence the incipient cavitation
number. It is also shown that cavitation can be controlled to some extent by changing only the internal
pressure for a given angle of attack and a given flow velocity. The increase of the suction in the cavity
tends also to decrease the slopes of the lift coefficient and the lift/drag ratio. A response surface
depending on the the internal pressure and the angle of attack can be simply derived from a linear
approximation.

The numerical cavitation bucket predicted from the FSI algorithm was compared to the
experimental one and the results correlated. The morphing hydrofoil model developed in this work
based on a compliant composite structure driven by an internal pressure has provided encouraging
results. It allows the hydrodynamics forces and the cavitation to be controlled, paving the way for
optimization methods to enhance hydrodynamic performances based on Fluid-Structure Interactions.
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Nomenclature

CFD Computational Fluid Dynamics.
CSD Computational Structural Dynamics.
FSI Fluid-Structure Interaction.
α angle of attack [◦].
ε convergence criteria.
ρ fluid density [kg/m3].
σ cavitation number: σ = P−Pv

1
2 ρV2 .

c hydrofoil chord [m].
CD drag coefficient: CD = D

1
2 ρV2s

.

CL lift coefficient: CL = L
1
2 ρV2s

.

D drag force [N].
∆P = Patm − Pinternal difference between the atmospheric reference and internal pressure [bar].
∆P∗ = ∆P/q non dimensional internal pressure.
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e hydrofoil span [m].
L lift force [N].
P pressure [bar].
q dynamic pressure: q = 1

2 ρV2.
Re Reynolds number: Re = Vc/ν.
s hydrofoil planform.
U total displacement [m].
V inflow velocity [m/s].
X, Y, Z foil coordinates [m].
ν kinematic viscosity [m2/s].
τ maximum thickness [m].
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