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Abstract: A Coupled Model Intercomparison Project Phase 5 (CMIP5)-derived single-forcing,
single-model, and single-scenario dynamic wind-wave climate ensemble is presented, and its historic
period (1979–2005) performance in representing the present wave climate is evaluated. A single
global climate model (GCM)-forcing wave climate ensemble was produced with the goal of reducing
the inter GCM variability inherent in using a multi-forcing approach for the same wave model.
Seven CMIP5 EC-Earth ensemble runs were used to force seven WAM wave model realizations,
while future wave climate simulations, not analyzed here, were produced using a high-emission
representative concentration pathway 8.5 (RCP8.5) set-up. The wave climate ensemble’s historic
period was extensively compared against a set of 72 in situ wave-height observations, as well as to
ERA-Interim reanalysis and Climate Forecast System Reanalysis (CFSR) hindcast. The agreement
between the wave climate ensemble and the in situ measurements and reanalysis of mean and
extreme wave heights, mean wave periods, and mean wave directions was good, in line with
previous studies or even better in some areas of the global ocean, namely in the extratropical latitudes.
These results give a good degree of confidence in the ability of the ensemble to simulate a realistic
climate change signal.

Keywords: Wave climate; ensemble; climate change; EC-Earth; WAM; Coordinated Ocean Wave
Climate Project (COWCLIP)

1. Introduction

Climate change extends beyond the scientific community, becoming a key topic in day-to-day
public opinion. Matters like sea-level rise, ice-cap melting, extreme storms, droughts and floods, or
coastal erosion, just to mention a few, are now common matters of discussion in the media or even in
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colloquial gatherings. Climate change adaptation and mitigation strategies also now raise increased
societal interest. One of the key issues related to climate change, specifically ocean-related, is the
potential increase of coastal hazards, like inundation or extreme coastal erosion, particularly when
linked to sea-level rise, affecting coastal areas and low-land countries. Ocean surface gravity waves
(or wind waves, as they are also called) can be classified as wind sea or swell, depending on their
degree of coupling to the overlaying atmosphere [1]. Wind seas are young waves under the influence
of the overlaying wind, directly receiving momentum from the atmosphere, to which they are strongly
coupled [2,3]. Swell waves are mature waves that propagate away from their generation area by
outrunning the overlaying wind speed. Swell waves can propagate thousands of kilometers, across
entire ocean basins [4,5] with very little attenuation [4,6–8]. For this reason, the ocean surface wave
field is the result of local and remotely generated waves, being strongly dominated by swell [3,9–11].
Therefore, wave climate variability in the open ocean, due to wave propagation characteristics, is often
dominated by changes in swell waves carrying the effect of changes in surface winds into remote areas,
contributing to changes in the wave climate elsewhere. For that matter, a direct link between the local
wind speed and wave field’s long-term variabilities should be done with caution.

Wave climate is of fundamental importance to a variety of applications, like the design of offshore
and coastal infrastructures, ship design standards, ship routing, and coastal management, among
others. Wave climate is also a key factor in determining rates of coastal erosion and sediment budgets.
The monitoring of present wave climate conditions is, therefore, a common practice, e.g. [3,7,12–16]. In
face of a warming climate due to anthropogenic greenhouse gas emissions [17], a trend that will most
probably continue until the end of the twenty-first century due to the inertia of the Earth’s climate and
to additional greenhouse gas emissions [18], the study of the impact of climate change in future wave
climate is of paramount importance. This study is also important from a scientific point of view, since
waves play a key role in the climate system, modulating the exchanges of momentum, heat, and mass
across the air–sea interface [14,19–23]. Waves also have an impact on the upper ocean layers and on
trough wave-induced turbulence in the mixing layer; they are an important driver in defining the sea
surface temperature, with direct impact on the lower atmosphere [24]. Changes in the future wave
pattern can, therefore, play an important role in ocean surface heat fluxes.

Despite the role of waves in the climate system, up until today no fully coupled
ocean-wave–atmosphere climate model exists, albeit some attempts, e.g. [23,25]. For that reason, global
wave climate studies still rely on wind forcing (and sea ice coverage) from previous global climate
model (GCM) simulations. The study of the impact of climate change on future wave conditions is done
following one of two methods: dynamical, using physically based wave models, and statistical, using
statistical models, both relying on a priori GCM simulations. Dynamical wave climate simulations use
close-to-the-surface wind speeds (usually at 10-m height; U10) and sea ice coverage (SIC) from GCMs
to force a physical wave model. Statistical simulations, on the other hand, use mean sea level pressure
(MSLP) or U10 wind fields (and SIC) as input to statistical models. Each of the aforementioned methods
has its advantages and limitations, with dynamical wave climate projections being computationally
more expensive than statistical ones, although producing more accurate and physically sound results.
The first dynamical global wave climate projections were done under the auspices of the Coordinated
Ocean Wave Climate Project (COWCLIP), supported by the World Climate Research Program—Joint
Technical Commission for Oceanography and Marine Meteorology (WCRP-JCOMM) [26,27]. Upon
the work of [28], several other global future wave climate projections followed, e.g. [29–34], forced
with Coupled Model Intercomparison Project Phases 3 and 5 (CMIP3 and CMIP5) GCM simulations.
A concise review of the wave climate projections pursued in the recent past can be found in a review
by [35].

Recent climate projections use ensembles instead of single GCM simulations. The use of
ensembles has the goal of reducing uncertainties inherent to the simulations that arise from the
GCM’s internal variability [36–38]. Uncertainties in climate modeling occur due to errors in the
physical parameterizations of the models, to small-scale processes not fully understood, or to processes
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not resolved due to computational constraints [39]. These uncertainties are often a limiting factor
in climate studies, particularly at regional scales [40–42]. By using the GCM ensemble approach,
dedicated dynamic ensembles of wave climate simulations were also recently produced, e.g. [43–45].
These dedicated wave climate ensembles relied on multi-forcing suits, i.e., different GCMs were used
in the same ensemble, providing forcing to a single wave model (dynamical simulations) or to a
statistical model (statistical simulations).

In contrast to single wave climate runs and to multi-forcing (multi-GCM) dynamical or statistical
ensemble studies of wave climate projections, a different approach was attempted in the present
study, where a single-GCM-forced dynamic ensemble was used. An ensemble of seven independent
CMIP5 climate simulations, produced with the same GCM (EC-Earth) [46] was used to force the
third generation WAM wave model [47], with U10 winds and SIC. The historic period of the seven
wave climate simulations span from 1979 to 2005. The future wave climate simulations, not analyzed
here, were produced using the EC-Earth representative concentration pathway (RCP8.5; [48]) set-up
from 2006 to 2100. The ensemble described in this study is, therefore, a “single forcing-single (wave)
model-single scenario” wave climate ensemble, produced with the goal of reducing the variability
inherent in using a multi-forcing GCM approach for the same wave model, as in [43], for example.

The goal of this study was to present the single-forcing, single-model, and single-scenario wave
climate ensemble design, and to assess its performance skills in reproducing the present time wave
climate (as represented by the historic period). The ensemble historic period was extensively evaluated
through comparison with a set of 72 in situ wave-height observations, with the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis [49], and the wave hindcast
generated from the National Centre for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR; [50]).

The remainder of the paper is structured as follows: in Section 2, the EC-Earth ensemble and
the EC-Earth and WAM models, as well as the design of the dynamic wave climate ensemble, are
described. The datasets used to evaluate the ensemble historic period (global wave reanalysis and
hindcast, and in situ measurements) are also described in Section 2. The performance skills of the
seven-member ensemble in representing present wind and wave climates are presented in Section 3.
The summary and conclusions follow in Section 4.

2. Models, Data, and Methods

2.1. The EC-Earth GCM

The EC-Earth GCM, largely used in global and regional climate studies, e.g. [51], is a full
physics seamless coupled atmosphere–ocean–sea ice–land earth system climate prediction model [46].
The EC-Earth was developed from the ECMWF operational seasonal forecast system 3 (ECMWF
2007), albeit with a different ocean model. The atmospheric model is the atmospheric component
of the ECMWF Integrated Forecast System (IFS) cycle 31r1 (https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model/ifs-documentation, last accessed on June 2018).
The ocean general circulation model in EC-Earth is the Nucleus for European Modeling of the Ocean
(NEMO) version 2 (OPA9: Océan Parallélisé version 9), developed by the Institute Pierre Simon
Laplace [52,53]. See [46] for further details on the EC-Earth performance skills, and [54] for further
details on the NEMO ocean model in EC-Earth.

2.2. The WAM Wave Model

The WAM wave model version used here is cycle 4.5.3 (C4.5.3), an update of WAM cycle 4,
described in [55,56]. WAM cycle 4.5.3 (C4.5.3) includes a source function integration scheme developed
by [57], with a new semi-implicit approach developed at the ECMWF. The model updates described in
the article by [58] are also included. Additionally, in WAM C4.5.3, the wind generation function and
dissipation terms implement the [59–61] formulation, and the nonlinear interaction source functions

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation
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are evaluated using the DIA (discrete interaction approximation) [62]. Additional details on WAM
C4.5.3 can be seen in [63].

2.3. Experimental Set-Up

State-of-the-art comprehensive Earth system GCMs, such as the ones used in the CMIP5, rely
on ensemble strategies for a more realistic approach to the variability, trends, and extremes of the
past, present, and future of the Earth climate. The design of CMIP5 climate experiments [64] led to an
extensive list of consistent and comparable GCM simulations of the Earth’s climate, under a number of
present climate and future climate change scenarios as the RCPs [48]. Both multi-model ensemble and
perturbed physics approaches were used in CMIP5 in order to study or potentially reduce uncertainties
in the climate projections. In general, three sources of uncertainties can be distinguished: firstly, the
internal model variability or the unforced climate variability; secondly, the uncertainties due to
model architecture, parameterizations, and physics; and thirdly, the uncertainties in future emission
scenarios [36]. The EC-Earth ensemble, used here to force the WAM wave model, followed a different
approach, with the initialization date as the differentiating factor. The seven EC-Earth runs used
to force the WAM wave model were taken from the larger EC-Earth ensemble prepared for CMIP5.
Each EC-Earth ensemble member integration started in 1850, with the only difference being the initial
conditions. The initial conditions are snapshots taken from the long pre-industrial control simulation
for CMIP5, each separated by 25 years.

The standard set-up of the atmospheric model in the EC-Earth version 2.2 corresponds to a
triangular truncation at wavenumber 159 (T159) horizontal spectral resolution (about 125 km at the
equator) and a vertical grid spacing with 62 vertical levels of terrain-following mixed sigma-pressure
hybrid coordinates, of which about 15 are within the planetary boundary layer. Six of the seven
EC-Earth runs used the standard vertical level set-up, while a seventh run, produced at the Danish
Meteorological Institute (DMI) was set with an increased number of vertical levels as a differentiating
factor. These levels were added in the stratosphere, and the top level of the EC-Earth was raised from
5 hPa to 0.1 hPa.

NEMO, the ocean component of EC-Earth, uses a horizontal resolution of roughly 1◦ × 1◦ and
42 vertical layers. The past and present climate EC-Earth ensemble simulations cover the period
between 1850 and 1855 to 2005. The future climate runs span from 2006 to 2100, following the RCP8.5
high-emission scenario [65].

Six-hourly 10-m wind speeds ( U10 ) and daily SIC (grid cells with ice coverage less than 0.5 were
taken as no ice) with a horizontal resolution of about 1◦ × 1◦, from the seven EC-Earth runs, were used
to force seven realizations of the WAM wave model. The WAM runs were performed on a regular
global latitude–longitude grid, covering a latitude range of 78◦ N to 78◦ S, with a fixed spatial grid
size of 1◦ × 1◦. The spectral domain was discretized into 25 logarithmically spaced frequency bins,
from 0.041 Hz to 0.411 Hz, equivalent to wavelengths from about 10 to 950 m. Wave propagating
directions were set with a resolution of 15◦. The WAM model was run in shallow-water mode. The
1-min (~0.0168◦) world-gridded elevations/bathymetry ETOPO1 data [66,67] were used to define the
depths. The wave model runs were performed using integration time steps of 5 and 10 min for the
advection and the source functions, respectively. A suit of 30 wave parameters, in addition to the
neutral 10-m wind speed derived from different forms of integrating the outputted wave spectra,
were stored every 6 h (see Table A1 in the Appendix A). Having used the same GCM with the same
RCP scenario to force a sole wave model, the ensemble described here qualifies as a “single-forcing,
single-model, single-scenario” dynamic wave climate ensemble.

The WAM realizations were run for the present climate 20th century 1979–2005 period (the historic
period). The WAM future climate 21st simulations were run for the 21th century 2006–2100 period.
For convenience, the present climate simulations are named in general as PC20, the present climate
historic ensemble is named PC20-E, and the individual ensemble members are named PC20-i (where
i = 1 to 7). The future climate simulations (not analyzed here) are, on the other hand, named FC21,
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FC21-E, and FC21-i. Also for convenience, the EC-Earth U10 wind-speed fields were included in PC20.
Table 1 presents additional details on the EC-Earth and WAM runs, including the climate centers or
research groups responsible for each of the EC-Earth ensemble members.

Table 1. Ensemble details: UL (University of Lisbon), UH (University of Hamburg), SMHI
(Swedish Meteorological and Hydrological Institute), DMI (Danish Meteorological Institute), HZG
(Helmholtz-Zentrum Geesthacht). PC20—present climate 20th century; FC21—future climate
21st century.

Ensemble Member EC-Earth Run WAM Run PC20 FC21

1 UL UL-HZG 1979–2005 2006–2100
2 DMI UH 1979–2005 2070–2100
3 DMI UH 1979–2005 2070–2100
4 SMHI UH 1979–2005 2006–2100
5 SMHI UH 1979–2005 2006–2100
6 DMI UH 1979–2005 2070–2100
7 SMHI UH 1979–2005 2006–2100

2.4. Global Evaluation Data: ERA-Interim Reanalysis and CFSR Hindcast

The performance skills of PC20-E were evaluated through comparison with the ECMWF
ERA-Interim reanalysis (Dee et al., 2011) and with the National Oceanic and Atmospheric
Administration (NOAA) CFSR wave hindcast [68]. The ensemble significant wave heights (Hs) were
compared to ERA-Interim and CFSR. The mean wave periods (Tm), mean wave directions (θm), and
U10 were compared only to ERA-Interim.

The ERA-Interim is a global third-generation reanalysis, produced at the ECMWF using the IFS
release cycle Cy31r2 (https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-
ecmwf-model/ifs-documentation, last accessed on June 2018), used operationally at ECMWF during
the period from December 2006 to June 2007. Here, we used the ERA-Interim period from 1979 to 2005.
In addition to atmospheric variables, the ERA-Interim also includes reanalyzed wave parameters, since
it was produced using the IFS, a two-way coupled atmosphere–wave model system [69]. The wave
model used in this coupled model system is also a modified version of the WAM model (the so called
EC-WAM), albeit different from WAM cycle 4.5.3. ERA-Interim uses an improved data assimilation
technique in four dimensions (4D-Var scheme), which outperforms the previous three-dimensional
(3D)-Var assimilation technique [70]. ERA-Interim assimilates surface wind speed observations from
voluntary observing ships (VOS), buoys, and satellite scatterometery. Satellite altimetry wave heights
were also assimilated since 1991. In situ Hs measurements and altimeter winds at 10-m height are not
used in the ERA-Interim; thus, they can be used to independently evaluate the merits of the reanalysis.
The resolution of the atmospheric model component in ERA-Interim is about 79 km (T255 spectral
truncation; ~0.7◦ × 0.7◦), with 60 vertical levels from the surface up to 0.1 hPa. The wave model is set
for a resolution of 110 km (~1◦ × 1◦). The temporal resolution of ERA-Interim is 6 h. Additional details
about the ERA-Interim reanalysis and its comparison with other global wave hindcasts can be found
in articles by [16,49,71,72].The CFSR is the global NCEP third-generation reanalysis [68], produced
with a coupled atmosphere–ocean–land surface–sea ice model system. The atmospheric component
is the NOAA operational Global Forecast System (GFS). The ocean model coupled to the GFS in the
coupled model system is the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model
(MOM) version 4p0d [73]. The operational Global Data Assimilation System (GDAS) is used in the
assimilation process. The CFSR global atmosphere resolution is ~38 km (T382), with 64 vertical levels
up to 0.1 hPa. The global ocean is 0.25◦ at the equator, extending to a global 0.5◦ beyond the tropics
with 40 levels. The CFSR reanalysis output is at a T382L64 resolution (~0.5◦ × 0.5◦ horizontal, ~0.266
hPa vertical), running originally from 1979 to 2009. From the CFSR atmospheric reanalysis dataset, a
wave hindcast was produced [74] using the WAVEWATCH III wave model (WW3; [75]), the so-called
CFSR wave hindcast. Here, we used the three-hourly CFSR hindcast (henceforth just called CFSR, or

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation
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CFSR hindcast) global domain at a 0.5◦ × 0.5◦ horizontal resolution from 1979 to 2005. Additional
details on the CFSR hindcast and its comparison with other global wave data sets can be found in the
article by [72].

From here onward, the ERA-Interim reanalysis and the CFSR hindcast are interchangeably
referred to as simply “reanalysis”, unless they need to be distinguished.

2.5. In Situ Evaluation Data: Wave Observations

The PC20-E significant wave heights (Hs) were also evaluated through comparison with 72 in situ
observations, quality-controlled at the ECMWF, and regularly used to evaluate the wave forecasting
scores of the operational IFS [76]. From all the in situ measurements available globally since 1979, 72
locations, with a long enough spanning time-series (at least 10 years) and positioned in relatively deep
waters, were selected. Figure 1 shows these locations (see also Table A2 for additional details).
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Figure 1. Areas and buoy positions. Buoy positions and selected areas: extratropical North Pacific
(ETNP), tropical eastern North Pacific (TENP), tropical western North Pacific (TWNP), tropical
western South Pacific (TWSP), tropical eastern South Pacific (TESP), extratropical South Pacific (ETSP),
extratropical North Atlantic (ETNA), tropical North Atlantic (TNAO), tropical South Atlantic (TSAO),
extratropical South Atlantic (ETSA), tropical North Indian (TNIO), tropical South Indian (TSIO), and
extratropical South Indian (ETSI). Further details can be seen in Table A3.

2.6. Methodology

The PC20-E was built using a “democratic approach”, with an unweighted mean of the seven
ensemble members (PC20-1 to 7) for the period from 1979 to 2005. The six-hourly wind and wave
parameters are processed for annual and seasonal means: December to February (DJF), March to May
(MAM), June to August (JJA), and September to November (SON). Here, only the extreme seasons DJF
and JJA were analyzed.

In the high latitudes, natural variations in SIC extent can seriously affect the quality of mean wave
fields, due to a considerable reduction of data points available, since the grid cells are taken as land
by the wave model when covered with ice for an area higher than 50%. This situation was dealt with
using one of the procedures proposed by [77] to treat wave statistics for climate purposes. Grid cells
with full ice concentration for 30% of the time or more in the scrutinized periods were taken as land,
and were ruled out of the statistics. For that matter, only cells with full ice concentration for 70% or
more of the total time series were treated as open water.

For the comparison of PC20-E (and reanalysis) with the in situ observations, the observational and
the modeled data were averaged on a daily basis. The ensemble and the reanalysis data were collocated
with the wave observations through interpolation of the nearest grid points (bilinear interpolation)
into the in situ observational positions.
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The PC20-E performance skills were evaluated using the following standard statistics:
bias—Equation (1), root-mean-square error (RMSE)—Equation (2), mean annual variability
(MAV)—Equation (3), and the Arcsin–Mielke score (M-Score)—Equation (4), all of which are
defined below.

Bias =
1
N ∑N

i = 1(PC20i − Ri), (1)

RMSE =

√
∑N

i = 1(PC20i − Ri)
2

N
, (2)

where N is the number of realizations and R is the reference data (in this case from observations or
reanalysis). The MAV [18,72], which is an average of the annual standard deviation normalized by the
annual mean, provides an indication of the spread of a climate simulation along the year and also its
ability to simulate the seasonal extremes, and it is defined as

MAV =
1
M

∑M
j = 1

√
1
N ∑N

i = 1

(
PC20ji −

(
1
N ∑N

i = 1 PC20ji

))2

1
N ∑N

i = 1 PC20ji
=

(
σj

PC20j

)
, (3)

where M is the number of years in the record and j is the position inside each year.
The non-dimensional Arcsin–Mielke score, or M-Score [78,79], used previously for wave climate

parameters by [43], is defined as

M =
2
π

arcsin

(
1 − MSE

Vpc20 + VR + (GPC20 + GR)
2

)
× 1000 (4)

where MSE is the mean-square error, V is the spatial variance, and G is the spatial mean, either of
PC20-E or the reanalysis. The M-Score varies from zero (no skill) to a maximum score of 1000 (for
virtually no error, i.e., MSE = 0). With the arcsine transformation of the Mielke skill score, introduced
by [80], the deviation from unity asymptotes to the RMSE. The statistics were computed for the global
ocean, and separately for 13 regional sub-areas, allowing the assessment of the ensemble’s regional
performance. Each of these regions, chosen in accordance with [4], can be seen in Figure 1, with further
details in Table A3.

Numerical weather prediction (NWP) strategy has data assimilation as a key element. In climate
studies, data assimilation is not present, and climate simulations do not capture the exact time history
of the simulated parameters, making the comparison with observations or reanalysis a challenging task.
Previous studies used the same overlapping period when comparing present climate wave simulations
with reanalysis, e.g., [43], when that was possible. Other studies assumed that wave climate historic
simulations, because they are not time-constrained, do not necessarily reproduce the exact same period
as the referenced reanalysis; as such, they did not make these periods coincident, e.g., [33]). The
problem is enhanced when the comparison is done with observations, e.g., in situ measurements or
remote sensing. Most of the time, the periods and the lengths of the climate simulations do not coincide
with the observational ones, which can pose additional challenges. That is the case, for example, with
in situ observations that are either shorter in time length or have gaps in the data. Differences can
also occur in comparisons with remote-sensing observations, which can also have different time
lengths compared to climate simulations, or different time resolutions, typically lower than the climate
simulations. For that reason, the simple comparison between observations and climate simulations is
unfair (to the observations), since, even for overlapping time-slices, the density of the observations is
typically lower. A technique where this “unfairness” is corrected, and the historic climate simulation
output numbers (densities) and lengths (time-slices) are matched with the observational ones by
randomly sampling the climate simulation data, was developed by [80]. Here, we used a similar
approach to the comparison between PC20-E and in situ observations (intra-annual variability). To
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coincide the amount (number of observations and model outputs) and length of the in situ observations
with the PC20, ten random Monte Carlo samples were taken of the climate data, and then averaged.
This was done for each set of the 72 in situ observations.

3. Evaluation of the Wave Climate Simulation in the Historic Period

Firstly, the PC20-E was evaluated through comparison with the Hs ERA-Interim and CFSR DJF
and JJA global climatological means, as seen in the normalized differences shown in Figure 2 (PC20-E
minus reanalysis normalized by the reanalysis).
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Figure 2. Present climate historic ensemble (PC20-E) 1979–2005 seasonal wave height (Hs; m) means
for (a) December–February (DJF) and (b) June–August (JJA). PC20-E Hs (m) normalized differences (%;
PC20-E minus reanalysis normalized by the reanalysis) to ERA-Interim for (c) DJF and (d) JJA, and to
Climate Forecast System Reanalysis (CFSR) for (e) DJF and (f) JJA.

Compared to ERA-Interim, in most of the extratropical areas, the ensemble overestimated Hs.
This overestimation was highest in the North Pacific, around 10–15% in JJA and less than 5% in DJF,
and lowest in the North Atlantic, where, in DJF, the differences were negligible or close to zero, and
in JJA, they were only slightly overestimated. A slightly larger overestimation (10–15%) can be seen
along the North Atlantic trade-winds path. The seasonal differences of PC20-E to ERA-Interim were
lower in the southern hemisphere; in DJF, the ensemble overestimated Hs by less than 5% in most
of the South Atlantic and South Indian sub-basins (for convenience the Pacific, Atlantic, and Indian
Southern Ocean sectors are included in the respective oceans), with a slightly higher overestimation in
the South Pacific, but less than 10% in almost the entire sub-basin. A similar pattern can be seen in
JJA in the southern hemisphere, although with lower relative differences, particularly in the South
Pacific. The differences between PC20-E and ERA-interim wave heights were highest in DJF in the
North Indian Ocean, toward the Arabian Sea (around 25%) and the Bay of Bengal (less than 15%).
Similar differences in the North Indian sub-basin were also present in the comparison between the
ensemble and the CFSR DJF means, although slightly lower.



J. Mar. Sci. Eng. 2018, 6, 90 9 of 28

Contrary to the comparison with ERA-Interim, compared to CFSR, the PC20-E underestimated
wave heights (by 5% or less) or showed marginal differences, close to zero, in most of the global ocean
in both seasons. Exceptions, where the seasonal mean wave heights were overestimated by PC20-E,
were the Arabian Sea and the Bay of Bengal in DJA, and in the equatorial Pacific Ocean in both seasons,
particularly in the Solomon Sea (10% to 15%). In the extratropical North Pacific, compared to CFSR, the
PC20-E overestimated the mean seasonal Hs by around 10%, and underestimated them in the eastern
part by around 5% or less. In the North Atlantic, seasonal mean wave heights were also underestimated
by PC20-E, compared to CFSR, in both seasons by around 10% or less, with the exception of the
trade-winds path where the mean JJA Hs was overestimated. Along the extratropical latitudes in the
southern hemisphere, PC20-E underestimated wave heights in both seasons, particularly in JJA.

A similar comparison was done for the global DJF and JJA mean Hs 95% percentiles, as shown in
Figure 3. The comparison with ERA-Interim extreme wave heights showed lower relative differences
compared to the seasonal Hs means, with marginal or zero differences or patches of low over- and
underestimations (less than 5%). The exceptions were in the North Atlantic, where the ensemble
underestimated the 95% percentile wave heights by around 5–10% in DJF, and overestimated them
along the trade-winds path in JJA, in the Arabian Sea and Bay of Bengal in DJF, and in the Solomon
Sea in both seasons, where extreme wave heights were, in this case, overestimated by around 15%
or more. On the other hand, the comparison between the seasonal PC20-E and CFSR mean Hs 95%
percentiles showed, for both seasons, a generalised underestimation of PC20-E (around 10% or less),
with higher differences along the extratropical storm tracks, where the underestimation was of the
order of 15% or even higher. The exceptions were, once more, the Arabian Sea and the Bay of Bengal in
DJF, and the Solomon Sea in both seasons, where the 95% percentile wave heights were overestimated
by the PC20-E compared to the CFSR by 10–15% or more.
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although less: globally, around 5% or less in DJF, with slightly higher values in the equatorial regions 

Figure 3. Present climate historic ensemble (PC20-E) 1979–2005 seasonal wave height (Hs; m) 95%
percentile for (a) December–February (DJF) and (b) June–August (JJA). PC20-E Hs (m) normalized
differences (%; PC20-E minus reanalysis normalized by the reanalysis) to ERA-Interim for (c) DJF and
(d) JJA, and to Climate Forecast System Reanalysis (CFSR) for (e) DJF and (f) JJA.
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Figure 4 displays the DJF and JJA mean Tm relative differences between the global PC20-E and
ERA-Interim (only). As with wave heights, the ensemble overestimated the mean wave periods,
although less: globally, around 5% or less in DJF, with slightly higher values in the equatorial regions
(more in the Pacific Ocean) and in the Arabian Sea (but still within the 10% range), with similar
behavior in JJA, although with higher overestimations in the North Pacific (about 5–10%). In DJF, in
the North Atlantic, the mean Tm showed almost no differences compared to the ERA-Interim values,
and in JJA, the overestimation was also rather low.
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Figure 4. PC20-E 1979–2005 seasonal wave period (Tm; s) means for (a) DJF and (b) JJA. PC20-E Tm (s)
normalized differences to ERA-Interim (%; PC20-E minus reanalysis normalized by the reanalysis) for
(c) DJF and (d) JJA.

The differences between the global PC20-E and ERA-Interim DJF and JJA mean θm are presented
in Figure 5. The seasonal differences are presented in the background contour, and the ERA-Interim
mean DJF and JJA θm are also presented with arrows of different colors. Most differences were either
negligible or close to zero, or between −10◦ (anti-clockwise) and 10◦ (clockwise) in both seasons. Some
higher differences (about −20◦ to 20◦) can be seen in the west tropical Pacific Ocean, in the Arabian
Sea and Bay of Bengal, and east of Australia in DJF, and in the mid-latitudinal east North Pacific, in the
South China Sea, and at high latitudes, as in the Barents Sea, in JJA. As with the seasonal Hs and Tm,
the θm comparisons with ERA-Interim were better in the North Atlantic sub-basin.
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Figure 5. PC20-E 1979–2005 seasonal wave direction (θm) means for (a) DJF and (b) JJA (arrows
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Despite some differences to ERA-Interim and CFSR, at this stage, it can be said that the agreement
between PC20-E and the reanalyzed DJF and JJA mean and extreme wave heights, mean wave periods,
and mean wave directions can be considered as relatively good. These differences were lower or
in agreement with previous recent studies by [30,32,33,45]. Nevertheless, it is important to reason
and understand what, to a certain extent, might be behind these differences. Firstly, part of the Hs

differences between PC20-E and the reanalysis, mostly in the equatorial Pacific Ocean, have to do
with different land masks used in WAM C4.5.3 set-up in PC20 and in the reanalysis. Additionally,
WAM C4.5.3 was proven to not properly damp swell in the light-wind intertropical areas, which
can sometimes lead to an overestimation of the wave heights compared to the WAM version used
in ERA-Interim and to the WW3 model used in CFSR. Some differences might also occur due to
unresolved sub-grid scale bathymetry, which was taken into account in the ERA-Interim WAM version
and in WW3, but not in the WAM C4.5.3 version used in the ensemble. Table 2 shows a summary
of the PC20-E relative differences against the reanalysis. About 67% (84%) of the PC20-E Hs global
ocean field had relative errors lower than ±10% in DJF compared with ERA-Interim (CFSR). That area
became about 77% for the comparison with both sets of reanalysis in JJA. Only about 32% (15%) or 22%
(21%) of the PC20-E Hs global ocean field in DJF had relative errors higher than ±10%. The PC20-E
Tm global scores are similar, with more than 91% (86%) of the global ocean area with errors lower than
±10% compared to ERA-Interim in DJA (JJA). The ensemble also represented θm well compared to
ERA-Interim, with more than 76% (82%) of the ocean area with errors below ±10◦.

Table 2. Summary of PC20-E relative differences to the reanalysis. Percentages of global ocean area
with as a function of global wave height (Hs), wave period (Tm), and wave direction (θm) relative
differences. DJF—December to February; JJA—June to August; CFSR—Climate Forecast System
Reanalysis; ERA-I—ERA-Interim.

PC20-E DJF Differences (ERA-I/CFSR) PC20-E JJA Differences (ERA-I/CFSR)

% Area with
Error <
|5%/◦|

% Area with
Error

|5− 10%/◦|

% Area with
Error >
|10%/◦|

% Area with
Error <
|5%/◦|

% Area with
Error

|5− 10%/◦|

% Area with
Error >
|10%/◦|

Hs 16.99/31.82 50.27/52.48 32.74/15.70 35.03/20.36 42.39/57.87 22.58/21.77
Tm 25.12 66.38 8.50 44.67 41.40 13.93
θm 40.80 36.25 22.95 48.94 33.11 17.95

In search of additional justification for the differences shown in Figures 2–5, the PC20-E and
ERA-Interim DJF and JJA mean U10 relative differences were computed for the basic wave parameters.
As can be seen in Figure 6, the U10 differences were strikingly low (less than 5%) or close to zero in
most of the global ocean, particularly in the extratropical areas in both hemispheres. These differences
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were lower that the Hs ones shown in Figure 2. The relative differences were higher in the intertropical
latitudes, where the mean U10 absolute magnitudes (and respective anomalies) were actually low.
These differences, most pronounced in the equatorial areas, can be attributed to differences in the
placement of the intertropical convergence zone (ITCZ) in EC-Earth, particularly in the Atlantic
Ocean [46], since slight meridional differences can lead to substantial relative differences in the wind
speed there. Nevertheless, as with the mean basic wave parameters, the PC20-E and the reanalyzed
DJF and JJA U10 differences can be seen as relatively low. The PC20-E relative Hs and Tm differences in
the Arabian Sea can be explained by the ensemble U10 differences compared to ERA-Interim.
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Figure 6. PC20-E 1979–2005 seasonal wind speed (U10; s) means for (a) DJF and (b) JJA. PC20-E Tm (s)
normalized differences to ERA-Interim (%; PC20-E minus reanalysis normalized by the reanalysis) for
(c) DJF and (d) JJA.

Figure 7 depicts the ensemble’s ability to reproduce the Hs annual variability, as measured by
the MAV (Equation (3)), in comparison with the reanalysis. Here, the comparisons are presented as
anomalies (PC20-E minus reanalysis MAVs: MAVPC20−E − MAVR), and not as relative differences.
The North Pacific and North Atlantic sub-basins, where the inter-seasonal wave height variability
is highest [1,3,7] had the highest MAV values (50–60%), followed by the southern hemisphere
extratropical storm paths (30–40%), not counting marginal sea areas. Compared to ERA-Interim,
the PC20-E MAV showed small differences: marginal or inexistent, or between −5% (in the lower
latitudes) and 5% (in the North Atlantic and southern hemisphere extratropical latitudes). When
compared to CFSR, the differences were considerably higher (about −10% to 10%), particularly in
the southern hemisphere extratropical latitudes. These differences might be related to the different
temporal resolutions (6 h in PC20-E and ERA-Interim, and 3 h in CFSR), since CFSR is known to
better simulate extreme wave heights compared to ERA-Interim [72]; however, it also to slightly
overestimates Hs. These differences in the PC20-E MAV compared to the CFSR were higher in the
Arabian Sea (close to 20%).
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Figure 7. PC20-E Hs mean annual variability (MAV; %; Equation (3)) differences compared to
ERA-Interim and CFSR (PC20 minus the reanalysis). (a) PC20-E MAV; (b) difference between the
PC20-E and ERA-Interim respective MAVs; (c) difference between the PC20-E and CFSR respective
MAVs.

The PC20-E intra-annual variability was also evaluated through comparison with in situ Hs

observations (positions in Figure 1). For that matter, the comparisons were done separately for three of
the regional areas shown in Figure 1: extratropical North Pacific (ETNP), extratropical North Atlantic
(ETNA), and tropical North Atlantic (TNAO). The only buoy in the tropical eastern North Pacific
(TENP) area was included in the ETNP for convenience. The collocated (at the in situ measurements
positions) daily averaged Hs observations for PC20-E, ERA-Interim, and CFSR (averaged in each of
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the three areas) plotted in a Julian year are shown in Figure 8. The length of the PC20 time series
was matched with the observational records following [78] methodology, as described in Section 2.
In the background, the spread of the ensemble members is also shown as a grey band. Despite some
discrepancies, the intra-annual variability was well captured by the ensemble in the three areas. In
the ETNA, the agreement was better, with a slight overestimation (less than 0.1 m). During the last
months of the year (from day 250 onwards, i.e., from September to December), when wave heights
start to increase in the North Atlantic, the agreement between the PC20-E, the observations, and the
reanalysis was close to ideal. This agreement was not as good in the ETNP, where the Hs spread
between observations and reanalysis was also higher. On the other hand, in the first months of the year
(mostly form mid-January to April) the agreement was good in that area; however, from there onwards,
PC20-E overestimated wave heights by about 0.2 m. This overestimation, as mentioned before, can
be explained, to a great extent, by the differences in the land mask used in the climate simulations,
with greatest differences in the equatorial Pacific Ocean. For that reason, waves generated in the South
Pacific Ocean propagate more freely as swell, less damped, into the North Pacific sub-basin, leading
to this slight overestimation of wave heights in the PC20-E, mostly during the second half of the
year. In the TNAO area, with in situ observations mostly concentrated in the Gulf of Mexico and the
Caribbean Sea where swell penetration is lower, the agreement between PC20-E and the observations
and reanalysis was good for most of the year. There was, nevertheless, some underestimation during
the tropical cyclone season that can be linked to an underestimation of the wind speeds in JJA in that
area, as shown in Figure 6d.
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Figure 8. Julian year daily Hs (m) means (January to December intra-annual variability) of the mean
Hs (m) at observation positions for in-situ observations (black line), ERA-Interim (red line), CFSR (blue
line), and PC20-E (grey line) in the (a) ETNA, (b) ETNP, and (c) TNAO. The grey band corresponds to
the mean daily spread of the seven ensemble members.

The relatively low variability between the ensemble members in Figure 8 (shown in the back as a
grey band around the ensemble mean) can now be seen at a global scale in Figure 9, where the PC20-E
inconsistency (for Hs and Tm; absolute pairwise difference between the ensemble members PC20-1 to
PC20-7) is shown. The Hs inconsistency was relatively small: about 0.1 m or less in the extratropical
and high latitudes in DJA (only in the southern hemisphere in JJA), and less than half of that value in
the intertropical latitudes and marginal seas in both seasons. The PC20-E Tm inconsistency was slightly
higher than that of the Hs, or at least more evenly distributed in the global ocean, with values lower
than 0.1 s. The highest values can be found toward the eastern oceanic margins and in the northern
sector of the Indian Ocean in DJF, and also in the western South Atlantic in JJA. The intra-ensemble
variability, as seen from these values, was, therefore, low as a result of the single GCM-forcing strategy,
and it was certainly lower than in the multi-forcing ensemble in the article by [43].

The scatter plot in Figure 10 compares the ensemble with the in situ Hs observations. As in
Figure 7, the ERA-Interim and CFSR collocated wave heights are also included. The length of the
PC20-E time series was once again matched with the observational records following the methodology
in [78]. A quantile–quantile (Q–Q) plot is also included in Figure 10, with collocated PC-20-E, in situ
observations, and reanalysis. An overestimation of the ensemble’s highest wave heights can be seen in
the scatter plot compared to the three datasets. Lower wave heights were, on the other hand, slightly
underestimated. The overestimation was mostly due to the overestimation in the North Pacific, and it
was hardly present if the comparison was made only for the North Atlantic observations (not shown).
It is worthy of note that the CFSR wave heights were closer to the observations, slightly overestimating
them, while the ERA-Interim underestimated Hs (in agreement with [72]). A similar behavior can be
seen in the Q–Q plot, with PC20-E underestimating the lower quantile wave heights, while consistently
overestimating them in the higher-order ones, particularly the extreme wave heights. It is also worthy
to note the pronounced overestimation of extreme wave heights in the CFSR hindcast compared to
the observations. A summary of statistics of the PC20-E Hs comparison against the observations and
reanalysis at the observational positions is presented in Table 3. The high correlation coefficients
between PC20 and the observations and reanalysis (consistently higher than 0.93 for the observations
and ERA-Interim, and 0.88 for the CFSR) confirm the good scores of PC20-E, despite the generalized
overestimation of wave heights at these positions.
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Figure 10. (a) Scatter plot of the mean Hs (m) PC20-E (blue squares), ERA-Interim (red triangles), and
CFSR (green diamonds) against in situ observations, with the purple cloud dots in the background as
the Julian year daily means of PC20-E against observations per in situ measurement (26,280 dots, i.e.,
72 in situ measurements over 365 days). (b) Quantile–quantile (Q–Q) plot of Hs PC20-E (blue circles),
ERA-Interim (red circles), and CFSR (green circles) against in situ observations, with 10 to 90 quantiles
(every five quantiles) represented as open circles, and 91 to 99 quantiles (every quantile) represented as
closed circles.
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Table 3. Summary statistics of PC20-E, Era-Interim, and CFSR Hs comparisons against in situ
measurements. RMSE—root-mean-square error.

Bias (m) RMSE (m) r

PC20-E vs. Observations 0.16 0.39 0.93
PC20-E vs. ERA-I 0.22 0.40 0.94
PC20-E vs. CFSR 0.12 0.46 0.88

Taylor diagrams of the comparison between PC20-E and observations, separately for the ETNP,
ETNA, and TNAO areas, are shown in Figure 11. The comparison between each of the ensemble
members (PC20-1 to PC20-7) and observations, as well as similar comparisons for ERA-Interim and
CFSR, are also presented. The PC20-E showed better results (higher correlation coefficient and lower
RMSE) than any individual ensemble members. The variability, as represented by the standard
deviation, was similar between PC20-E and the ensemble members, and closer to the reanalysis. The
correlation between PC20-E and the observations was highest in the ETNA, and lowest in the TNAO,
despite the fact that the RMSE was lowest in the Caribbean and Gulf of Mexico compared to the other
two areas. In the TNAO, the PC20 scores were also more detached from those of the reanalysis.
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Figure 11. Taylor diagrams of Hs (m) PC20-E (blue circles), ERA-Interim (red circles), and CFSR
(green circles) against in situ observations in the (a) ETNA, (b) ETNP, and (c) TNAO. The grey circles
correspond to the seven ensemble members. The cosine of the angle in the polar plot is proportional
to the correlation between the observed Hs (m) and PC20 (ensemble and ensemble members), and
between observations and the reanalysis. The radius indicates the variability, as measured by the
standard deviation. The root-mean-square error (RMSE) is presented for the PC20 and the reanalysis.

The intra-annual variability of the PC20-E mean spatial bias (Equation (1)) and mean normalized
differences (spatially averaged) from the comparison with ERA-Interim and CFSR (daily means shown
in a Julian year) is presented in Figure 12 for each of the 13 regional areas, as well as for the global
ocean. The ensemble’s overestimation compared with ERA-Interim is clear, as shown in the previous
Figures, with a bias on the order of 0.2 and 0.25 m, slightly higher during the last quarter of the
year. This overestimation toward ERA-Interim (from 9 to 11%, also higher in the last quarter of the
year), is also clear in the global normalized differences. The global agreement of the PC20-E with
CFSR was considerably higher, with lower biases (from −0.1 to 0.15 m, and most of the year close
to zero) and also lower normalized differences (between −2% to 4%, but lower for most of the year).
When looking at the regional areas, the lowest biases and normalized differences in comparison with
ERA-Interim occurred in the extratropical areas, particularly in the ETNA, extratropical South Atlantic
(ETSA), and extratropical South Indian (ETSI) areas. The highest differences occurred in the Pacific
Ocean intertropical regions. The same occurred, with lower differences, for the comparison with CFSR.
Nevertheless, the CFSR comparison displayed a higher bias and relative difference in the tropical
North Indian (TNIO).

The intra-annual variability of the averaged PC20-E M-Scores (Equation (4)) was also computed
globally and for each of the 13 regional areas, as shown in Figure 13. The highest M-Score values
can be found in the ETNA area for the comparison with ERA-Interim (with an annual average of
860; see Table 4 for mean M-Score values). Similar values can be found for the comparison with
CFSR, consistently higher than 820 (annual average of 827). The M-score values for the remaining
extratropical areas can also be classified as high, particularly during the respective winter season) for
the comparison with ERA-Interim: consistently higher than 700, with the exception of the extratropical
South Pacific (ETSP) area. These scores were similar for the comparison with CFSR, although with
lower (higher) scores in the ETSA, ETSP, and ETSI (ETNP)—see Table 4. In the intertropical areas,
the M-Scores were still high, with mean values of 778 (696) and 664 (687) in the TNAO and TSAO,
respectively, for the ERA-Interim (CFSR) comparison. These values decreased in the intertropical
Pacific and Indian Ocean areas, for both comparisons, with the lowest M-score values occurring in the
tropical eastern South Pacific (TESP) area. Globally, the M-Scores were comparable for both sets of
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reanalysis (consistently higher than 750), with annual means of 808 and 751 for the comparisons with
ERA-Interim and CFSR, respectively. These M-Score values were comparable to or higher than the
ones shown in the article by [43], and onsistent with the ones shown for atmospheric CMIP5 GCM
evaluations in the article by [80], showing the relative high skill of PC20. Additional information can
be seen in Table 4 and Figure 14, where a graphic display of regional and global M-Scores can be
seen simultaneously.
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areas and for the global ocean, of the Hs (m) PC20-E mean spatial bias (a) against ERA-Interim, and
(b) against CFSR. The Hs (m) PC20-E mean normalized differences (c) against ERA-Interim, and (d)
against CFSR.
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Figure 15 displays the box plots for the  annual M-scores between the PC20-E and the 
reanalysis, globally and for each or the 13 regional areas. The respective annual and seasonal (DJF 
and JJA) means are also plotted. As a measurement of the intra-annual variability of the regional and 
global M-score, the inter-quartile range (IQR) was lower in the extratropical areas in the comparison 
with ERA-Interim, particularly in the ETNA and ETNP, where the differences between the lower and 
higher extremes were also lower, particularly in the ETNA area. While the same occurred in the 
northern hemisphere extratropical areas, regarding the CFSR comparison, it was not exactly the same 
for the southern hemisphere, particularly in the ETSP. The highest IQR (intra-annual variability) can 
be seen in the TESP area (which also had the lowest annual and seasonal M-score means) for both 
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Table 4. Summary of regional and global M-Scores. ETNP—extratropical North Pacific; TENP—tropical
eastern North Pacific; TWNP—tropical western North Pacific; TWSP—tropical western South Pacific,
TESP—tropical eastern South Pacific, ETSP—extratropical South Pacific; ETNA—extratropical North
Atlantic; TNAO—tropical North Atlantic; TSAO—tropical South Atlantic; ETSA—extratropical South
Atlantic; TNIO—tropical North Indian; TSIO—tropical South Indian; ETSI—extratropical South Indian.

PC20 vs. ERA-I PC20 vs. CFSR

Annual DJF JJA Annual DJF JJA

ETSA 704 714 691 630 713 611
ETNA 860 861 858 827 824 834
ETSP 642 601 659 536 628 428
ETNP 765 798 730 796 792 792
ETSI 706 708 714 609 658 551

TSAO 664 738 597 687 669 739
TNAO 778 851 715 696 726 662
TESP 404 298 483 490 509 382
TWSP 572 540 592 618 597 648
TENP 485 613 418 608 720 547
TWNP 650 597 608 676 669 612
TSIO 753 634 825 741 757 651
TNIO 684 591 808 643 600 681
Global 808 768 853 751 760 750

Figure 15 displays the box plots for the Hs annual M-scores between the PC20-E and the reanalysis,
globally and for each or the 13 regional areas. The respective annual and seasonal (DJF and JJA) means
are also plotted. As a measurement of the intra-annual variability of the regional and global M-score,
the inter-quartile range (IQR) was lower in the extratropical areas in the comparison with ERA-Interim,
particularly in the ETNA and ETNP, where the differences between the lower and higher extremes
were also lower, particularly in the ETNA area. While the same occurred in the northern hemisphere
extratropical areas, regarding the CFSR comparison, it was not exactly the same for the southern
hemisphere, particularly in the ETSP. The highest IQR (intra-annual variability) can be seen in the
TESP area (which also had the lowest annual and seasonal M-score means) for both sets of reanalysis.
In Figure 13, it can be seen that the M-scores were comparable in terms of magnitude and variability,
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particularly in the extratropical areas. It is interesting to note that, while the mean M-regional scores
for the extratropical areas were higher in the comparison with ERA-Interim (735, 737, and 730, for the
annual, DJF, and JJA means, respectively), the situation somehow reversed in the intertropical areas
when compared to CFSR (680, 723, and 643, respectively).
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4. Summary and Conclusions

The performance skills of a single-forcing (EC-Earth), single-wave model (WAM), and
single-scenario (RCP8.5) dynamic wave climate ensemble in reproducing the present time wave
climate (as represented by the historic period) were presented. The ensemble was designed with the
goal of reducing the variability inherent in using a multi-forcing GCM approach to force the same
wave model. The PC20-E ensemble’s historic period (1979–2005) was extensively compared against
a set of 72 in situ wave-height observations, as well as to the ERA-Interim reanalysis [49] and CFSR
hindcast [50].

It was shown that the differences between the ensemble and the reanalyzed DJF and JJA
mean and extreme Hs, mean Tm, and mean θm can be considered as relatively low, in line with
(or lower than) previous global wave climate studies. The PC20-E comparison with the 72 in situ Hs

observations showed a good agreement, with small biases and high correlation coefficients, as well
as a good representation of the intra-annual variability. Nevertheless, the ensemble had a tendency
to overestimate (underestimate) the mean wave heights, in both seasons, compared to ERA-Interim
(CFSR). The agreement with ERA-Interim was better in the North Atlantic, and with CFSR in the North
Pacific. The comparison with the reanalysis was weaker in the Arabian Sea. Apparently, EC-Earth
has some difficulties in resolving the South Asian Monsoon. Nevertheless, most probably due to
resolution, ERA-Interim winds already had problems in that area, as shown by [81,82]; hence, a
dedicated study for this area would be needed. The PC20-E overestimation of extreme wave heights
was lower; in fact, compared to ERA-Interim, the ensemble had almost equal areas of over- and
underestimation in both seasons. Compared to CFSR, the ensemble extreme Hs seasonal fields were
underestimated almost across the entire global ocean. It was shown that ERA-Interim underestimates
extreme wave heights, while CFSR has a tendency to overestimate them [72]. Figure 16 shows the
mean ERA-Interim and CFSR inconsistency (mean absolute pairwise difference). As can be seen, the
differences between the reanalysis and the hindcast can reach values of 0.7–0.8 m in the Southern Ocean
storm belt during the austral winter, and values on the order of 0.6–0.7 m in the extratropical latitudes
of both hemispheres in DJF. These differences are mostly due to the overestimation (underestimation)
of the CFSR (ERA-Interim) wave heights. It would be tempting to state that, with the PC20-E Hs

seasonal fields somewhere in between, they are closer to reality. Nevertheless, without a third global
wave dataset and further investigation, that cannot be concluded. The ensemble comparison with the
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ERA-Interim mean Tm seasonal fields also revealed some overestimation; however, it was lower than
that seen for the mean seasonal wave heights.
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Figure 16. Reanalysis inconsistency for Hs (m) (mean absolute difference between ERA-Interim and
CFSR) for (a) DJF and (b) JJA.

At a regional level, the PC20-E Hs had a rather good performance in the extratropical areas of
both hemispheres, particularly in the North Atlantic sub-basin, with low biases and relative differences
during most of the year, especially compared to the CFSR. These skills were lower in the areas along
the equatorial Pacific Ocean. Globally, the inter-annual variability of the biases from the ERA-Interim
and CFSR comparisons showed values between 0.2 and 0.28 m, and −0.1 and 0.1 m, respectively.
To a certain extent, a similar situation occurred for the PC20-E regional and global M-Scores, i.e.,
higher M-Scores in the extratropical areas (in this situation, slightly higher for the comparison with
ERA-Interim than with CFSR), and lower in the tropical areas, particularly in the Pacific Ocean, in line
with the multi-forcing ensemble of [43].

The agreements between the Hs, Tm, and θm PC20-E and reanalysis, and between PC20-E and the
in situ Hs observations show that the WAM model, forced by the EC-Earth winds and SIC, produces
considerably realistic results of the global wave climate at the end of the twentieth century wave
climate. These results give a good degree of confidence in the ability of the ensemble to simulate a
realistic climate change signal. Future research on the impact of climate warming on future wave
climate, using the single-forcing, single-model, and single-scenario dynamic wave climate ensemble is
to be conducted following the present study, including the impact on wave power, and on the wind
sea and swell patterns.
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Appendix A Ensemble Output Parameters, and In Situ Measurement and Regional Area Details

Table A1. Integrated output parameters.

Parameter Number Parameter Dimensions

1 Wind speed U10 ms−1

2 Wind direction ϕ degrees from north (toward)
3 Friction velocity ms−1

4 Drag coefficient m
5 Significant wave height m
6 Total peak period s
7 Total mean period s
8 Total Tm1 period s
9 Total Tm2 period s
10 Total mean wave direction degrees from north (toward)
11 Total directional spread degrees
12 Normalized wave stress %
13 Sea significant wave height m
14 Sea peak period s
15 Sea mean period s
16 Sea Tm1 period s
17 Sea Tm2 period s
18 Sea mean wave direction degrees from north (toward)
19 Swell significant wave height m
20 Swell peak period s
21 Swell mean period s
22 Swell Tm1 period s
23 Swell Tm2 period s
24 Swell mean wave direction degrees from north (toward)
25 Goda peakness parameter -
26 Kurtosis -
27 Benjamin Feir index -
28 Normalized maximum wave height m
29 Maximum wave period s
30 Interpolated peak frequency Hz
31 Peak direction degrees from north (toward)
32 Mean square slope -

Table A2. In situ and buoy wave measurements details. Position refers to the mean position of the
buoy during its time series. WMO—World Meteorological Organization.

WMO ID Position Time Series
(Years) WMO ID Position Time Series

(Years)

41004 32.47◦ N, 78.90◦ W 37 46035 57.01◦ N, 177.70◦ W 30
41006 29.32◦ N, 77.35◦ W 14 46036 48.35◦ N, 133.92◦ W 29
41009 28.51◦ N, 80.19◦ W 27 46041 47.36◦ N, 124.63◦ W 28
41013 33.44◦ N, 77.66◦ W 12 46042 36.78◦ N, 122.35◦ W 28
41025 35.08◦ N, 75.35◦ W 12 46047 32.55◦ N, 119.55◦ W 24
41041 14.35◦ N, 46.05◦ W 10 46054 34.25◦ N, 120.45◦ W 22
42001 25.92◦ N, 89.93◦ W 36 46059 38.04◦ N, 129.95◦ W 21
42002 25.64◦ N, 93.96◦ W 36 46063 34.27◦ N, 120.68◦ W 10
42003 25.91◦ N, 85.50◦ W 37 46066 52.70◦ N, 154.98◦ W 15
42019 27.91◦ N, 95.20◦ W 26 46069 33.68◦ N, 120.20◦ W 12
42020 26.97◦ N, 96.60◦ W 26 46075 53.92◦ N, 160.81◦ W 11
42035 29.13◦ N, 94.60◦ W 22 46082 59.66◦ N, 143.54◦ W 13
42036 28.51◦ N, 84.51◦ W 22 46083 58.25◦ N, 138.00◦ W 14
42040 29.01◦ N, 88.15◦ W 20 46086 32.50◦ N, 118.02◦ W 12
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Table A2. Cont.

WMO ID Position Time Series
(Years) WMO ID Position Time Series

(Years)

42056 19.85◦ N, 85.00◦ W 10 46132 49.73◦ N, 127.93◦ W 22
44004 38.69◦ N, 70.36◦ W 29 46147 51.82◦ N, 131.22◦ W 22
44009 38.48◦ N, 74.65◦ W 19 46184 53.93◦ N, 138.84◦ W 28
44011 41.09◦ N, 66.59◦ W 21 46205 54.22◦ N, 133.86◦ W 27
44014 36.60◦ N, 74.82◦ W 25 46206 48.87◦ N, 126.00◦ W 27
44017 40.70◦ N, 72.03◦ W 13 46207 50.88◦ N, 129.91◦ W 26
44024 42.30◦ N, 65.90◦ W 11 46208 52.51◦ N, 132.69◦ W 25
44025 40.25◦ N, 73.19◦ W 24 46213 40.30◦ N, 124.72◦ W 16
44027 44.29◦ N, 67.31◦ W 12 46214 37.93◦ N, 123.49◦ W 19
44138 44.25◦ N, 53.62◦ W 22 46218 34.48◦ N, 120.75◦ W 20
44139 44.21◦ N, 57.36◦ W 25 51202 21.41◦ N, 157.69◦ W 15
44251 46.45◦ N, 53.39◦ W 18 62023 51.40◦ N, 7.90◦ W 15
46001 56.15◦ N, 148.10◦ W 36 62107 50.10◦ N, 6.10◦ W 21
46003 51.92◦ N, 155.85◦ W 19 62116 57.90◦ N, 1.45◦ E 11
46004 50.95◦ N, 135.96◦ W 37 62133 57.15◦ N, 0.95◦ E 17
46005 46.05◦ N, 131.00◦ W 35 62144 53.89◦ N, 1.54◦ E 17
46006 40.85◦ N, 137.70◦ W 37 62145 53.21◦ N, 2.59◦ E 17
46012 37.41◦ N, 122.78◦ W 35 LF4B 60.60◦ N, 3.70◦ E 17
46013 38.22◦ N, 123.32◦ W 34 TFBLK 65.70◦ N, 24.80◦ W 13
46015 42.75◦ N, 124.83◦ W 13 TFGSK 64.10◦ N, 22.90◦ W 13
46026 37.75◦ N, 122.76◦ W 33 TFKGR 65.65◦ N, 13.60◦ W 13
46028 35.75◦ N, 121.80◦ W 32 TFSRT 63.30◦ N, 20.30◦ W 13

Table A3. Regional area limits from Figure 1, as in Alves et al. 2006. LAT—latitude; LON—longitude.

AREA LAT (◦) LON (◦)

ETSI 78◦ S–25◦ S 21◦ E–145◦ E
ETSP 78◦ S–25◦ S 145◦ E–70◦ W
ETSA 78◦ S–25◦ S 69◦ W–20◦ E
TSIO 24◦ S–0◦ 21◦ E–(100◦ E (N); 135◦ E (S))
TWSP 24◦ S–0◦ (101◦ E (N); 136◦ E (S))–130◦ W
TESP 24◦ S–0◦ 129◦ W–65◦ W
TSAO 24◦ S–0◦ 64◦ W–20◦ E
TNIO 1◦ N–30◦ N 41◦ E–100◦ E
TWNP 1◦ N–30◦ N 101◦ E–180◦ E
TENP 1◦ N–30◦ N Land
TNAO 1◦ N–38◦ N (101◦ W (N); 69◦ W (S))–40◦ E
ETNP 31◦ N–78◦ N 101◦ E–102◦ W
ETNA 39◦ N–78◦ N 101◦ W–100◦ E
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