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Abstract: In the current article, the hydrodynamic forces of single-stepped planing hulls were
evaluated by an analytical method and compared against towing tank tests. Using the 2D + T theory,
the pressure distribution over the wedge section entering the water and the normal forces acting on
the 2D sections have been computed. By integrating the 2D sectional normal forces over the entire
wetted length of the vessel, the lift force acting on it has been obtained. Using lift forces as well
as the consequence pitch moment, the equilibrium condition for the single-stepped planing hull
is found and then resistance, dynamic trim, and the wetted surface are computed. The obtained
hydrodynamic results have been compared against the experimental data and it has been observed
that the presented mathematical model has reasonable accuracy, in particular, up to Froude number
2.0. Furthermore, this mathematical model can be a useful and fast tool for the stepped hull designers
in the early design stage in order to compare the different hull configurations. It should also be noted
that the mathematical model has been developed in such a way that it has the potential to model the
sweep-back step and transverse the vertical motions of single-stepped planing hulls in future studies.

Keywords: single-stepped planing hulls; symmetric 2D + T theory; hydrodynamic forces; towing
tank tests

1. Introduction

Over time, researchers in naval architecture developed different methods to reduce the frictional
resistance of planing hulls. Adding a transverse step in a high-speed monohull had been introduced
as an appropriate method for reducing drag, for example, Step has a special geometry and enjoys
improved hydrodynamic performance, i.e., resistance, dynamic stability, and seakeeping. Step can
create a significant reduction of a dynamic wetted surface and of the dynamic trim angle during
high-speed forward motion and thus achieve a reduction of resistance at high speed. There are
four options for the hydrodynamic analysis of a stepped hull: the towing tank test [1–3], empirical
method [4,5], analytical methods [6], and numerical simulation [7,8].

The performance prediction of a planing hull has long been used. For example, von Karman [9]
and Wagner [10] modeled the wedge water entry as a planing section and computed the pressure
distribution over the wedge surface. Wagner and von Karman initiated extensive research works
in the Langley Memorial Aeronautical Laboratory and Davidson Laboratory in the United States.
These studies were extended after the Second World War and continued until 1960. The authors
conducted extensive sets of experiments and presented various empirical formulas for the prediction
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of planing hull characteristics. However, Savitsky [4] developed a mathematical model for the
performance prediction of planing hulls. His model was able to predict lift, drag, wetted area, and the
center of pressure of non-stepped planing hulls in calm waters. The Savitsky model was based on
formulas derived from the aforementioned experiments.

The basis of the Savitsky method created an incentive for other researchers to expand the empirical
formulas to calculate the lifting forces and modify the Savitsky method for stepped planing hulls.
Svahn [11] first developed a mathematical model for the performance prediction of a stepped hull.
His model can only simulate a one-stepped planing hull and uses Savitsky and Morabito’s [12]
formulas for separating flow from the step. However, Danielsson and Stromquist [13] mentioned
that Savitsky and Morabito’s [12] formulas cannot be implemented for a two-stepped hull because
these relations have basically been derived for transom stern flow—not for separated flow from
steps. Therefore, Dashtimanesh et al. [5] assumed a linear wake theory and presented a simplified
mathematical model for the performance prediction of two-stepped planing hulls. The authors
compared the obtained results with the experiments of Taunton et al. [1] and Lee et al. [2] and showed
that their mathematical model has a good accuracy. Their model was based on Savitsky’s formulas and
regression relation for lift force which is limited by a special range for trim, wetted length, and the speed
coefficient. Moreover, it was not possible to compute the pressure distribution over the hull length.

After these empirical studies, the researchers used the 2D + T or numerical method to look at
the hydrodynamics of the planing hull or planing hull section in calm waters. The accuracy of the
numerical method is high but has many complexities and cannot easily be used in the initial phases of
design. The application of 2D + T theory dates back to the end of the 1970s, where Zarnick [14] utilized
Wagner [10] and von Karman [9] theoretical equations and developed a mathematical model based
for computation of planing hull behavior in waves. This method could be used for the performance
prediction if the water surface is set to be at rest. The constant heave and pitch result correspond
to the sinkage and dynamic trim of a vessel. Ghadimi et al. [15,16] extended Zarnick’s method for
the motion prediction of planing hulls in regular waves at 4 and 6 degrees of freedom, successively.
Moreover, Ghadimi et al. [17–19] and Tavakoli et al. [20–23], developed several mathematical models
for computation of roll motions in waves, roll motion, asymmetric, and yawed condition motions.
All of these studies are performed using 2D + T theory and relate to non-stepped planing hulls.
Thus, in this work, the 2D + T theory method is used and the hydrodynamic pressure over the wall of
the 2D wedge is utilized to find the sectional hydrodynamic forces in the stepped planing hull, and the
performance of the vessel is solved.

In this paper, the main aim is to develop a mathematical model for the simulation of single-stepped
planing hull characteristics by using the 2D + T theory and linear wake assumptions. The basis of
the present mathematical model is taken from the mathematical model developed by Niazmand
Bilandi et al. [6]. The hull of a single-stepped planing hull has been divided into two parts; for each
part, a water entry problem has been simulated. The hydrodynamic pressure on the 2D sections of the
single-planing hull is predicted by the Algarin and Tascón [24] equations. The forces acting on each
part of the boat are determined using the 2D + T theory. The main results, including the dynamic trim
angle, wetted surface, and resistance, have been computed with the proposed method and have been
compared against experimental data. In Section 2, a mathematical model and computer procedure
are demonstrated; in Section 3, validation and results are presented. In particular, the model test and
experimental details, a comparison between the towing tank tests and 2D + T method resulting in
the term of resistance, wetted surface, and wetted length analysis are presented. Section 4 presents
the conclusions.
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2. Mathematical Model

The presented method is formulated in this section. The problem is defined and motion equations,
as well as 2D + T theory, are discussed. The computation of hydrodynamic force acting on the
hull has been fulfilled based on the pressure distribution on the wedge surface. To calculate the
hydrodynamic pressure, the resulting forces and moments on a single-stepped planing hull, equations
for the simulation of the water entry of wedges and estimation of a half-wetted beam are used,
and a new mathematical model for the performance prediction of single-stepped planing hulls with a
pressure-based approach was developed.

Further, it has been considered that the boat is moving forward with a constant speed of V and
dynamic trim angle of θ, demonstrated in Figure 1. The defined measure of dynamic trim (θ) for the
2D + T method is relative to the keel line of the hull. For a constant deadrise (pure wedge) hull, the keel
line is straight and parallel to all the buttock flow lines, so the geometric definition of trim is clear.
The dynamic trim angle depends on the boat speed. Figure 1 includes the weight force (∆), the force
derived from the hydrodynamic and hydrostatic pressure (F), the total frictional drag force (D), and the
thrust force (T), derived from the various planing surfaces on the boat. Additionally, in Figure 1,
two right-handed coordinate systems are adopted. The Gξηζ system is fixed on the body and located
at CG. In this coordinate system, ξ is parallel to the keel and positive forward, η is positive in the
direction of the starboard side, and ζ is positive downward. The Oxyz system is moving with the
system. The x-axis is parallel to the calm water and positive forward. The boat with deadrise angle
β has been fixed at the zero heel angle in the calm water, τ1 and τ2 are the local trim angles for each
planing surface.
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Figure 1. The problem definition and coordinate systems.

The equilibrium in the heave and pitch directions, as shown in Figure 1, can be calculated from
the following equations.

0 =
2

∑
i=1

(Tz + Dzi + Fzi + ∆) Heave (1)

0 =
2

∑
i=1

(Tθ + Dθi + Fθi ) Pitch (2)

To solve the problem, some assumptions are made as follows:

• The speed, V, was assumed to be constant for all two planing surfaces. In reality, the speed
of the water would decrease aft of each step due to disturbances from the hull and turbulence.
This would implicate that the lift from the middle and aft planing surface would be slightly
exaggerated. By applying the effects of the transom and the steps, the forces will be calculated
with a more accurate value.

• The planing surfaces are assumed to have triangular shapes.
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• The wake profile is considered horizontal and parallel to the horizon from the separation at
the step to where it reattaches on the next surface, contradicting Morabito’s wake theory [12],
Svahn [11], Dashtimanesh et al. [5], and Niazmand Bilandi et al. [6] suggested this simplification.

• The sweep-back of the steps is not included in the model.
• The local deadrise angle βL has been assumed to be 2 degrees for each planing surface. This value

depends on the ventilation length and has effects on the trim and resistance of the vessel because
it affects the lift coefficients.

• The local trim angle, τ, has also been assumed to be 2 degrees. This value is measured using the
slope of the planing surface in relation to the horizon, which has a straightforward relationship
with step height.

In the first step, the total wetted length Lw0 , and the overall dynamic trim angle θ, should
be estimated. Therefore, the wetted length of the front planing surface can be calculated using
Equation (3).

Lw1 = Lw0 − Ls (3)

where, Ls is the step position.
In the current article, an attempt has been made to develop a novel mathematical model based on

the studies of Danielsson and Stromquist [13], Dashtimanesh et al. [5], and Niazmand Bilandi et al. [6].
As mentioned in literature reviews, there has been no direct measurement or empirical formula for wake
profile beneath the stepped hulls. Therefore, Danielsson and Stromquist [13] observed that the linear wake
profile (LWP) may be a good assumption for the flow separation from the steps. Therefore, the present study
attempts to take into account this suggestion for a single-stepped planing hull. So, for the single-stepped
planing hull, the ventilation length is calculated from the following equation.

Ldry =
Hstep

tan(θ + τ1)
(4)

where, Hstep is the steps height, and τ1 is local trim angle for the forward planing surface.
Subsequently, the wetted length is also calculated for the transom planing surface Equation (4).

Lw2 = Ls − Ldry (5)

In this paper, for calculating various planing characteristics on the single-stepped planing hulls,
the 2D + T theory has been formulated for each surface, individually. As shown in Figure 2, it has been
assumed that the boat passed through an earth-fixed plane for each planing surface. In this regard,
the vertical impact velocity and time needed to solve symmetric wedge water entry problem for each
planing surface are calculated as follows.

wi = v sin(θ + τi); (i = 1, 2) (6)

tpi =
Lwi

v
; (i = 1, 2) (7)

where Lwi is the wetted length of each planing surface.
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To convert the time to the longitudinal position, Equation (8) is utilized for each planing surface.

ξsi =
vt

cos(θ + τi)
; (i = 1, 2) (8)

So, the longitudinal distance of the section from the intersection of the calm water and keel of
each surface (ξsi ) is computed. This position can be transformed to the body-fixed coordinate system
by using

ξ1 = (Lk1 + Lstep1 − ξs1) (9)

ξ2 = (Lk2 − ξs2) (10)

2.1. Two Dimensional Forces

The hydrodynamic pressure distribution over the surface of a symmetric wedge section has been
calculated using the analytical solution of Wagner [10] as follows,

pi = ρ

− wici
.
ci√

ci
2 − y2

i

− wi
2

2
y2

i
ci

2 − y2
i

; (i = 1, 2) (11)

where c, y, and
.
c are the half wetted beam, the horizontal distance from the keel and derivative c with

respect to time, respectively (Figure 2).
Generally, Equation (11) should be used to determine the pressure distribution over the surface of

a symmetric wedge on each planing surface. To compute the hydrodynamic pressure, the proposed
method by Algarın and Tascon [24] has been utilized. It should be noted that two different phases are
considered in the computations which are related to the water depth location, as shown in Figure 2.

2.2. Phase 1—The Dry-Chine Condition

The first phase is related to the dry-chine condition in which chine will remain dry. Spray root
position at each side of the wedge surface and its time derivative can be determined by Equations (12)
and (13). The symmetry wedge section and spray root position are shown in Figure 2. Using of the
Equations (11)–(13), the pressure distribution on both sides of the wedge can be calculated.

ci =
π

2
wit tan(β + βLi ); i = 1, 2 (12)

.
ci =

π

2
wi tan(β + βLi ); i = 1, 2 (13)

where β is the deadrise angle and βLi is the local deadrise angle. At very high speeds, the local deadrise
angle will be almost parallel to the deadrise of the hull (Figure 3) so that the local deadrise angle will
be in the magnitude of 2–4 degrees. This matches the values found by Svahn [11].
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2.3. Phase 2—The Wet-Chine Condition

The second phase refers to the condition in which the chines of two sides become wet. The chine
wetting time at both sides can be determined as follows,

tcwi =
1
π

B tan(βi + βLi)

wi
, i = 1, 2 (14)

When the chines have been wetted, the idea by Algarın and Tascon [24] was used for the
calculation of pressure distribution. So, after the chines are wetted, the mean half beam and its
derivative, are given approximated by Equations (15) and (16).

ci =

√√√√(B
2

)2
+

[
3
2
(wi)

(
B
2

)2

(t− tcwi )

]2/3

; i = 1, 2 (15)

.
ci =

w2
i

2

(
B
2

)2

ci

√
ci

2 −
(

B
2

)2
; i = 1, 2. (16)

By integrating the hydrodynamic pressure over the wetted surface, the hydrodynamic forces
acting on the wedge for each plane surface has been obtained as follows,

f V
HDi

=
∫
S

pi cos(βi + βLi )dl; i = 1, 2 (17)

f H
HDi

=
∫
S

pi sin(βi + βLi )dl; i = 1, 2 (18)

where, superscripts V and H refer to the vertical (normal force) and horizontal components of the
hydrodynamic force, respectively, and l is the distance from the wedge apex in the direction of the
wedge wall (m).

The hydrostatic force of each section is determined by calculating the volume of the immersion
for each planing surface (Figure 4), according to the following equation.

fBi = ρgAi; i = 1, 2 (19)

When the chine is dry, Ai is calculated as follows.

Ai =
c2

i
tan(βi + βLi )

; i = 1, 2 (20)

When the chine is wet, Ai is calculated as follows.

Ai =
B2

2 tan(βi + βLi )
; i = 1, 2 (21)
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Figure 4. The hydrostatic force acting on the section.

2.4. Three Dimensional Forces

The 2D pressure forces have been determined during the water entry problem for each plane
surface. These pressure forces have been extended over the wetted length of the boat and lead to the
computation of 3D forces for each plane surface. By applying Garme’s function [25] to the effects of
the transom and the steps, the forces will be calculated with a more accurate value. This function is
given as,

Ctri = tanh(
2.5
a
(ξ j − ξi)); i = 1, 2 (22)

where j is the step position or transom position (Figure 5), a = BFnBanon and anon is the
non-dimensional longitudinal position (from the transom and step) in which the reductions appear.
Garme [25] proposed that the anon be set to 0.34 for the planing range.
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The pressure force in the surge direction can be determined as follows,

Fxi = −
∫

Lwi

f v
HDi

Ctri (ξ) sin(θ + τi)dξ; i = 1, 2 (23)

Additionally, the total lift force in the heave direction has been determined by the summation of
3D forces for each plane section as follows,

Fzi = −
∫

Lwi

f v
HDi

Ctri (ξ) cos(θ + τi)dξ −
∫

Lwi

fHSi Ctri (ξ)dξ; i = 1, 2 (24)
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2.5. Frictional Forces

The friction drag force entered the single-stepped planing hull, calculated with consideration
of two terms. The first term acts on the pressure area and the second term acts on the spray area.
The frictional drag force on the pressure area of the single-stepped planing hull can be calculated by
measuring the wetted surface of each section for each planing surface as follows,

SPi =
∫ Lci

Lwi

2ci
cos(βi + βLi )

dξ +
∫ Transom or Step

Lci

2B
cos(βi + βLi )

dξ; i = 1, 2 (25)

The frictional drag on the pressure area can be calculated using the following equation,

D f = 0.5ρv2(C f1Sp1 + C f2Sp2) (26)

where C fi is the frictional drag coefficient and calculated based on ITTC,1957 [26] as follows:

C fi =
0.075

(log
Rni
10 −2)

2 ; (i = 1, 2) (27)

Rni =
Vλi

υ
; (i = 1, 2) (28)

λi =
Lci + Lwi

2
; (i = 1, 2). (29)

The frictional drag on the spray area, Rsi , has been calculated for each planing surface by the
following equation,

Rsprayi = f si|cos(2αi)|; i = 1, 2 (30)

where fsi and αi are calculated separately for each planing surface, as follows,

f si =
ρv2B2C fi

8 sin(2αi) cos(βi + βLi )
; i = 1, 2 (31)

αi= tan−1
(
(Lwi − Lci)

B

)
; i = 1, 2 (32)

The frictional drag force can be calculated by,

D =
2

∑
i=1

Rsprayi + D fi (33)

Components of this frictional drag force in each of the directions for each planing surface are
formulated as,

Dxi = −Rsprayi cos(θ + τi)− D fi cos(θ + τi); i = 1, 2 (34)

Dzi = −Rsprayi sin(θ + τi)− D fi sin(θ + τi); i = 1, 2 (35)

2.6. Resistance and Thrust

Te resistance of the single-stepped planing boat is computed by the following equation,

R =
2

∑
i=1

Dxi + Fxi ; i = 1, 2 (36)
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In the end, the thrust is calculated. The required thrust force for the single-stepped planing hull
can be calculated by the equation below.

T =

−
2
∑

i=1
Dxi + Fxi

cos(θ + θT)
. (37)

2.7. Computational Procedure

After presenting the mathematical model and its formulation, it is necessary to develop a
computational procedure for solving Equations (1) and (2). To solve the equilibrium equations,
a nonlinear optimization algorithm has been utilized, as shown in Figure 6. A computational procedure
has been established for the prediction of the performance of the single-stepped planing boat as shown
in Figure 6. The solution procedure for optimization is based on the constrained minimization of
Equations (1) and (2) as an objective function. For this purpose, the Matlab command fmincont is
applied in the mathematical model to minimize the equilibrium equations for each planing surface
of the single-stepped hull in which the limits of guessed values (i.e., the trim and wetted length) are
considered as inputs. In the end, by using the fmincon command, the trim and wetted length of the
single-stepped hull can be obtained and both the heave and pitch equations would be solved.
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3. Validation and Results

3.1. Model Tested and Experimental Details

The model used in this study represents an example of a modern high-speed hull for Rigid
Inflatable Boats (RIB). This hull can be a representative hull for typical pleasure or military high-speed
crafts. This model is hull number C03 and is one of the eight models of an unpublished systematic
series. The body plan of the C03 hull is available in Figure 7.
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The parent hull for this research is a RIB built by MV Marine S.r.l. (Shipyard in Nola, Italy),
type Mito 31, powered by outboard engines. The model is a hard chine hull with one transverse step,
located in the same longitudinal position of the center of gravity with a forward-V shape (Figure 7).
The model scale has the same main dimensions (keel line, chine line, deadrise angle, displacement,
Longitudinal Center of Gravity (LCG), step shape, step angle) of RIB Mito 31, at a 1:10 scale. Details of
the hull model scale are reported in Table 1.

Table 1. The C03 model details.

Description

Length overall: LOA (m) 0.935
Breadth max: BMAX (m) 0.335

Deadrise angle at transom (◦) 23
Step height (mm) 6
Displacement (N) 30.705

LCG (%L) 33
Model scale 1:10

The physical model for the towing tank tests was manufactured in hand-made layup through a
mold, which was designed in 3D CAD/CAM, was milled with a CNC 5-Axes machine, and was built
in FRP in accordance to ITTC [26], in fact, the model hull tolerances for breadth, drought, and length
are ±0.5 mm. The manufacturing tolerance for length is less than 0.05%, and special attention was
paid into the shaping of chines, keel, transom, and step. The model was built with composite materials
with a transparent bottom built only with isophthalic resin to provide a full view of the water flow
under the hull.

The tests were performed in the towing tank at the marine engineering section of the Department
of Industrial Engineering (DII) of the Università degli Studi di Napoli “Federico II”. The main
dimensions of the towing tank are length 136.0 m, width 9.0 m, and depth 4.5 m. Calm water
resistance experiments were conducted with the down-thrust (DT) methodology proposed in Vitiello
and Miranda [27] at the following Froude numbers (Fr): 0.866, 1.151, 1.702, 1.973, 2.330, 2.683,
and 2.958. In the case of a model being small and light, the DT measurement solution is due to
the high sensitivity of the hull model to the externally applied forces, i.e., the instrumentation weight.
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The DT solution releases the tested model from the instrumentation weight, which, in many cases,
is similar to the model weight and promotes higher accuracy in measurements of resistance, sinkage,
and trim. This experimental method has proven to reproduce the real system of forces exerted by
outboard engines.

In fact, the engines, when going forward, transfer T thrust to the transom through forces applied
in the lowest bracket area. Consequently, the system forces of the two outboard engines and hull are
similar to two beams supported by a pin and a roller. The DT resistance methodology considers that,
in a horizontal position, and in a trim angle at rest equal at zero, the direction of the thrust force is
applied in point P, i.e., the intersection between the projection of the engine thrust direction on a keel
plane and keel line at the bow, as shown in Figure 8.
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3.2. Towing Tank vs. 2D + T Method Results

The C03 towing tank tests were used to validate the 2D + T analytical model developed; in this
paragraph, a comparison analysis between the experimental and analytical method is done. In Table 2
the values of non-dimensional resistance, the dynamic trim angle, and non-dimensional wetted surface
are shown.

Table 2. The comparison between the experimental and analytical results.

Fr

RTM/∆ Trim WS/∇2/3

Exp. 2D + T
Approach Error Exp. 2D + T

Approach Error Exp. 2D + T
Approach Error

(-) (-) (%) (deg) (deg) (%) (-) (-) (%)

0.866 0.182 0.181 0.2 3.550 4.500 −26.8 6.63 3.43 48.3
1.151 0.208 0.201 3.1 4.420 3.755 15.0 4.85 2.99 38.4
1.702 0.261 0.255 2.3 3.270 2.880 11.9 3.88 2.47 36.2
1.973 0.318 0.288 9.5 2.870 2.605 9.2 3.54 2.31 34.7
2.330 0.415 0.336 19.1 2.690 2.326 13.5 3.32 2.15 35.2
2.683 0.501 0.389 22.3 2.520 2.113 16.2 3.23 2.03 37.3
2.958 0.566 0.434 23.5 2.580 1.976 23.4 2.85 1.94 31.7

The uncertainty bars in Figures 9–11 are in accordance with the experimental uncertainty
evaluation reported in De Marco et al. [3].
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Figure 11. The dynamic wetted surface: 2D + T method vs. experimental results.

Observing the results, it is possible to observe that the non-dimensional resistance comparison
error increases by increasing the Fr—but until Fr = 1.973 is less the 10% and the Mean Squared Error
(MSE) is equal to 13.7%.

For the dynamic trim angle, the comparison error shows a minimum for the intermediate values
of Fr (1.702, 1.973, and 2.330), and the error increases for extreme values, where the trim angles are,
respectively, the minimum and maximum. The MSE for the dynamic trim angle is equal to 16.4%.

For the non-dimensional wetted surface, the trend of the error decreases, thus increasing the Fr,
but the value is constantly greater than the 30%, and the MSE is equal to 35.3%.

Furthermore, in order to evaluate the effectiveness of the 2D + T approach, the 2D + T results
are compared with the Computational Fluid Dynamic (CFD) analysis performed for the same hull
model available, with all CFD simulation details, in De Marco et al. [3]. Table 3 shows that URANS
high-quality simulations can achieve results close to the towing tank tests with an error generally less
than 10% for the dynamic trim angle and total resistance. However, for the wetted surface, the absolute
values of error are comparable, particularly for the highest Fr.

Table 3. CFD vs. 2D + T results: comparison errors.

Fr

RTM/∆ Trim WS/∇2/3

EXP–CFD EXP–2D + T EXP–CFD EXP–2D + T EXP–CFD EXP–2D + T

(%) (%) (%) (%) (%) (%)

0.866 5.46 0.20 −9.01 −26.76 −8.14 48.33
1.702 −1.90 2.32 −1.22 11.93 −31.20 36.24
2.330 9.33 19.07 −0.37 13.53 −31.15 35.19
2.958 5.26 23.46 −3.10 23.41 −36.13 31.71

3.3. Wetted Surfaces and Wetted Length Analysis

The experimental wetted surface values are estimated through the digital analysis of video frames,
which are referenced to the original 3D CAD model, as shown in Figure 12. The analytical values are
calculated according to the computational workflow, as shown in Figure 6. As previously mentioned
(Figure 11), the comparison error between the experimental and analytical results substantially
decreases, thus increasing the Fr. However, the comparison error is considerable in the whole Fr range.
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Hence, a deeper analysis is required in order to investigate the issues in wetted surface evaluation by
comparing the two different wetted surface evaluations, as shown in Table 4.
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As opposed to what happens in the URANS simulations that, generally, overestimated the wetted
surface, as stated in De Marco et al. [3], De Luca et al. [28], and Mancini et al. [29], the 2D + T method
underestimates the wetted surface values. In particular, at low Fr, the analytical method fails in
the estimation, specifically in the aft wetted surface evaluation. By increasing the Fr, the air cavity
behind the step increases, and the wetted surface became narrower; thus the comparison error value is
reduced. However, the 2D + T approach is not able to predict the unsteady turbulent phenomena that
characterize the hydrodynamic flow behind the step. Another shortcoming of the 2D + T method is
the lack of capability of the developed analytical approach to consider the transversal step angle.

These issues also affect the dynamic wetted length evaluation. Thus, the dynamic wetted length
computed by the 2D + T method is significantly less than the experimental one as it is possible to
observe in Figure 13. The dynamic wetted length is strictly linked to the air cavity generated behind
the step. The difference in the air cavity evaluation can be detected in Table 4, in particular for low
Fr values.

Table 4. The detailed view of the dynamic wetted surface for the experimental test and analytical method.
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4. Conclusions

A 2D + T analytical method has been developed for the performance evaluation of stepped hulls.
In order to validate the mathematical model, calm water resistance experiments in a towing tank on a
single stepped hull model with a transparent bottom have been used.

The comparison between the analytical approach and towing tank test results shows an acceptable
reliability for the resistance and dynamic trim evaluation, in particular for a Froude number up to 2.0, with
a Mean Squared Error equal to 13.7% for resistance and 16.4% for dynamic trim. However, the dynamic
wetted surface, as well as the dynamic wetted length evaluation, presents a larger error, in particular at
low Froude numbers. This issue can be related to the two main shortcomings of the 2D + T approach,
as the inability to describe the unsteady turbulent phenomena behind the step and the inability to take
into account the transversal step angle. The last issue can be overcome by changing the mathematical
code. However, the unsteady turbulent phenomena cannot be predicted by the 2D + T approach.
These phenomena can be predicted by experimental or numerical means, considering the URANS/LES
simulations. The accuracy of the CFD method and towing tank test is high but there are many complexities
due to the simulation setup, the experimental arrangement, the high computational effort required, and the
high cost. Hence, these performance evaluation methods cannot easily and quickly be used in particular in
the early design stage. Therefore, the 2D + T method is more cost-effective for the designers at the first
design stage in order to quickly assess a stepped hull shape, the power prediction, and the dynamic trim
angle, thus defining the main hull parameters.

Promising results of the current study signals that the 2D + T theory also has a suitable accuracy
in motion prediction of single-stepped planing hulls that can aid engineers in the early stage design
process of a stepped planing hull. The method can be considered a very fast tool to provide the results
in the concept design stage. Additionally, it can further develop in terms of the accuracy of the high
Froude numbers and in order to implement the capability to give output in terms of seakeeping,
maneuvering, and steady drift tests by considering other motions for the wedge. Therefore, future
studies will focus on the further extension of this method for sweep-back step and by considering
other motions.
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Nomenclature

Boat Characteristics
B Beam of the boat (m)
Cfi Frictional coefficient of the ith body
Fr Froude number
FrB Beam Froude number
Hstep1 Height of step (m)
L Length of the boat (m)
Lci Chine wetted length of the ith body (m)
LCG Longitudinal Center of Gravity (m)
Lwi Wetted length of body ith body (m)
Rni Reynolds Number of the ith body
SPi Wetted area of the ith body
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Boat Characteristics
V Forward moving velocity of the boat (m s-1)
αi stagnation line angle of the ith body
βi Deadrise angle of the boat
βLi Local deadrise angle of the boat of the ith body
∆ Weight of boat (N)
λi Mean wetted length of the ith body
τi Local trim angle of the ith body
θ Dynamic trim angle of the hull
Distance
anon Non-dimensional distance at which transom reduction appears
Ls Distance of step from the transom (m)
Ldry Dry length of step from the transom

x, y, z
Longitudinal (positive forward), transverse (positive starboard), and vertical distances
(positive downward) from CG (Oxyz) (m)

ξ, η, ζ
Longitudinal (positive forward), transverse (positive starboard), and vertical distances
(positive downward) (m)

ξi
′ Distance of section from the step or transom just located behind the section (m)

ξsi Distance of section from intersection of the keel and calm water of the ith body (m)
Force and Moments
Df Frictional drag on pressure area (N)
Fi Pressure force on ith body (N)
fsi Drag acting on the spray area (N)
R Total resistance of the vessel
Rsprayi frictional drag of Whisker spray of the ith body
Subscript x Force component in surge direction (N)
Subscript z Force component in heave direction (N)
Subscript θ Force component in pitch direction (N)
Physical Parameters
g Gravitational constant
Pi Pressure of the ith body (Pa)
ρ Fluid density (kg m−3)
Sectional Parameters Related to 2.5D Theory
Ai Submerged area of the ith body (N m−1)
ci Half beam of spray in transverse plane (m)
.
ci Time derivation of c (m s−2)
Ctri Transom reduction at the section of the ith body (N m−1)
fHDi Hydrodynamic force of each section of the ith body (N m−1)
fBi Hydrostatic force of each section of the ith body (N m−1)
l Distance from wedge apex in the direction of wedge wall (m)
t Time
tcwi Chine wetting time of the ith body (s)
tpi Solution time for water entry problem of the ith body
wi Impact velocity of the ith body
yi Lateral distance from wedge apex of the ith body
Subscript H component in horizontal direction
Subscript V component in vertical direction
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