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Abstract: This study addresses the problem of age determination of the southern king crab (Lithodes
santolla). Given that recapture is difficult for this species and, thus, age cannot be directly determined
with the help of the annual marks on the shell, the von Bertalanffy growth function (vBGF) cannot
be used to directly model length-frequency data (LFD). To determine age classes, some researchers
have proposed using the MIX algorithm that consists of sampling realization of a finite mixture of
normal (FMN) distributions for each LFD. However, normality assumption in age-length data has
been questioned in several works related to fish growth analysis. For this study, we considered the
biological information of the southern king crab for the period 2007–2015 and localization between
50◦06′–53◦15′ S and 76◦36′–72◦18′ W. We assumed that LFD could be modelled by the novel class of
finite mixture of skew-t (FMST). Assigned age classes were used to estimate the vBGF parameters.
The estimated vBGF parameters were L∞ = 176.756 cm, K = 0.151 year−1, t0 = −1.678 year for
males, and L∞ = 134.799 cm, K = 0.220 year−1, t0 = −1.302 year for females. This study concludes
that (a) FMST modal decomposition can detect a group of younger individuals at age 2, given that
those individuals have LFD with a left heavy-tail and asymmetry; (b) FMST produces a better
representation of LFD than the FMN model; (c) males have bigger L∞ but grow slower than females;
and (d) as expected, a high correlation exists among the vBGF estimates.

Keywords: finite mixture; skew-t distribution; southern king crab; length-frequency data;
von Bertalanffy

1. Introduction

Exploitation of the southern king crab started in 1928 off the west coast of Tierra del Fuego (austral
Chilean waters) [1]. This fishery is crucial for the local economy as it represents the main fishing
activity (80% of all fisheries) in the Magallanes Region [2]. However, catches have also been reported
from the city of Valdivia in the Los Ríos region (50◦06′–55◦59′ S). The Servicio Nacional de Pesca
(Chilean National Fishery Service) reported 6490 tons of landings during 2012, the highest value of
landings in southern king crab fishery history [3].

Female southern king crabs reach maturity at 86.51 mm at L50 (50% of female population).
Vinuesa et al. [4] described that length-frequency data (LFD) aspects, such as molt frequency, decrease
with age. Female southern king crabs molt six to seven times in the first year, four to five times in the
second, and three times in their third year. From then on, females molt annually and start channeling
energy toward gonad development. Estimates of von Bertalanffy [5] growth parameters and age
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composition for the southern king crab are a key issue in population dynamic models used for stock
assessment [6]. Southern king crabs grow mainly through the increment in size per molt and molting
frequency over a period of time. Growth models consider those discontinuities in the growth process.
Annual marked tagging is possible for this species; however, recapture proves difficult.

Many researchers found that growth models such as the von Bertalanffy growth function
(vBGF) can be used to model LFD, especially for species that do not directly show ageing with
annual marks on their shell. An early work by Roa and Tapia [7] considers the MIX algorithm [8],
which consists of sampling realization of a mixture of probability distributions for each red squat
lobster Pleuroncodes monodon LFD and the visual identification of modes. Parameter estimates of
each mixture are obtained via maximum likelihood and assuming normally distributed year classes.
Given the assigned groups, it is possible to consider a respective age for each mode and, therefore,
an age group for each carapace-length distribution. This way, a growth function is fitted to this set of
observed carapace length by unobserved age, being, for example, the von Bertalanffy [5], Richards [9],
or Schnute functions [10,11]. MULTIFAN is a more sophisticated method than MIX because the mean
of assumed normal distribution is obtained directly from vBGF estimates, creating a more realistic
log likelihood from LFD [12]. MULTIFAN also identifies the ages as a nonobservable variable derived
from the classification of a set of groups or modes from a typical mixture of normal densities. The
number of mixture-components can be detected via the information criteria for model selection, such
as Akaike’s (AIC) or Bayesian (BIC) information criteria, or given by expert criteria [13].

Roa-Ureta [11] considers a more robust estimation method with multivariate LFD analysis.
Beyond that, MULTIFAN does not accomplish regularity conditions for a likelihood ratio test and,
because parameters are uncorrelated, Roa-Ureta’s method accounts for the complete multivariate
structure by considering each vector of mean-length estimates from each LFD set as the unitary
observation value in Schnute’s growth model, a more general interpretation of red squat lobster LFD.
More recently, Yáñez et al. [3] studied the southern king crab Lithodes santolla LFD using methods of
modal decomposition of LFD described in Reference [14]. Both assumed that each modal component
corresponds to one age group, and its identification is based on Finite Mixture of Normal (FMN)
densities. In addition, they assumed different initial and fixed L∞ parameters, and then estimated K
and L0 (the first observed carapace length in LFD). The best model was chosen according to AIC criteria.

However, normality assumption in age-length data has also been discussed in several
investigations related to fish growth analysis. For example, Contreras-Reyes et al. [15],
López Quintero et al. [16], and Contreras-Reyes et al. [17] considered skewed and heavy-tailed
errors in the vBGF through the presence of extreme observations in southern blue whiting
(Micromesistius australis) and pink cusk eel (Genypterus blacodes). See references therein for more
examples of the use of skewed and heavy-tailed distributions in the vBGF model errors. To find the
Kaplan–Meier survival estimates and growth in three pelagic larval stages from three populations in
the Northwest Atlantic, Ouellet et al. [18] considers the skew-normal (SN) [19] distribution to account
for asymmetry in survival data, where they detect higher values toward higher temperatures.

Typical distribution of carapace length for each cohort at recruitment is assumed normal
by researchers, so the mixture models for each LFD are considered normal mixture-distributed,
where each age component is an annual cohort [7,11]. In this paper, we consider the proposed
methodology [11] assuming that LFD could be modeled by the novel class of a finite mixture of
skew-t (FMST) [20]. Both classes provide some advantages over the FMN model. For instance, normal
components can lead to wrong classification because they allow an arbitrarily close modeling of any
distribution by increasing the number of groups of carapace lengths represented by asymmetrically
distributed LFD [20]. The FMST components capture both skewness and extreme carapace lengths
due to their flexibility. Thus, this work considers the scale mixtures of SN (SMSN) family distributions
oriented to finite mixtures, which includes as a particular case the FMST model. This model is used
first to determine modes of southern king crab LFD on each year sample, and for individuals classified
by sex (males and females). In a second stage, age determination using Roa-Ureta’s procedure is
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considered based on previously obtained modes. In a third stage, vBGF is used for the age-length
modeling determined in the second stage.

2. Methods

A finite-mixture model is a combination of two or more probability density functions (pdf),
allowing to approximate any arbitrary distribution with the mixture of the most used normal
ones [21]. This capability has been used in several applications in fishery science, as well as catch-rate
standardization [21] and age-length analysis [22]. For the latter, the number of year classes composing
each mixture of normal distribution is unknown given that age is a latent variable. This issue is treated
as a model identification problem, where selection criteria are commonly used for this effect [11].

Regarding model selection, AIC and BIC criteria are used for selection in age-length
models [11,15,22]. BIC presents some advantages over AIC criteria: (a) BIC is more appropriate
for large samples because it penalizes the log-likelihood function using sample size and number of
parameters, and (b) AIC is less penalized by the number of parameters (parsimonious models) than
BIC [15].

Below, we propose a mixture of flexible models to describe the LFD and determine the age of
southern king crabs (Lithodes santolla) off Chile.

2.1. Finite Mixtures of Flexible Distributions

The pdf of an m-component mixture model with parameter vector set θ is

f (y; θ, ß) =
m

∑
i=1

πi f (y; θi), (1)

where ß = (π1, . . . , πm) is a vector of mixing weights πi, with πi ≥ 0, ∑m
i=1 πi = 1, and f (y; θi)

a particular pdf depending on a flexibility degree that could be selected. In a general context,
Basso et al. [23] considered SMSN distributions as a robust estimation method of finite components.
Random variable Y follows the SMSN family if it can be written as

Y d
= µ + κ1/2(U)Z, (2)

where µ is a location parameter, κ(·) a positive weight function, U a random variable with distribution
function H(·; ν) and density h(·; ν), ν is a scalar or vector parameter indexing the distribution of U
and Z ∼ SN(0, σ2, η). From (2), the pdf of Y conditional on U = u is Y|U = u ∼ SN(µ, κ(u)σ2, η) and
the density of Y, denoted as Y ∼ SMSN(µ, σ2, η, H), is

f (y) = 2
∫ ∞

0
φ(y; µ, κ(u)σ2)Φ[κ(u)−1/2ησ−1(y− µ)]dH(u; ν). (3)

The generalization of skewed distributions (3) has been used in age-length modeling by
Contreras-Reyes et al. [15] and López Quintero et al. [16], mainly through the following:

(a) when U ∼ Gamma(ν/2, ν/2) in (3), ν > 0, we obtain the skew-t distribution (ST) [24] denoted by
Z ∼ ST(ξ, σ2, η, ν) and with the pdf given by

f (z) =
2
σ

t(z0; ν)T

(
ηz0

√
ν + 1
ν + z2

0
; ν + 1

)
, (4)

where z0 = (z − ξ)/σ, t(z0; ν) and T(z0; ν) denote the pdf and cumulative density function
(cdf) of the standard t distribution with ν degrees of freedom, respectively. ST distribution was
introduced to achieve a higher degree of excess kurtosis produced by extreme observations.
ST distribution converges to SN distribution as ν→ ∞ and is the t distribution when η = 0;
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(b) The stochastic representation (2) of SMSN allows to determine the exact density of conditional
distributions necessary for the ECME algorithm. That is, using Lemma 2 of Basso et al. [23],
variable Y in (2) is represented conveniently by a hierarchical representation and, in this form,
makes it possible to obtain the conditional maximization (CM) steps.

Considering the finite mixture of distributions (1) of SMSN distributions (FM-SMSN), we can
determine the FM-SMSN model by using density f (y) for f (y; θi), with θi = (ξi, σ2

i , ηi, ν), i = 1, . . . , m,
concerning the parameter ν of the mixing distribution H(·; ν), taking into account that ν is assumed for
all components i = 1, . . . , m for computational convenience. Following Shertzer et al. [25], to capture
the group membership of southern king crab i, we considered latent indicator variable Zi such that
P(Zi = 1) = 1− P(Zi = 0) = πi, i = 1, . . . , m, ∑m

i=1 Zi = 1 and Y|Zi = 1 ∼ SMSN(θi). It can be noted
that Z = (Z1, . . . , Zm) follows a multinomial distribution with pdf

f (z) = πz1
1 πz2

2 · · · (1−
m−1

∑
i=1

π
zi
i )

zm ,

which is denoted by Z ∼ M(1; π1, . . . , πm). As is described in (c), Z appears in the hierarchical
representation using Lemma 2 of Basso et al. [23] for parameter estimation via the ECME algorithm.

In this paper, we considered the FMST distribution as a robust method for components estimation
and its log-likelihood function that generalized the information proportioned by FMN and FMSN
distributions. In (1), we considered the parameter vector set θ = (ξ, Σ, η, ν), where ξ, Σ and η are
defined as in a); ν = (ν1, . . . , νm) is a set of m degree of freedom parameters, and f (y; θi) is defined as
in (4) with θi = (ξi, σ2

i , ηi, ν), i = 1, . . . , m.

2.2. Growth Modeling

The vBGF model [5] explains the carapace length of one individual in terms of its age by means
of nonlinear function

L(x) = L∞(1− e−K(x−t0)), (5)

which also depends on three parameters: L∞ (cm), the asymptotic carapace length of the species; K
(year−1), the growth rate coefficient; and t0 (year)—age at zero carapace length. To fit Model (5) from
an empirical dataset, (yi, xi), i = 1, ..., n, the vBGF model can be described in terms of an additive
nonlinear regression, yi = Li + εi, where yi is the ith observed carapace length at age xi, Li = L(xi),
and εi are independent and identically distributed (iid) N(0, σ2) random errors [26].

The vBGF parameters are estimated from an observed age-length pair (xi, L(xi)), i = 1, . . . , n,
where L(xi) is the ith observed carapace length at age xi.

2.3. Implementation

Methods described in Sections 2.1 and 2.2 are implemented as follows:

1. Modal decomposition. The FMST model was carried out for southern king crab LFD with ν

degrees of freedom and m components by zone, year, and sex. For example, degrees of freedom
ν = 5 indicate a high presence of heavy-tails in LFD [15,16]. The order of m depends on the
reported BIC for each combination, where the ’best’ model for each m is selected through the
smallest BIC.

2. Age-class assignment. From Step 1, take into account that m modes provide m modes used for
age-class determination, which is at least m. Considering the classified carapace lengths, a bar
chart of means is built where gray and white colors alternate and represent classified age classes.
The cluster means are ordered and grouped into cohorts, so that no year is repeated within each
group. “Premise II” of Reference [11] is considered as a criterion to determine the cohort point
between age classes; textually, this is: strong assumption that each year no more than one cohort (means
that it is not possible that two mean carapace lengths with the same year index fall into the same
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age class) and no less than one cohort (means that it is not possible that two consecutive mean
carapace lengths with the same year index fall into two nonconsecutive age classes) enters the
population. Given that age classes 0 and 1 include individuals with molt frequency decreasing
with age (six to seven molts in the first and four to five in the second year), we opted to label the
first group with Year ’2’ and then estimate the vBGF parameters.

3. vBGF model. Given the estimated year in Step 2, the formed age-length data serve to evaluate
the vBGF (5) growth function.

3. Computational Implementation

3.1. Data

The data analyzed in this study correspond to biological information of the southern king crab for
the 2007–2015 period and localization 50◦06′–53◦15′ S and 76◦36′–72◦18′ W. Observations localized
between 54◦13′–55◦59′ S and 69◦40′–66◦41′ W for the 2007–2010 period were not considered because
they present too few individuals and years (see Table 1). Figure 1 shows the spatial distribution of
both groups. Northern individuals are concentrated off the city of Puerto Natales, while southern
individuals are concentrated off the town of Cabo de Hornos (on the border with Ushuaia, Argentina).
The individuals were differentiated by sex (males and females), and, for each individual, carapace
lengths from 14 mm (males) to 212 mm (females) were considered.

Figure 1. Study area restricted to Chile (50◦06′–55◦59′ S, 76◦36′–66◦41′ W). Red and green
points correspond to northern (50◦06′–53◦15′S, 76◦36′–72◦18′ W) and southern (54◦13′–55◦59′ S,
69◦40′–66◦41′ W) individuals, respectively.



J. Mar. Sci. Eng. 2018, 6, 157 6 of 16

Table 1. Descriptive statistics for the southern king crab grouped by sex and year. LQ and UQ stand
for Lower Quantile and Upper Quantile, respectively.

Sex Year Min. LQ Median Mean UQ Max. SD n

Males 2007 34 111 122 120.1 132 176 17.86 1734
2008 39 112 122 121.340 132 193 18.567 4983
2009 31 113 125 123.604 136 177 18.158 5759
2010 39 104 116 115.230 127 171 18.261 3424
2011 14 106 121 118.791 134 175 21.725 6282
2012 60 108 119 116.589 128 170 16.636 5453
2013 34 113 124 121.719 134 179 18.437 4256
2014 39 115 126 125.210 136 182 17.499 80,612
2015 58 107 116 115.510 126 171 16.132 13,683

Females 2007 35 100 112 110.730 122 162 16.426 1586
2008 35 104 113 112.751 122 165 15.365 5883
2009 33 105 113 113.319 121 168 14.105 7717
2010 46 98 108 107.192 116 165 15.137 3273
2011 30 94 105 105.844 117 165 17.602 7366
2012 61 93 101 100.306 108 152 11.554 5530
2013 43 102 110 109.949 118 167 14.113 3508
2014 38 104 112 111.552 120 212 14.364 59,090
2015 58 97 104 103.903 112 144 11.156 22,852

3.2. Computational Aspects

All models and summaries in this article were estimated with free software environment for
statistical computing and graphics R [27]. All computational estimations was made under Linux
v. 4.15 and MacOS v. 10.13 operating systems. Particularly, to estimate the mixture of distributions,
we used the mixsmsn package, developed by Prates et al. [28]. The mixsmsn package considers the
Expectation-Maximization algorithm [29] for FMST modal decomposition. For the vBGF estimates and
initial values, the nls and FSA packages were used, respectively. More details appear in Reference [30].

4. Results

Table 1 provides descriptive statistics by sex and year. Included are minimum, lower quantile,
median, mode, mean, upper quantile, maximum, and standard deviations. Our main interest was on
the growth-pattern differences between males and females for northern individuals, as explained in
Section 3.1. At first sight, males are larger than females considering the range of their carapace lengths.

In this section, the methodology described in Section 2 is applied to southern king crab LFD
by year and sex. As each step is done for each combination, some verbose repetition is anticipated in
the subsections. In addition, FMST models were ran with m = 2, . . . , 9 (the most simple case of m = 1
was omitted) and also the respective BIC for each combination.

4.1. Males

BIC criteria for the FMST models provided two means for 2007; three means for 2010, 2012, and
2013; five means for 2008, 2009, and 2011; six means for 2014, and eight means for 2015 (Table 2). The
BIC values of FMST were also smaller than FMN ones for all years. We could observe that the smallest
and largest means were 58.301 and 152.129 mm for 2009 and 2014, respectively (Table 3). In 2009, the
smallest mean was provided, which produces a left heavy-tail (Figure 2). This mean represents a mode
of male juvenile southern king crab from the northern group that would be helpful in the assignment
of the first age class. In general, the FMST model provides good fits of annual LFD and well-separated
cohort groups (see panels of Figure 2). Results of 10 assigned age classes are provided in the bar chart
of Figure 3a.
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Table 2. Bayesian information criterion (BIC) values of the finite mixture of normal (FMN) and finite mixture of skew (FMST) fitted models (m = 2, . . . , 9) for each
specification (sex and year). The smallest values for each model and year are marked in bold.

Number of Modes (m)

Sex Model Year 2 3 4 5 6 7 8 9

Males FMN 2007 21,660.32 25,110.58 28,584.18 32,027.82 35,511.00 38,942.26 42,404.44 45,867.89
2008 62,812.42 72,732.02 82,687.67 92,642.98 102,607.25 112,582.18 122,534.11 132,498.96
2009 72,131.15 83,620.96 95,128.46 106,629.39 118,143.52 129,656.02 141,144.20 152,665.18
2010 43,261.16 50,089.41 56,927.93 63,774.23 70,585.84 77,434.39 84,261.89 91,108.33
2011 81,316.49 93,847.13 106,403.04 118,966.49 131,524.34 144,081.13 156,638.06 169,188.31
2012 67,406.53 78,299.57 89,191.86 100,106.07 111,008.67 121,889.19 132,817.15 143,720.88
2013 53,475.91 61,958.09 70,463.77 78,974.94 87,477.20 95,984.53 104,494.43 113,008.14
2014 1,010,474.45 1,171,030.24 1,331,999.31 1,493,074.55 1,654,157.23 1,815,515.11 1,976,135.29 2,137,650.73
2015 169,223.51 196,429.18 223,791.31 251,162.38 278,521.06 305,856.42 332,855.51 360,116.56

FMST 2007 13,364.51 13,371.75 13,375.64 14,843.43 14,878.02 14,892.64 14,910.46 14,932.68
2008 48,624.99 48,585.88 48,595.47 42,986.84 43,009.54 43,059.00 43,061.88 43,096.80
2009 62,001.87 61,869.83 61,871.81 49,233.68 49,267.38 49,274.14 49,321.24 49,333.27
2010 27,032.18 27,020.63 27,026.80 29,699.00 29,729.53 29,749.19 29,785.83 29,779.53
2011 63,056.19 63,046.12 62,964.81 56,325.63 56,358.11 56,391.05 56,417.41 56,439.62
2012 42,731.45 42,730.32 42,738.57 45,750.64 45,783.98 45,817.96 45,845.73 45,874.98
2013 28,366.28 28,334.04 28,340.50 36,570.12 36,607.13 36,640.77 36,676.77 36,698.06
2014 687,830.5 687,524.6 687,307.9 687,305.38 687,289.56 687,347.91 687,457.90 687,328.14
2015 114,496.6 114,461.6 114,494.8 114,453.80 114,554.55 114,353.79 114,252.30 11,4437.46

Females FMN 2007 19,713.96 22,852.88 26,023.90 29,192.11 32,359.81 35,532.03 38,696.17 41,875.65
2008 72,139.24 83,843.33 95,605.08 107,358.69 119,124.74 130,859.57 142,656.47 154,376.82
2009 92,895.77 108,137.59 123,550.34 138,974.63 154,408.95 169,848.59 185,267.58 200,701.04
2010 40,113.74 46,619.98 53,153.97 59,699.58 66,235.46 72,768.60 79,308.71 85,864.49
2011 92,517.32 107,138.55 121,826.14 136,551.47 151,272.19 166,021.39 180,718.50 195,463.84
2012 64,868.23 75,887.82 86,941.12 97,998.73 109,057.37 120,093.74 131,144.66 142,200.95
2013 42,350.73 49,353.13 56,369.57 63,378.44 70,397.06 77,409.93 844,25.82 91,438.30
2014 716,320.29 834,395.94 951,934.44 1,070,071.78 1,188,213.60 1,306,378.32 1,424,541.82 1,542,624.05
2015 266,204.82 311,746.05 357,317.35 403,020.59 448,584.81 494,297.28 539,896.96 585,635.92

FMST 2007 13,402.09 13,430.81 13,456.18 13,478.17 13,504.66 13,532.48 13,553.48 13,570.40
2008 48,671.75 48,659.36 48,695.67 48,725.50 48,763.35 48,781.16 48,803.79 48,834.31
2009 62,050.53 61,946.29 61,976.07 62,004.46 62,041.64 62,066.87 62,104.48 61,535.19
2010 27,074.84 27,087.65 27,118.21 27,143.20 27,167.77 27,189.12 27,213.60 27,237.89
2011 63,104.52 63,122.07 63,068.38 63,074.54 63,102.86 63,149.36 63,181.02 63,210.95
2012 42,777.77 42,803.12 42,837.84 42,876.89 42,906.37 42,925.71 42,971.24 42,985.32
2013 28,409.42 28,401.83 28,432.94 28,465.27 28,492.60 28,527.44 28,556.07 28,583.88
2014 480,353.4 480,016.9 480,040.3 479,967.99 479,778.60 479,668.53 479,583.39 479,593.39
2015 174,927.2 174,939.8 174,752.3 174,863.17 174,746.23 174,709.63 174,691.60 174,687.12
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Table 3. Estimate modes for the southern king crab using the FMST model for each sex and year.

Sex Year µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

Males 2007 117.098 120.580 - - - - - - -
2008 79.255 103.574 121.668 126.899 142.613 - - - -
2009 58.301 102.911 115.216 122.973 138.269 - - - -
2010 101.505 119.793 125.396 - - - - - -
2011 81.542 100.494 116.096 123.987 140.691 - - - -
2012 91.457 121.495 125.046 - - - - - -
2013 94.073 126.019 128.364 - - - - - -
2014 95.159 115.189 126.915 131.681 142.104 152.129 - - -
2015 76.686 82.263 98.657 112.971 119.165 130.680 141.562 149.571 -

Females 2007 106.905 115.245 - - - - - - -
2008 103.470 116.723 123.758 - - - - - -
2009 60.367 63.205 81.713 93.794 100.643 107.161 111.463 121.416 132.965
2010 98.687 106.437 125.761 - - - - - -
2011 83.598 101.347 110.181 127.319 - - - - -
2012 95.546 99.692 - - - - - - -
2013 104.431 106.143 121.669 - - - - - -
2014 83.145 94.126 101.085 107.903 113.760 116.014 125.594 137.902 -
2015 75.346 86.977 97.093 103.001 107.625 109.844 112.652 115.984 119.786

Assigned age classes are posteriorly used as age-length data for vBGF modeling (Table 4,
Figure 3b). We observed that all vBGF parameters were significant and correlated with L∞, and
K is the highest among the three vBGF parameters. For all cases, high and negative correlations
between L∞ and K, and L∞ and t0, respectively, and high and positive correlation between K and
t0. We can see that t0 is negative and close to −1.7, becoming relevant for younger individuals, as
illustrated in Figure 3b. The distance of modes related to the third is more pronounced than in the
fourth age class, except for the largest mean (81.542 mm; see also Figure 3a). The means of the oldest,
the 10th, age class are close to the previous, the ninth, age class. In general, vBGF fitted in the middle of
all modes in each age class (Figure 3b), as observed in the residuals plot of Figure 3c. Generally, residual
values are concentrated at approximately 3 mm and indicate a constant trend, thereby suggesting
uncorrelated observations.

Table 4. Von Bertalanffy growth function (vBGF) estimates, standard error (SE), Student (t) value,
and p-value, Pr(> |t|), for the southern king crab for each sex. Estimated correlations between vBGF
parameters are in the last three columns.

Sex Parameter Estimate SE t Pr(> |t|) L∞ K t0

Males L∞ 176.756 12.865 13.739 <0.001 1.000 - -
K 0.151 0.032 4.773 <0.001 −0.985 1.000 -
t0 −1.678 0.519 −3.231 0.002 −0.897 0.956 1.000

Females L∞ 134.799 4.065 33.162 <0.001 1.000 - -
K 0.220 0.031 7.029 <0.001 −0.950 1.000 -
t0 −1.302 0.442 −2.946 0.005 −0.830 0.952 1.000
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Figure 2. FMST fits for males—northern length-frequency data (LFD) datasets and years 2007–2015.
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Figure 3. (a) Barplot of assigned age from FMST modal decomposition, (b) vBGF model fits for
estimated age-length, and (c) its respective absolute residuals for male southern king crabs.

4.2. Females

In Table 3, we observed that the FMST model provides two means for 2007 and 2012, three means
for 2008, 2010, and 2013, four means for 2011, eight for 2014, and nine means for 2015; all obtained
considering BIC criteria (Table 2). For males, the BIC values of FMST were smaller than those obtained
by the FMN model and for all years. We could observe that the smallest and largest means were 60.367
and 137.902 mm for 2009 and 2014, respectively. In 2009, the smallest mean was provided, which
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produces a left heavy-tail (Figure 4). This mean represents a mode of female juvenile southern king
crab that help in the assignment of the first age class. In general, the FMST model provides good fits of
annual LFD and well-separated cohort groups (see panels of Figure 4). Results of assigned age class
are provided in the bar chart in Figure 5a. Therefore, LFD were assigned 11 age classes, where the
ninth and 11th age classes (oldest individuals) had the smallest number of modes. This information is
used as age-length data for vBGF modeling in Figure 5b.

Carapace length (mm)

D
en

si
ty

40 60 80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0

2007

Carapace length (mm)

D
en

si
ty

60 80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2010

Carapace length (mm)

D
en

si
ty

40 60 80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2013

Carapace length (mm)

D
en

si
ty

40 60 80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2008

Carapace length (mm)

D
en

si
ty

40 60 80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0

2011

Carapace length (mm)

D
en

si
ty

50 100 150 200

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2014

Carapace length (mm)

D
en

si
ty

40 60 80 100 120 140 160

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2009

Carapace length (mm)

D
en

si
ty

60 80 100 120 140

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2012

Carapace length (mm)

D
en

si
ty

60 80 100 120 140

0.
00

0.
02

0.
04

0.
06

2015

Figure 4. FMST fits for Females—northern LFD datasets and years 2007–2015.

vBGF estimates appear in Table 4 and are all significant. For males, high and negative correlations
between L∞ and K, and L∞ and t0, and high and positive correlation between K and t0. We can see
that t0 is negative and close to −1, taking relevance for younger female individuals (Figure 5b). The
vBGF model fit is illustrated in Figure 5b where a clear distance of modes is observed for the third with
respect to the fourth age class. The mode of the oldest, the 11th, age class is significantly distant from
the previous, the 10th, age class. In contrast to the vBGF fit for males, the vBGF in females was not
fitted in the middle of all modes in each age class (seventh–ninth and 11th). However, as can be seen in
the residuals plot in Figure 5c, residual values are concentrated at approximately 3 mm and generally
indicate a constant trend and uncorrelated observations, except for younger individuals (second age
class) and older individuals (7–11th age classes).
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Figure 5. (a) Barplot of assigned age from FMST modal decomposition, (b) vBGF model fits for
estimated age-length, and (c) its respective absolute residuals for female southern king crabs.

5. Discussion

In this study, we addressed the age determination and flexible mixture modeling for the southern
king crab off southern Chile. This study mainly suggests that (a) FMST modal decomposition can
detect a group of younger individuals at age 2, given that those individuals have LFD with a left
heavy-tail and asymmetry; (b) based on BIC values, FMST produces a better representation of LFD
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than the FMN model, thus inducing more realistic vBGF estimates; (c) males are larger (biggest L∞)
but grow slower than females; and (d) as expected, high correlation exists among the vBGF estimates.

High molting frequency found in age group 2 explains the better fit of the FMST model, while
the FMN model produces a worse fit to the LFD. In the southern king crab, females concentrate
their energy on the reproduction process instead of somatic growth (evolutionary strategy), which
explains why they grow faster than males trying to reach maturity sooner. Egg production is limited by
body size and, therefore, it is an advantage for females grow faster, reach sexually maturity/capacity,
and improve survival and competition. In addition, there is often considerable variation in molt
increment based on foraging success prior to molt, and the resulting energetic state at the time of
molt. Indeed, results assume that differences in size reflect different cohorts. However, it is entirely
possible that some of these differences reflect age-independent size variation due to differences in
molt increment. High vBGF parameter correlations, especially the negative one between L∞ and K
parameters, are in line with somatic growth and the reproductive process mentioned above.

Yáñez et al. [3] (see Table 13, p. 25 of the Appendix) presented up to 15 age classes for males
and females in 1984–1987, for 1996, and in 2007–2014; and for the northern and southern zones
(see Section 3.1). Reported vBGF estimates for males were: L̂∞ = 178.09 [169.82; 186.37] cm and
K̂ = 0.14 [0.12; 0.15] (year−1); and for females: L̂∞ = 158.95 [153.43; 164.47] cm, K̂ = 0.16 [0.15; 0.17]
(year−1). Yañez et al. considered Canales & Arana’s approach [14] having the following disadvantages:
(i) number of classes is not adequate for each combination from the data used in this work and is
arbitrary because LFD changes through the years; and (ii) it does not allow to directly determine t0

estimate, which is found by replacing L̂∞ and K̂ in vBGF but standard deviation cannot be determined.
The differences in the estimates of our study and those of Reference [3] can be interpreted in light

of our novel incorporation of a wide range of carapace lengths and a larger sample size (Table 1). The
approach developed here is more accurate in terms of error description in distribution, as we found a
greater presence of extreme values and variability of length-at-age data [15,16]. The comparison of
the growth curves by selection criteria generated different growth curves between the sexes of the
southern king crab.

For the combinations between the sexes analyzed here, we obtained good fits of vBGF on LFD.
However, for females we observed difficulty for vBGF to fit in all assigned ages. Such errors are
common; for example, Roa-Ureta [11] had problems with estimation and therefore preferred Schnute’s
curve instead of a vBGF curve. In some cases, given that the southern king crab grows quickly at first
(1–3 years) and then slowly, perhaps a more flexible growth model could be implemented to realize
change in age at maturity. Indeed, Ohnishi et al. [31] proposed a variant of vBGF by including two
additional parameters: discontinuous change in age at maturity, tm (year), and growth rate coefficient
post-age at maturity (change of growth rate), and υ (year−1), to define the function

T(t) = t− t0 −
{

0, t < tm,
υ(t− tm), t ≥ tm,

and to be inserted in (5) as L(t) = L∞(1− e−KT(t)), with t = xi (year) as the assigned age. This model
represents the time delay to attain a certain body size in t ≥ tm due to change in energy allocation.
Consequently, the growth curve becomes biphasic, combining two independent vBGFs. However,
inferential aspects must be addressed to biphasic vBGF such as maximum likelihood function and
Fisher information matrix derivation.

To determine the start of the age group, a balance was established between computational stability
for growth-function fit and LFD modes. We assumed at least two years as the start of the age group
because molt frequency is highest in this period [4]. Thereby, vBGF residuals are uncorrelated and
with a constant trend among the assigned ages.

The proposed methods for age determination in the southern king crab crucially depend on
the available LFD. In the case that all growth stages are not well-represented in the LFDs, results
of FMST modal decomposition produce a misspecification of the assigned age with respect to real
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age. The criteria used by Reference [11] to determine the cohort point between age classes are very
sensible in vBGF estimates. Depending on sample success, it is easy to consider instances where the
sample is missing a cohort representative from one or more years. In addition, vBGF estimates are
crucial for the study of stock-assessment models [2,3], but are affected by gear selectivity because it
produces censored samples when young individuals are missing. Indeed, a lack of comprehensive
age information leads to poor understanding of life history schedules, difficulty in the estimation of
vBGF parameters necessary for modeling population dynamics and uncertainty. Therefore, the natural
path for age-length modeling is direct age determination by growth band counts in the southern king
crab [32].

Our proposed method allows one to obtain an estimate of vBGF parameters from a mixture of
distributions, but further research about a direct relationship among vBGF estimates and the observed
maximum age and carapace length is necessary. Unfortunately, actual relationships are related to fish
resources [33].
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AIC Akaike’s information criterion
BIC Bayesian information criterion
CM Conditional maximization
ECME Expectation/conditional maximization either
FMN Finite mixture of normal
FMST Finite mixture of skew-t
FM-SMSN Finite mixture of scale mixtures of skew-normal
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