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Abstract: This article presents a procedure that simplifies an offshore jacket platform as a non-uniform
cantilever beam subjected to an axial force. A Ritz method combined with a pseudo-excitation method
is then used to analyze the responses of the jacket platform under random wave loads with the
associated power spectral densities, variances and higher spectral moments. The theoretical basis
and pertinent governing equations are derived. The proposed procedure not only eases the process
of determining the pseudo wave loads, but also requires only the rudimentary structural details
that are typically available at the preliminary design stage. Additionally, the merit of the proposed
procedure is that the process does not require one to compute the normal modes, which saves time
and is particularly convenient for the dynamic-response analysis of a complex structure (such as
an offshore platform). An illustrative example based on a three-deck jacket platform is presented
to demonstrate the procedure used to obtain the power spectral densities, variances and second
spectral moments of jacket-top displacement and the bending moment of the jacket at the mud line.
The results obtained are compared with those obtained using a Finite Element Mothed (FEM) model.
Based on the findings of the study and good agreement shown in the comparison of results, it is
concluded that the proposed method is effective, simple and convenient, and can be a useful tool for
the preliminary design analysis of offshore platforms.

Keywords: Pseudo-excitation method; Ritz method; random wave load; random response; frequency
domain response; FEM

1. Introduction

Fixed offshore platforms are generally used for oil development as well as to accommodate
other functional uses such as equipment installation, construction operation, material and supply
storage, and living quarters. Offshore jacket platforms, which may be exposed to severe environmental
conditions, are generally subjected to two main categories of environmental loads: normal loads
such as wave-induced hydrodynamic forces, and extreme-condition loads due to seismic excitation.
The former is a well-established design consideration, and the normal loads in an ocean environment
are adopted as basic parameters for structural design. The extreme sea-states are used to establish the
loadings, and are well defined by design rules and advisories according to many class societies. In all
concerned environmental loads, wave is a predominant one, and the response under random wave
loads has been the focus of many investigations.
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Sunder and Connor [1] performed a study on jacket platforms by considering the variations in
wave height, uncertainties in wave period (associated with wave height), choice of hydrodynamic force
coefficients (particularly in the presence of marine growth), and changes in deck mass and hysteretic
structural damping. Numerical studies were performed on an equivalent simplified stick model by
applying Morrison’s equation only on vertical members. Gudmestad and Moe [2] recommended a
unified approach for the selection of appropriate values for the coefficients used in the calculation
of the hydrodynamic loads, determined by comparing the API(American Petroleum Institute)'s and
North Sea Design Practice methods and performing full-scale experiments to validate those values.
Karunakaran et al. [3] used modal analysis to calculate the natural frequencies and mode shapes.
Nonlinear time domain simulations were used to calculate the dynamic responses of a jacket platform,
and the calculated results were compared with full-scale measurements. Considering tubular members,
Horr and Safi [4] calculated the natural frequencies and mode shapes of offshore structures in a time
domain using modal analysis. They used exact Timoshenko pipe elements to determine the dynamic
responses of an offshore platform in a frequency domain. The response of a fixed offshore platform
supported by cluster piles was investigated by Mostafa and El Naggar [5] using the Finite Element
Method. They also analyzed the effects of pile–soil interaction on the dynamic characteristics of a
jacket structure supported by cluster piles. They concluded that soil characteristics significantly affect
the dynamic behavior of the structure. Patil and Jangid [6] compared the efficiency of viscoelastic,
viscous and friction dampers as energy-dissipating devices to moderate the dynamic response of steel
jacket platforms under sea wave excitations. Elshafey et al. [7] both theoretically and experimentally
investigated the dynamic response of a scale model of an offshore jacket structure subjected to random
wave loads. The experiments were conducted both in air and in a towing tank, and excellent agreement
was obtained between the experimental and theoretical results.

Golafshani and Gholizad [8] used the stochastic linearization technique to investigate the
performance of nonlinear friction dampers on reducing the wave-induced random vibrations in
jacket-type offshore platforms. Later, Golafshani et al. [9] studied oil/gas jacket platforms under wave
loads and found that, for two different example platforms, the difference of the maximum structural
base shear under dynamic and static analyses was respectively either negligible (less than 0.5%) or
approximately 14%. The dynamic analysis demonstrated a larger maximum response. The response of
offshore platforms with hydrodynamic buoyant mass dampers to wave loads, which leverage on the
buoyancy and inertia of the dampers for the hydrodynamic damping effects that reduce the displacement
response of the platform, was investigated by Moharrami and Tootkaboni [10]. Mao et al. [11] studied
the dynamic responses of offshore jacket platforms, including foundation degradation under cyclic
loadings where finite element models using the lumped parameter method were established to handle
pile–soil interaction. Abhinav and Saha [12] performed coupled hydrodynamic and geotechnical
analyses of an offshore jacket wind turbine by considering it both with and without soil–structure
interaction. A jacket in a water depth of 70 m with soil conditions off the west coast of India was
used in the study. Wei et al. [13] investigated the effects of structural dynamics on the response of
an offshore wind turbine supported by a jacket and subjected to wave loads. Their studies included
a series of time-domain dynamic analyses based on loadings from either regular or irregular wave
histories of three offshore wind-turbine-supported structures.

The literature review reveals that many researchers have focused on analyzing the dynamic
responses of offshore structures subjected to wave loads. The growth of computer processing power
has led an improved assessment of dynamic response performance using three-dimensional models.
However, industry practitioners may be interested in other simplified but accurate dynamic analysis
methods to produce results that are in good agreement with the real responses of structures, while at
the same time to achieving significant time-saving in computational efforts. This is especially so in the
preliminary design stage, when the information and materials of a platform are insufficient for setting up
a detailed three-dimensional model. Moreover, incomplete data of a jacket structure may result in high
uncertainty about its structural responses and performance under harsh environmental loads. Thus,
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it is necessary to develop a procedure that requires less computing time but produces high-accuracy
estimations of the responses of offshore structures. A simplified approach for modelling jacket offshore
platforms using the Euler beam theory was developed by Bo Zhou et al. [14]. Numerous examples have
been presented to demonstrate the validity of their proposed method. Asgarian et al. [15] developed a
lumped mass model to simplify the calculation of the responses of offshore jacket structures. Recently,
Timoshenko’s beam theory was again applied by Bo Zhou et al. [16] to model the dynamic responses
of offshore jacket platforms, where the equation of bending motion was proposed and solved. Their
results of random seismic responses were compared with those obtained from a 3D FEM model.

In this study, a novel simplified method for determining frequency domain responses of a jacket
platform is proposed for used under random wave loads. The jacket platform is modeled as a
simplified non-uniform cantilever beam subjected to an axial force. A pseudo-excitation approach
associated with the Ritz method is applied to determine the responses of a jacket platform under
random wave loads, including power spectral densities, variances and higher spectral moments of
required responses, among others, without having to compute the normal modes. The procedure for
defining the pseudo wave load is described in detail, with an example used to illustrate the results.
The accuracy of the proposed method is verified by comparing the results obtained with those from a
FEM model. The proposed method is robust and produces results with a certain precision, especially
in the preliminary design stage where the information and material of a platform are insufficient for
setting up a detailed three-dimensional model.

2. Determination of the Pseudo Wave Load

2.1. Practical Wave Spectrum

The random process of wave elevation η(t) is a zero-mean-valued stationary process whereby
the statistical characteristics of waves can be determined by their power spectral density (PSD). Some
commonly used wave spectra include the Neuman spectrum, Pierson–Moskowitz (P-M) spectrum,
Bretschneider spectrum, and JONSWAP spectrum, among others. As the P-M spectrum was established
based on adequate wave data collected in ocean environments, it has been widely used in the field of
ocean engineering. The expression of the spectrum is given in the following

Sη(ω) =
0.0081g2

ω5 exp

−0.74
(

g
va19.5ω

)4 (1)

where va19.5 is wind speed at an altitude of 19.5 m.

2.2. Random Waves

For structures comprising slender members that do not significantly alter the incident wave field,
semi-empirical formulations such as the Morison’s equation may be adopted. The diameter of such
slender members must be less than 20% of the relevant wave lengths and be small with respect to the
distances separating the members. A hydrodynamic force acting normal to the axis of a cylindrical
member, as given by Morison’s equation, is expressed as the sum of the force vectors as indicated in
the following equation:

F(t) = FD(t) + FI (t) (2)

where F(t) is the hydrodynamic force vector per unit length along the member that is acting normal
to the axis of the member, FD(t) is the drag force vector per unit length, and FI(t) is the inertia force
vector per unit length.

According to the linear wave theory (Yu et al. [17]), we have

FD (t) =
√

8/πσu(z)KDω
cosh(kz)
sinh(kd)

η(x, t) (3)
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FI (t) = iKMω2 cosh(kz)
sinh(kd)

η(x, t) (4)

where η(x, t) = (H/2) cos(kx−ωt) is the wave elevation, k = 2π/L, ω = 2π/T, KD = ρwCDD/2 and
KM = ρwCMπD2/4. Here, ρw is the density of water, D is the diameter of the cylindrical cylinder,
CD is the drag coefficient, CM is the inertia coefficient, H is the wave height, L is the wave length, T is
the wave period, i is the imaginary unit and σu(z) is the mean square deviation of horizontal particle
velocity u(t). By introducing the transfer functions for both the inertia and drag forces, where

TFI(ω) =
FI (t)
η(t)

= iKMω2 cosh(kz)
sinh(kd)

(5)

TFD(ω) =
FD (t)
η(t)

=
√

8/πσu(z)KDω
cosh(kz)
sinh(kd)

(6)

we have the wave force spectrum at the height of z as

SF(ω) =
∣∣∣TηF(ω)

∣∣∣2Sη(ω) = (
∣∣∣TFI(ω)

∣∣∣2 + ∣∣∣TFD(ω)
∣∣∣2)Sη(ω)

= {[
√

8/πσu(z)KDω cosh(kz)
sinh(kd) ]

2
+ (KMω2 cosh(kz)

sinh(kd) )
2
}Sη(ω)

(7)

The P-M spectrum may be employed using the following approximate formulation (Yu et al. [17]):

σu
2(z) =

H2
1/3

16
(ω

cosh kz
sinhkd

)
2

(8)

Substituting Equation (8) into Equation (7) yields

SF(ω) = [( 1
√

2π
KDH1/3ω

2 cosh2(kz)
sinh2(kd)

)
2
+ (KMω2 cosh(kz)

sinh(kd) )
2
]Sη(ω) (9)

where KD = ρwCDD/2 and KM = ρwCMπD2/4. Here, ρw is the density of water, D is the diameter of
the cylindrical cylinder, CD is the drag coefficient, CM is the inertia coefficient, k = 2π/L, ω = 2π/T,
H is the wave height, L is the wave length, T is the wave period and H1/3 is the significant height.

2.3. Pseudo-Excitation Method and Pseudo Wave Load

The Pseudo-Excitation Method (PEM) is an accurate and highly efficient approach for structural
stationary/non-stationary random response analysis. The associated algorithm series have been
developed since the early 1980s and applied to random vibration analyses of structures subjected to
single/multiple and stationary/non-stationary random excitation. The advantage of the algorithm is in
the solution of the response to the non-uniformly modulated and evolutionary random excitations.
Each algorithm in this model series is an accurate and complete quadratic combination (CQC) method
of combining maximum modal responses in which the cross-correlation quadratic terms between the
participant modes and between the excitations have both been included. Such algorithms are easy to
use as the structural stationary random response analysis is then reduced to an analysis of structural
harmonic response, while structural non-stationary random responses can be readily computed in
terms of any step-by-step integration scheme (Lin and Zhang [18]).

The PEM for the stationary single excitation problem may be represented as a linear system,
as shown in Figure 1. The linear system is subjected to a zero-mean-valued stationary random
excitation whose power spectral density (PSD) Sxx(ω) has been specified. If ỹ1 =

√
Sxx(ω)H1(ω)eiωt

and ỹ2 =
√

Sxx(ω)H2(ω)eiωt are two arbitrary stationary harmonic responses due to the pseudo
harmonic excitation of x̃ =

√
Sxx(ω)eiωt then it can be readily verified that
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ỹ1
∗ ỹ1 =

√
Sxx(ω)H1

∗(ω)e−iωt
·

√
Sxx(ω)H1(ω)eiωt =

∣∣∣H1(ω)
∣∣∣2Sxx(ω) = Sy1 y1(ω) (10)

ỹ1
∗ ỹ2 =

√
Sxx(ω)H1

∗(ω)e−iωt
·

√
Sxx(ω)H2(ω)eiωt = H1

∗(ω)Sxx(ω)H2(ω) = Sy1 y2(ω) (11)

in which the variable with asterisk (*) represents its complex conjugate. This means the auto-PSD
and cross-PSD functions of the two random responses y1(t) and y2(t) can be computed using their
corresponding pseudo harmonic responses ỹ1 and ỹ2.

If the pseudo responses are two arbitrary harmonic response vectors,
{
ỹ1(t)

}
and

{
ỹ2(t)

}
, it can be

similarly verified that the corresponding PSD matrices would be{
ỹ1

}∗{ỹ1
}T =

∣∣∣Sy1 y1(ω)
∣∣∣ (12){

ỹ1
}∗{ỹ2

}T =
∣∣∣Sy1 y2(ω)

∣∣∣ (13)

According to the above-mentioned PEM and Equation (9), the pseudo wave load can be
formulated as

F̃(z, t) =
√

SF(ω)eiωt =

√√(
1
√

2π
KDH 1

3
ω2 cosh2(kz)

sinh2(kd)

)2

+

(
KMω2 cosh(kz)

sinh(kd)

)2 √
Sη(ω)eiωt (14)

3. Solutions of Equation of Motion

The partial differential equation governing the bending motion with transverse displacement
w(z, t) of a cantilever beam subjected to an axial force T and wave load is

ρA(z)
..

w + c(z)
.

w + [EI(z)w′′ ]′′ + Tw′′ = F(z, t) (15)

where EI(z) is flexural rigidity and ρA(z) is mass per unit height, both of which may vary with
position z. The double prime (”) denotes the second-order partial derivative of the displacement
function w with respect to the beam height z. The wave load F(z, t), which may vary with position and
time, causes motion of the beam. The boundary conditions at the two end points of a cantilever beam
at are

(w)z=0 = 0,
(
∂w
∂z

)
z=0

= 0, (EI
∂2w
∂z2 )

z=L
= 0,

∂
∂z

(EI
∂2w
∂z2 )

z=L
= 0 (16)

If the beam is initially in static equilibrium, then the initial conditions are

w(z, 0) = 0,
.

w(z, 0) = 0 (17)

Substituting Equation (14) into Equation (15) leads to

ρA(z)
..
w̃ + c(z)

.
w̃ + [EI(z)w̃′′ ]′′ + Tw̃′′ = F̃(z, t) (18)

where w̃ represents the corresponding pseudo displacement due to the pseudo wave load F̃(z, t).
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With the use of the Ritz method, the displacements can be expressed as a linear combination of
several shape vectors ϕ j(z) as

w̃(z, t) =
q∑

j=1

ỹ j(t)ϕ j(z) = [∅]
{
ỹ
}

(19)

By substituting Equation (19) into Equation (18), multiplying [∅]T by both sides of the equation,
and integrating z from zero to L, the equation of motion gives

[M]
{ ..

ỹ
}
+ [C]

{ .
ỹ
}
+ [R]

{
ỹ
}
+ [K1]

{
ỹ
}
= {P}eiωt (20)

where

[M] =

∫ L

0
ρA(z)[∅]T[∅]dz (21)

[C] =
∫ L

0
c(z)[∅]T[∅]dz (22)

[R] =
∫ L

0
[∅]T[EI(z)[∅]′′ ]′′dz (23)

[K1] = T
∫ L

0
[∅]T[∅]′′dz (24)

{P} =
√

Sη(ω)
∫ L

0
[∅]T

√√(
1
√

2π
KDH 1

3
ω2 cosh2(kz)

sinh2(kd)

)2

+

(
KMω2 cosh(kz)

sinh(kd)

)2

dz (25)

For computational convenience, Equations (23) and (24) are rearranged twice via an integration of
parts and by utilizing the boundary conditions of the cantilever beam to have

[R] =
∫ L

0
EI(z)[∅]T

′′

[∅]′′dz (26)

[K1] = −T
∫ L

0
[∅]T

′

[∅]′dz (27)

Equation (20) can be rewritten as

[M]
{ ..

ỹ
}
+ [C]

{ .
ỹ
}
+ [K]

{
ỹ
}
= {P}eiωt (28)

where [K] = [R] + [K1], [M] is the generalized mass coefficient and [C] and [K] are the generalized
damping and generalized stiffness coefficients, respectively. Because the Ritz vectors are generally
different from the natural modes, [M], [C] and [K] are not diagonal matrices. Since the generalized
load {P}eiωt on the right side of Equation (28) is expressed as a harmonic excitation, the solution can be
presented in the following form: {

ỹ(t)
}
= (

{
ỹr

}
+ i

{
ỹi
}
)eiωt (29)

where the subscripts r and i denote the real and imaginary parts of the complex values, respectively.
Substituting Equation (29) into Equation (28) and separately collecting the terms in the real and
imaginary parts of the equation, we have

[E]
{
ỹr

}
+ [D]

{
ỹi
}
= {Pr} (30)

− [D]
{
ỹr

}
+ [E]

{
ỹi
}
= {Pi} (31)
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where
[E] = [K] −ω2[M], [D] = −ε[K] (32)

in which ε is the damping coefficient. Once
{̃
yr

}
and

{̃
yi

}
are determined, the displacement w(z, t) can

be computed according to Equations (19) and (29). The PSD can then be evaluated by

Sww(z,ω) =
∣∣∣w(z, t)

∣∣∣2, SMM(z,ω) =
∣∣∣M(z, t)

∣∣∣2 (33)

After the PSD of the structural response, denoted as Sr(ω), is determined, the associated spectral
moments can be readily obtained. The zeroth moment and the second moment are the most useful
ones and they are

λ0,r = σ2
r =

+∞∫
0

Sr(ω)dω (34)

λ2,r =

+∞∫
0

ω2Sr(ω)dω (35)

4. Case Study

4.1. Natural Vibration Characteristics

A three-deck offshore jacket platform was selected as a test structure to demonstrate the proposed
calculation procedure. Simulations of a three-dimensional FEM model set up for the three-deck offshore
jacket platform were also carried out to generate results for comparisons. The relevant geometries and
material properties of the structure are given as follows. The total height of the platform L = 68 m and
the water depth was 23 m. The jacket platform was 38 m high, 48× 20 m at the base and 48 × 14 m at the
top. The inclination of six main tubular members was set at a slope of 10:1 and the sectional dimension
was φ1333 × 19 mm. Twelve braces with a φ762 × 16 mm section at the base and φ610 × 13 mm at
the top were used. The mass of the three decks, from lower to upper, were 93, 267 and 1231 tons,
respectively. All structural members were made of steel with a mass density of ρ = 7800 kg/m3,
Young’s modulus of E = 210 GPa and Poisson’s ratio of υ = 0.3.

A FEM model was established as shown in Figure 2. The entire platform was modeled as a
plate–girder composite structure where the decks and other platform components were modeled as
shell elements and the frame and jacket were set up as beam elements using the software ANSYS
(USA). The element numbers are tabulated in Table 1. The mesh size was 0.25 m.

Table 1. Element type and element number.

Element Type Area Element Beam Element Mass Element Node

Element No. 35,152 32,806 2308 47,420

The pile group effects between the adjacent legs were neglected, as the spacing between the jacket
legs was far larger than 5~10 times that of the diameter of the legs. The impact of added mass was
considered and applied to the corresponding node on the underwater segment of the beam element.
The platform model was assumed to be fixed at end points of the piles that were below the bed soil
surface at a depth six times the diameter of the leg. Figure 3 shows the first-order natural frequency of
the platform obtained using the FEM model.

To carry out the proposed approach, the 3-D platform mentioned above was simplified as a
cantilever beam model. The inertia moment I(z) = 55-z and density ρ = 7800 kg/m3. Assuming water
was attached to the structure uniformly, the sectional mass per unit height was ρA(z) = 15545-91z.
The natural frequencies of the simplified model with (case 1) and without (case 2) shear effects were
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calculated and compared with those obtained with the 3-D FEM model in Table 2. It can be seen from
Table 1 that the frequency results from the simplified model closely match those from the 3-D FEM
model. It is concluded that the accuracy of the results obtained using the present simplified model
meet the requirements of an initial assessment of the structure in the preliminary design stage.
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Table 2. Comparisons of natural frequencies.

Cases Mode Shape 3-D FEM Model (Hz) Simplified Model (Hz)

1 Y-direction 0.73 0.83
2 Y-direction 2.45 2.63

4.2. Random Responses

In this case, the P-M spectrum was used and va19.5 = 16.24 m/s. Accordingly, the significant height
was calculated as H1/3 = 5.63 m by means of conversion. A q-dimensional Ritz vector is defined as
R1(q) =

[
η2, η3, . . . , ηq+1

]
, in which η = z/L. Apparently, the elements in the Ritz vector are linearly

independent and satisfy the geometric boundary conditions. In this sample calculation, ε = 0.05 and
q = 3. Figure 4 shows the PSD of jacket-top displacement and the bending moment of the jacket at the
mud line. Here, the red line represents the results obtained using a finite element model, while the black
line denotes the results obtained using the proposed simplified method. Table 3 lists the corresponding
variances σ2

r and second spectral moments λ2,r that were obtained from the FEM model and with the
use of the proposed simplified method. Table 4 lists the extremums of jacket-top displacement and the
number of occurrences when a wave lasted for 60 seconds.
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mud line.

Table 3. Several spectral moments.

Item
Jacket-Top Displacement (m2s) Bending Moment of Jacket at Mud Line (N2m2s)

Simplified Method FEM Simplified Method FEM

σ2
r 7.15 × 10−10 7.23 × 10−10 2.12 × 1011 2.20 × 1011

λ2,r 7.49 × 10−10 7.60 × 10−10 1.92 × 1011 2.01 × 1011

Table 4. Extremums for the jacket-top displacement.

Wave Duration(s)
Simplified Method FEM

Max. Displacement
(mm)

Number of
Occurrences

Max. Displacement
(mm)

Number of
Occurrences

60 14.794 9 14.787 9

With reference to the PSD of jacket-top displacement and PSD of the bending moment at the mud
line, as shown in Figure 4, the largest jacket-top displacement obtained using FEM was 1.89 × 10−9 m2s
and was observed at 0.52 rad/s. Meanwhile, as determined using the proposed simplified method it
was 1.80 × 10−9 m2s and observed at 0.50 rad/s. Similarly, the largest PSD of the bending moment at
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the mud line obtained using the FEM was 5.45 × 1011 N2m2s at a frequency of 0.52 rad/s, while for the
simplified method it was 5.42 × 1011 N2m2s at 0.50 rad/s. It may be noted that the largest PSD and
corresponding frequency calculated using the simplified method were marginally lower than those
calculated using FEM. Moreover, the two figures by FEM and the simplified method showed not only
very similar trends, but the peak values of PSDs were also in agreement with each other. Hence, it may
be concluded that the proposed simplified model is able to provide a reliable initial assessment of the
structure in the preliminary design stage.

Regarding spectral moments, it can be seen in Table 2 that the results obtained by using the
simplified method were also in agreement with those of FEM, although the results contained very
limited differences. The spectral moments were predicted with reasonable accuracy, and met the
required engineering precision. Considering the complexity of the jacket platform, the simplified model
proposed in this paper could be a practical analysis tool for offshore engineering design practices.

5. Conclusions

Based on the findings of the investigation on a three-deck jacket platform using the proposed
simplified approach, the following conclusions can be drawn:

(1) The proposed simplified method could be used successfully to perform an analysis of frequency
domain responses for a jacket platform under random wave loads. The findings show that the simplified
method, when compared with a comprehensive numerical model, can provide the reliable and accurate
predictions required by the engineering profession. The simplified method provides a simple, effective
and convenient frequency domain dynamic analysis for jacket offshore platforms. It is suggested that
the method be used in the engineering practice with results adapted to standard or design guidelines.

(2) The pseudo-excitation method combined with the classical Ritz method was demonstrated
to be able to determine the frequency domain responses of structures under random wave loads.
The proposed approach produced highly accurate results and was computationally efficient. Under
structural dynamic analysis, the normal modes of structures do not need to be calculated, which is a
computational advantage and is very convenient for analyzing complex structures.
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