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Abstract: Maintenance costs related to offshore wind farms are severely limiting their potential for
being profitable. This paper proposes a new mathematical model that considers how maintenance
tasks should be scheduled and performed by technicians transported using a fleet of dedicated
vessels. The model is novel in its combination of modelling several work shifts and including
vessels that can stay offshore for several shifts, while handling large maintenance tasks and accurate
calculation of downtime costs. Simulation is used to evaluate the performance of the model in
its pure form, as well as when solved heuristically using a rolling horizon heuristic. The results
indicate that the end-of-horizon effects of the mathematical formulation are handled effectively.
Computational experiments also illustrate how the mathematical model coupled with simulation can
be used to evaluate strategic decisions regarding the composition of a vessel fleet used to execute
maintenance tasks.
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1. Introduction

Global electricity demand is increasing rapidly [1]. Wind power is among the fastest growing
electrical generation systems in the world [2] and is expected to contribute substantially to the future
energy consumption [3]. Wind power generation is driven offshore by several factors. One of the most
important factors is space, as space is quickly becoming scarce for the installation of onshore wind
turbines. Moving offshore gives the benefit of greater areas available for the installation of wind farms,
it also allows for larger wind farms and for installation close to major urban cities. Installing wind
turbines far from shore reduces the noise and visual impact. This will, in combination with less space
restrictions, make it possible to use other designs for the turbine to improve efficiency [4]. There are
generally higher wind speeds offshore than onshore, which results in a greater energy potential for
offshore turbines. An onshore turbine normally has around 2000–2300 full load hours per year while
an offshore turbine normally reaches more than 3000 full load hours [5,6]. It is expected that future
wind farms will be located even further offshore than wind farms operating today, and that they will
increase in wind turbine capacity [7]. Between 2011 and 2014 the installed capacity of offshore wind
more than doubled [8].

Offshore wind energy is still far more costly than conventional energy sources [3], approximately
50% more expensive than onshore wind energy, and is dependent on governmental subsidies [5,6]. This
is to a large extent due to higher installation costs, but also due to higher operation and maintenance
(O&M) costs. O&M can account for up to a third of the overall lifetime costs for an offshore wind
farm [9]. O&M costs include transportation costs, technician salaries and costs of repair actions and
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spare parts. They also include loss of revenue caused by production stop when a turbine is shut down
during failures and maintenance operations. The high O&M costs of offshore wind are caused by
rougher conditions than for onshore turbines. Rougher weather and salty water make offshore wind
turbines more exposed to breakdowns. Rough weather and greater distances from shore also makes
the turbines more difficult and expensive to access, and performance of maintenance is dependent
on periods of good weather [4]. Difficulties of accessing turbines to repair failures may lead to long
periods of downtime for the turbines and this can cause large financial losses.

The costs of offshore wind must be reduced in order to achieve a competitive price in the market.
As O&M costs account for a substantial part of the total costs for offshore wind, a reduction of these
costs is crucial to bring down the total costs. This is even more important for future wind farms, where
installation further offshore decreases turbine accessibility and increases O&M costs. Efficient use
of the maintenance vessel fleet and maximum utilization of periods of good weather is important to
minimize the O&M costs. This creates a demand for effective scheduling of the maintenance activities.

The contributions in this paper include: (1) presenting a novel mathematical model for the
scheduling and routing of vessels to perform maintenance activities across multiple wind farms over
several periods, modelling both vessels that must return to an onshore depot between each shift
and vessels that can stay offshore for multiple periods without going back to the depot; (2) using
simulations to evaluate the tactical planning model, where new maintenance operations appear over
the simulation horizon, including actual needs for maintenance as a result of alarms; (3) analyzing
a rolling horizon heuristic and the use of symmetry breaking constraints to reduce runtimes when
solving the mathematical model; (4) showing that the mathematical model coupled with simulations
can be used to evaluate strategic decisions regarding the size and mix of vessel fleets used to conduct
maintenance.

Existing literature presents several related contributions. A review of the state-of-the-art of
maintenance logistics in the offshore wind industry per 2014 is given by Shafiee in [10]. Much research
has been done regarding optimal offshore wind farm design. Several papers present optimization
models where maintenance and repair costs are included, such as the models by Chen and MacDonald [11]
and Afanasyeva et al. [12]. There is also some literature on the selection of maintenance strategies.
Maintenance strategies are studied for example by Karyotakis [13] and Besnard [14]. An example
of a specific field of interest within maintenance strategies are opportunistic maintenance strategies,
investigated by among others Ding and Tian [15,16]. Besnard et al. [17] present a model that determines
the optimal location of maintenance accommodations in combination with other maintenance support
organization aspects. Poore and Walford [18] introduced and studied maintenance outsourcing.

An overview of decision support models for O&M strategies for offshore wind farms is given by
Hofmann [19]. A majority of these models use simulation tools to analyze O&M related costs, and
the use of optimization models for analyzing O&M costs are limited. Halvorsen-Weare et al. [20],
Gundegjerde et al. [21] and Stålhane et al. [22] use optimization models to investigate vessel fleets
and determine the optimal fleet size and mix for an offshore wind farm. These models can be used as
support when deciding when and how many vessels to purchase or rent, addressing decisions on a
strategic level for O&M in offshore wind farms.

Dai et al. [23] present an optimization model for the routing and scheduling problem of a given
vessel fleet for O&M in an offshore wind farm. The model minimizes costs related to travelling to the
respective turbines and delaying tasks. The time aspect of the model is a finite, short planning horizon,
discretized in shorter time steps (days or shifts). It allows for tasks being performed in parallel and
includes pick-up and delivery of personnel. The model only considers vessels that must return to an
onshore depot between each time period. Irawan et al. [24] presents a similar model but includes
technicians and capacities at onshore bases. They solve the problem using a priori column generation.
In both models, downtime costs are approximated by setting a fixed cost depending on the period in
which the maintenance is conducted. Stålhane et al. [25] on the other hand, calculates downtime costs
more precisely, but only considers a model spanning one time period.
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A genetic algorithm to schedule maintenance tasks for both onshore and offshore wind farms is
presented by Fonseca et al. [26]. Several similarities with the problem studied in this paper can be found
in the workover rig routing problem (WRRP). The WRRP originates from O&M of onshore oil fields,
where a set of workover rigs located at different positions service oil wells that require maintenance.
For safety reasons, the production of a well that requires maintenance is either reduced or stopped.
The objective of the WRRP is to minimize the total lost production. For the WRRP, Duhamel et al. [27]
propose and compare three mixed integer models for solving the problem. Ribeiro et al. compare
three different metaheuristics [28] and present an exact branch-price-and-cut algorithm for solving the
WRRP [29].

Compared to existing literature, this paper provides an extension primarily by considering both
vessel that can stay offshore for several periods, in combination with vessels that must return to the
depot between each shift. In addition, it is the first paper to consider multiple periods with a more
precise calculation of downtime costs, and to consider maintenance tasks that may span several time
periods. Finally, a dynamic version of the problem is considered, where simulation is used to evaluate
the model and its decisions. While there is a large literature on dynamic problems considering routing
of vehicles, see for example the surveys of Berbeglia et al. [30] and Pillac et al. [31], this has not been
consider before in the context of routing and scheduling for performing maintenance tasks at offshore
wind farms.

The remainder of the paper is organized as follows. In Section 2 we describe the problem in detail.
A mathematical model of the static planning problem is given in Section 3. A rolling horizon heuristic
and symmetry breaking restrictions are discussed in Section 4. Section 5 reports on results from a
computational study, followed by our concluding remarks in Section 6.

2. Problem Description

This work addresses the scheduling of maintenance tasks and routing of maintenance vessels for
offshore wind farms. It is based on a situation where one or more wind farms, operated by the same
company, have a joint vessel fleet with one onshore depot. All turbines within the same wind farm are
assumed to be identical. Tactical decisions must be made over a time horizon of several days, spanning
a number of work shifts equalling the number of days. In each shift, maintenance tasks must be
assigned to vessels to minimize the cost of performing maintenance. The cost consists of transportation
costs and downtime costs. The latter is a result of lost income when turbines are shut down due to
failures or to perform maintenance. In addition, artificial penalty costs are considered for maintenance
tasks not performed within the planning horizon, to avoid postponing required maintenance.

The setting is based on a periodic maintenance strategy with a condition-monitoring system.
Planned preventive maintenance tasks are known at the beginning of the planning horizon. When
a failure occurs at a turbine, an alarm is triggered and the turbine shut down. When the turbine is
inspected by a crew of technicians, the type of corrective maintenance that is required becomes known.
False alarms, which means that no further maintenance action is required, are common. Corrective
tasks due to alarms prior to the planning period and the alarms for the planning period is assumed
known at the beginning of the planning period. Some tasks cannot be performed until a specified shift
in the planning period. This applies to tasks that require spare parts that are not in stock. For these
tasks, the first possible shift they can be performed in is assumed known after the corresponding alarm
is checked.

The downtime of a turbine requiring corrective maintenance starts when the alarm is triggered
and ends when the maintenance is completed and the technicians have been transferred from the
turbine and back to their vessel. The time that is required to transfer technicians from a vessel to
a turbine is referred to as transfer time. For preventive tasks the downtime begins when a vessel
starts transferring technicians to the turbine and lasts until the technicians have returned to the vessel.
The execution of a maintenance task is allowed to be paused before the task is completed, but only if
the work is resumed in a different shift. For corrective tasks the turbine cannot be started until the task
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is completed. For preventive tasks, however, the turbine can be re-started between shifts if the work
spans several shifts. Only one vessel can contribute to perform a task during each shift.

At most one maintenance task is required on each turbine in each shift. If several failures occur
they are grouped together as one maintenance task. Corrective tasks are preferably performed as soon
as possible to minimize downtime costs. For preventive maintenance, the desired number of tasks
to be performed depends on the weather. To ensure that all yearly preventive tasks are performed,
a target number of preventive tasks is determined for the planning period. If the energy production
during the planning period is low, it can be beneficial to perform extra preventive tasks in addition to
the target number of tasks.

Maintenance tasks can be executed in parallel. This means that a vessel can leave technicians
at turbines while delivering other technicians to different turbines. After working on the task for
the scheduled amount of time, the technicians are picked up by the same vessel. Figure 1 illustrates
the operations of a single vessel during a single shift, showing how the vessel ambulates between
six different turbines to perform maintenance. Some tasks require the vessel to stay at the turbine,
for example when needing more extensive equipment or when tasks involve sub-sea operations.
The number of technicians required for different types of maintenance tasks is fixed, i.e., the number
of technicians to perform a task cannot be increased to reduce the completion time of the task. It is also
assumed that a technician crew belongs to one vessel, and the crew cannot be picked up by a different
vessel during the shift.

Figure 1. Example of a route for a vessel that performs tasks in parallel. The vessel delivers technicians
to turbine 1, 2 and 3 and waits until the tasks are performed. The vessel then picks up the technicians
and delivers them to turbine 4, 5 and 6. The arc numbers correspond to the order the distances
are travelled.
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The vessel fleet is given and consists of two different categories of vessels: Accommodation
Vessels (AVs) and Crew Transfer Vessels (CTVs). Vessels vary in speed, fuel consumption, capacity,
onboard equipment, and how often they need to return to the depot. All vessels may therefore not
be compatible with all types of maintenance tasks. Vessels are also limited by weather conditions
regarding when they can perform maintenance tasks, and these limits vary for different vessel types.

AVs and CTVs can leave the depot at most once during a shift. CTVs are required to return to
the depot by the end of the shift, and they are not allowed to travel between wind farms. AVs can
spend the time between shifts to travel between wind farms, thereby utilizing all the time in a shift to
perform maintenance. However, travelling to or from the depot happens within shifts, as technicians
can not leave the depot before their first shift starts or return after their last shift ends. AVs are required
to return to the depot within a given number of shifts. They cannot leave the depot the same shift they
return to the depot due to the time needed for preparations and loading of equipment and spare parts.

The scheduling of maintenance is affected by the weather conditions during the planning period,
through the wind speeds and the wave conditions. The energy production, and therefore also the
downtime costs, varies with the wind speed. The wind speed is taken as constant within a shift, hence,
also the unit downtime cost for a turbine is fixed within a shift. The vessels have limitations on wave
conditions for when they can transfer technicians to and from turbines, making the availability of
the wind turbines dependent on the weather. The time slots within a shift when weather conditions
are suitable for a vessel to transfer technicians to the turbine and perform maintenance are defined
as weather windows. Factors that can influence these weather windows are wave heights, wave
periods, wave directions, swell, currents, and wind speeds, in combination with the capabilities of a
given vessel. A CTV can only leave the depot during a shift if its weather window during the shift
is sufficiently long. Only one weather window is defined for each shift for each vessel. The weather
forecast for the current time period is known when planning the schedules, as forecasting models have
been developed to predict the wind speeds up till seven days ahead [32].

3. Mathematical Model

This section presents a mathematical model optimizing the routing and scheduling decisions when
planning maintenance operations at offshore wind farms. The problem is a static and deterministic
routing and scheduling problem. A short planning period is discretized into shorter time steps (shifts).
The model outputs maintenance schedules for each shift in the planning period.

There are two levels of routing in the model, where the first level is routing of maintenance vessels
between the depot and the wind farms. The problem is considered as a graph, where the depot and
the wind farms are called nodes. The depot is represented by two nodes, a start depot node where
each vessel starts a route, and a end depot node where the routes end. If a CTV stays in the depot
during a shift, it is routed directly from the start depot node to the end depot node. The arcs between
the nodes are associated to both travelling times and travelling costs.

The second level of routing consists of routing vessels between turbines that requires maintenance
within a wind farm. The turbines requiring maintenance are represented by maintenance tasks.
To simplify the model, the location of the turbines within a wind farm is ignored, and the travel times
between each pair of turbines are considered equal: The distance between the turbines are considered
negligible compared to the distance between nodes. To capture the time needed to travel between
tasks and the related costs, an average internal transport time and transport cost are used instead.

Each turbine requiring maintenance is represented by two tasks, one delivery task and one pick-up
task. As vessels can perform maintenance in parallel, technicians needs to be both dropped of at the
turbine and then later picked up. The delivery task represents the beginning of the maintenance and
the pick-up represents that technicians return to their vessel.

The model is designed to allow for some flexibility in the number of preventive tasks to be
performed. There are more preventive tasks available than the target amount of preventive tasks to be
completed. This is to allow for performing more preventive maintenance when the energy production
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is low. There is a distinction between performing a task and completing a task. Performing a task during
a shift means working on the task during this shift, independent of whether the task is finished or not
this shift. Completing a task during a shift means finishing the task during this shift.

In the following, lower-case letters are used to represent variables and indices, and capital letters
are used to represent sets, constants, and used as superscripts to differentiate between sets and
constants with otherwise equal names.

Indices

i,j Nodes
m,n, l Maintenance tasks
k Type of maintenance tasks
v Vessels
s Shifts

Sets

NW All wind farm nodes, NW = {1, 2, . . . , |NW |}, NW ⊂ N
N All nodes, N = {0, 1, 2, . . . , (|NW | + 1)}. Nodes i ∈ {1, 2, . . . , |NW |} are wind farms and

nodes i ∈ {0, (|NW |+ 1)} are the depot
K All maintenance task types
M All maintenance tasks including both delivery tasks and pick-up tasks, M = {0, 1, 2, . . . , |M|}
M− All delivery tasks (representing the actual maintenance tasks), M− = {1, 2, . . . , |M−|},

M− ⊂ M
M−i All delivery tasks at wind farm i, i ∈ NW , M−i ⊆ M−

M−ik All delivery tasks of type k at wind farm i, i ∈ NW , k ∈ K, M−ik ⊆ M−i
M+ All pick-up tasks M+ = {(|M−|+ 1), (|M−|+ 2), . . . , (2|M−|)}, M+ ⊂ M
M+

i All pick-up tasks at wind farm i, i ∈ NW , M+
i ⊆ M+

MC All corrective maintenance tasks, MC ⊆ M−

MP All preventive maintenance tasks, MP ⊆ M−

V All vessels
VA All AVs, VA ⊆ V
VC All CTVs, VC ⊆ V
Vm All vessels that can perform maintenance task m, Vm ⊆ V
VA

m All AVs that can perform maintenance task m, VA
m = Vm ∩ VA

VC
m All CTVs that can perform maintenance task m, VC

m = Vm ∩ VC

S All shifts of the planning period
S0 All shifts of the planning period, including the last shift of the previous planning period, shift 0

Constants

TT
ijv Transportation time between node i ∈ N and node j ∈ N for vessel v ∈ V

TMT
m Duration of task m ∈ M−

TPD Time to transfer technicians from vessel to turbine and from turbine to vessel (transfer time)
T IT

iv Average time to travel between turbines in wind farm i ∈ NW for vessel v ∈ V
DSTART

v Number of shifts a vessel v ∈ VA has been offshore when the planning period starts
DLIMIT

v Number of shifts a vessel v ∈ VA can stay offshore without returning to the depot
PSTART

iv 1 if vessel v ∈ VA is located at node i ∈ N at the start of the planning period, 0 otherwise
TDAY Number of time units in a day
TSHIFT

s Length of shift s ∈ S
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TMIN Minimum length of weather window in a shift for a CTV to leave the depot during the shift
LW

vs Lower bound for the weather window of vessel v ∈ V in shift s ∈ S
UW

vs Upper bound for the weather window of vessel v ∈ V in shift s ∈ S
B The desired number of preventive maintenance tasks to be completed during the

planning period
Rms 1 if all necessary spare parts and equipment for performing task m ∈ M− are available in

shift s ∈ S, 0 otherwise
Em 1 if task m requires that the vessel performing the task is located at the turbine while the

task is being performed, 0 otherwise
Qv Technician capacity of vessel v ∈ V
Pm Number of technicians needed to perform task m ∈ M, positive for delivery tasks and

negative for pick-up tasks
CT

ijv Transportation costs between node i ∈ N and node j ∈ N for vessel v ∈ V
CLP

ms Downtime costs per time unit during shift s ∈ S due to loss of production when shutting
down the turbine where maintenance task m ∈ M− is located

COUT
v The cost for vessel v ∈ VA to stay offshore between two shifts

CIT
v The average internal transportation cost for vessel v ∈ V to travel to a maintenance task

m ∈ M− inside a wind farm
CNP

m The penalty cost per shift of not completing a preventive maintenance task during the
planning period

CNC
m The penalty cost per shift of not completing a corrective maintenance task m ∈ MC during

the planning period
CNP∗

m The penalty cost per time unit of remaining work for a preventive maintenance task m ∈ MP

that is not completed within the planning period
CNC∗

m The penalty cost per time unit of remaining work for a corrective maintenance task m ∈ MC

that is not completed within the planning period
Kms 1 if the energy production during shift s ∈ S is below a specified limit for when to perform

m ∈ M− ∩MP as extra preventive maintenance, 0 otherwise
δ Small value greater than zero

Decision variables

xmvs 1 if vessel v ∈ Vm is used to perform maintenance task m ∈ M during shift s ∈ S, 0 otherwise
yijvs 1 if vessel v ∈ V travels directly between node i ∈ N and j ∈ N, i 6= j, during shift s ∈ S,

0 otherwise
zmnvs 1 if vessel v ∈ Vm ∩Vn performs maintenance task n ∈ M directly after maintenance task

m ∈ M during shift s ∈ S, 0 otherwise
wivs 1 if vessel v ∈ VA stays at node i ∈ N between shift s ∈ S and (s + 1) ∈ S, 0 otherwise
tmvs The time vessel v ∈ Vm starts maintenance task m ∈ M during shift s ∈ S
lms Time counter for how long the turbine where maintenance task m ∈ M− is located is shut

down during shift s ∈ S. The time counter for shift s starts at 0 when the shift starts and
reaches its maximum at the beginning of the next shift, s + 1

cm The penalty cost of a task m ∈ M− that is not completed during the planning period
pmvs The number of technicians at vessel v ∈ Vm immediately after visiting the turbine of task

m ∈ M during shift s ∈ S
fms 1 if task m ∈ M− is completed before the end of shift s ∈ S (during shift s or during earlier

shifts than s), 0 otherwise
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Objective function

Min Z = ∑
i∈N

∑
j∈N

∑
v∈V

∑
s∈S

CT
ijvyijvs, (1a)

+ ∑
m∈M−

∑
v∈Vm

∑
s∈S

CIT
v xmvs, (1b)

+ ∑
i∈NW

∑
v∈VA

∑
s∈S

COUT
v wivs, (1c)

+ ∑
m∈M−

∑
s∈S

CLP
ms lms, (1d)

+ ∑
m∈MC

∑
s∈S

CNC
m (1− fms), (1e)

+ ∑
m∈MP

∑
s∈S

CNP
m (1− fms), (1f)

+ ∑
m∈M−

cm (1g)

The objective function aims to minimize the total costs of the problem. This includes both real
costs and penalty costs. The real costs of the problem are represented by part (1a)–(1d). Part (1a)
represents the transportation costs for the vessels between the depot and the wind farms, while
part (1b) represents the internal transportation costs within a wind farm. Part (1c) represents the costs
for AVs to stay offshore between shifts, i.e., night costs, and part (1d) represents the downtime costs.

Penalty costs are introduced to give incentives to perform tasks, and are represented by
part (1e)–(1g). Part (1e) and part (1f) are penalty costs for not completing a task during a shift,
where (1e) applies for corrective tasks and (1f) for preventive tasks. These parts make sure that the
respective tasks are performed within a shift if there is free vessel capacity. There is also an incentive
to work on tasks for which there is insufficient time to complete during the planning period, if there is
free vessel capacity. Part (1g) gives a penalty cost for each task that is not completed based on how
much time there is left of the task at the end of the planning period.

The constraints are grouped in constraints concerning flow of CTVs, flow of AVs, execution of
tasks, time management, precedence of tasks, downtime, technicians balances and the domain of the
decision variables.

Constraints for the flow of CTVs:

∑
j∈N

y0jvs = 1, v ∈ VC, s ∈ S, (2)

∑
i∈N

yi|N|vs = 1, v ∈ VC, s ∈ S, (3)

y0|N|vs = 1, v ∈ VC, s ∈ S | (UW
vs − LW

vs) < TMIN , (4)

∑
i∈N

yijvs = ∑
i∈N

yjivs, j ∈ NW , v ∈ VC, s ∈ S, (5)

∑
i∈N

∑
j∈N

yijvs ≤ 2, v ∈ VC, s ∈ S. (6)

All CTVs must during each shift leave the start depot node, i = 0, and arrive at the end depot
node, i = |N|. This is ensured by Constraints (2) and (3). Constraint (4) prevents that a CTV leaves the
depot during a shift where the weather window for this vessel is shorter than a specified minimum
requirement. Constraint (5) conserves node flow for CTVs by ensuring that when a CTV visits a wind
farm node during a shift, it also leaves the node during the same shift. As CTVs cannot travel between
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wind farms during shifts, they can travel at maximum twice during each shift. This is restricted by
Constraint (6).

Constraints for the flow of AVs:

wiv(s−1) + ∑
j∈N

yjivs = ∑
j∈N

yijvs + wivs, i ∈ NW , v ∈ VA,

s ∈ S0 \{0}, (7)

∑
j∈N

y0jvs = w|N|v(s−1), v ∈ VA, s ∈ S0 \{0}, (8)

w|N|vs = ∑
j∈N

yj|N|vs, v ∈ VA, s ∈ S. (9)

Constraint (7) conserves node flow for AVs. If an AV is located at a wind farm at the beginning of
a shift, it either has to depart from this wind farm at the end of this shift or stay at this wind farm until
the next shift. Constraints (8) and (9) conserve node flow for AVs to and from the depot node. An AV
can only leave the depot during a shift if it was located at the depot at the end of the previous shift,
which is ensured by Constraint (8). Constraint (9) ensures that w|N|vs shows that vessel v is situated in
the depot at the end of the shift if v travels to the depot during shift s.

∑
i∈N

∑
j∈N

yijvs ≤ 1, v ∈ VA, s ∈ S, (10)

wiv0 = PSTART
iv , i ∈ N, v ∈ VA, (11)

∑
i∈NW

DLIMIT
v −DSTART

v

∑
s=1

yi|N|vs ≥ 1, v ∈ VA

| DLIMIT
v − DSTART

v ≤ |S|. (12)

Constraint (10) prevents an AV from doing more than one trip during or prior to each shift. Where
the AVs are located when the planning period starts are given by Constraint (11). While Constraint (12)
ensures that the AVs do not stay offshore for longer than a specified allowed limit.

Constraints for the execution of tasks:

∑
v∈Vm

xmvs ≤ 1, m ∈ M−, s ∈ S, (13)

xmvs = 1, v ∈ VC, m = 0∪ |M|,
s ∈ S, (14)

x0vs = w|N|v(s−1), v ∈ VA, s ∈ S0 | s > 0, (15)

x|M|vs = w|N|vs, v ∈ VA, s ∈ S, (16)

xmvs ≤ ∑
j∈N

yjivs, i ∈ NW , m ∈ M−i ∪M+
i ,

v ∈ VC
m , s ∈ S, (17)

xmvs ≤ ∑
j∈N

yjivs + wiv(s−1) − ∑
j∈N

yijvs, i ∈ NW , m ∈ M−i ∪M+
i ,

v ∈ VC
m , s ∈ S. (18)
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Tasks can be performed by maximum one vessel each shift and this is ensured by Constraint (13).
As CTVs start each shift in the depot, Constraint (14) forces the CTVs to perform the depot task in each
shift. For AVs, the depot task should only be performed if the AVs are located at the depot during
the shift. This is handled by Constraint (15) for the start depot task and Constraint (16) for the end
depot task. A maintenance task at wind farm i can only be performed by a vessel that is located at
this wind farm for the specified shift. This is restricted by Constraints (17) and (18) for CTVs and
AVs, respectively.

xmvs = x(m+|M− |)vs, m ∈ M−, v ∈ Vm, s ∈ S, (19)

∑
v∈Vm

xmvs = 0, m ∈ M−, s ∈ S | Rms = 0, (20)

∑
m∈MP

∑
v∈Vm

xmvs ≤ B, s ∈ S |Kms = 0. (21)

Constraint (19) makes sure that the delivery task and pick-up task at the same turbine are
performed by the same vessel. Performing tasks that cannot be performed until a specified shift during
the planning period are restricted by Constraint (20). They ensure that a task is not performed during
a shift if the task is not ready to be performed this shift. For shifts where the energy production is
higher than a specified limit, Constraint (21) ensures that the number of preventive tasks performed
this shift does not exceed the desired number of preventive tasks to be performed during a shift.

TMT
m − ∑

v∈Vm

s

∑
h=1

(t(m+|M− |)vh − tmvh − TPDxmvh) m ∈ M−,

+ (TSHIFT
s − TPD) fms ≥ δ, s ∈ S, (22)

∑
v∈Vm

s

∑
h=1

(t(m+|M− |)vh − tmvh − TPDxmvh) m ∈ M−,

≥ TMT
m fms, s ∈ S, (23)

∑
v∈Vm

xmvs ≤ 1− fm(s−1), m ∈ M−,

s ∈ S\{1}. (24)

Constraints (22)–(24) concern the variables that indicate in which shifts each task is completed.
Constraint (22) forces fms to one if task m is completed within shift s and Constraint (23) forces fms

to zero if task m is not completed within shift s. Constraint (24) prohibits that a task m is performed
during shifts after the task is completed.

cm ≥ CNC∗
m (TMT

m − ∑
v∈Vm

∑
s∈S

(t(m+|M− |)vs − tmvs − TPD
m xmvs)),

m ∈ MC ∩M−, (25)

cm ≥ CNP∗
m (TMT

m − ∑
v∈Vm

∑
s∈S

(t(m+|M− |)vs − tmvs − TPD
m xmvs),

m ∈ MP ∩M−. (26)

Constraints (25) and (26) give incentive to work on tasks that are not completed during the
planning period. If task m is completed, then cm is given the value of zero. If it is not completed, cm is
equal to a penalty cost parameter multiplied with how much time is left of the task. Corrective tasks
are given incentive by Constraint (25) and preventive tasks are given incentive by Constraint (26).
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Constraints for the time management:

tmvs ≤ TSHIFTxmvs, m ∈ M, v ∈ Vm,

s ∈ S, (27)

tmvs ≥ LW
vs ∑

j∈N
yjivs − TSHIFT

s (1− xmvs), i ∈ NW , m ∈ M−i ,

v ∈ VC
m , s ∈ S, (28)

tmvs ≥ ∑
j∈N

TT
jivyjivs − TSHIFT

s (1− xmvs), i ∈ NW , m ∈ M−i ,

v ∈ VC
m , s ∈ S, (29)

tmvs ≥ LW
vs(∑

j∈N
yjivs + wiv(s−1)) i ∈ NW , m ∈ M−i ,

− TSHIFT
s (1− xmvs), v ∈ VA

m , s ∈ S, (30)

tmvs ≥ ∑
j∈NW

TT
0ivy0ivs − TSHIFT

s (1− xmvs), i ∈ NW , m ∈ M−i ,

v ∈ VA
m , s ∈ S, (31)

tmvs + TPDxmvs ≤ UW
vs , m ∈ M+, v ∈ Vm,

s ∈ S. (32)

Constraint (27) forces the delivery and pick-up start times of tasks that are not performed to zero.
For tasks that are performed, the start times of the delivery tasks are handled by Constraints (28)–(31).
For tasks performed by CTVs, start times of the delivery tasks must both be higher than the lower
bound of the weather windows and the transportation time from the depot to the wind farms. This is
ensured by Constraints (28) and (29). The start time of delivery tasks performed by AVs must also be
higher than the lower bound of the weather windows, which is ensured by Constraint (30). The start
time of delivery tasks performed by AVs are only restricted by transportation time during shifts where
the AVs leave the depot. This is because AVs travel between shifts when they travel between wind
farms. This is not the case when AVs travels from or to the depot as this has to happen within the start
and end shift of the technicians, respectively. Constraint (31) ensures that if an AV leaves the depot
during a shift, it cannot start performing tasks before it has arrived at a wind farm. Constraint (32)
makes sure that all pick-up tasks are started so that there is time to transfer the technicians from the
turbine to the vessel within the weather window.

t(m+|M− |)vs ≥ tmvs + TPDxmvs, m ∈ M−, v ∈ Vm, s ∈ S, (33)

tmvs − tnvs + T IT
iv + TPD i ∈ NW , m ∈ M\{|M|},

≤ TSHIFT
s (1− zmnvs), n ∈ M−i ∪M+

i , v ∈ Vm ∩ Vn,

s ∈ S | m 6= n, (34)

tmvs − t|M|vs + TPDxmvs + TT
i|N|vyi|N|vs i ∈ NW , m ∈ M−i ∪M+

i ,

≤ TSHIFT
s (1− zm|M|vs), v ∈ Vm ∩ Vn, s ∈ S. (35)

A delivery task must be performed before the corresponding pick-up task, and the pick-up task
cannot start before the technicians are transferred from the vessel to the turbine. This is ensured
by Constraint (33). The start times of tasks are also restricted by the order in which the tasks are
performed. Constraint (34) forces the start time of task n to be greater than the start time of task m plus
the time for pick up and delivery and internal travel, if task m is performed directly before task n.
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Constraint (34) also ensures that if an AV does not travel back to the depot during a shift, then the
AV will have time to transfer the technicians from the last pick-up task it performs during the shift
and travel out of the wind farm within the shift. The travel time of leaving a wind farm is set equal to
the average internal travel time of the wind farm. Constraint (35) is a special case of Constraint (34)
for tasks being performed directly before the end depot task. They always apply for CTVs, but for
AVs they only apply for shifts where the AVs return to the depot. Constraint (35) makes sure that all
pick-up tasks are started in time for the technicians to be transferred from the turbine to the vessel and
for the vessel to return to the depot within the shift.

Constraints for the precedence of tasks:

xmvs = ∑
n∈M\{0}

zmnvs, m ∈ M\{|M|},

v ∈ VC
m ∩VC

n , s ∈ S, (36)

xmvs = ∑
n∈M\{|M|}

znmvs, m ∈ M\{0},

v ∈ VC
m ∩VC

n , s ∈ S, (37)

xmvs ≥ ∑
n∈M\{0}

zmnvs, m ∈ M\{|M|},

v ∈ VA
m ∩VA

n , s ∈ S, (38)

xmvs ≥ ∑
n∈M\{|M|}

znmvs, m ∈ M\{0},

v ∈ VA
m ∩VA

n , s ∈ S, (39)

∑
m∈M\{|M|}

∑
n∈M\{0}

zmnvs ≥ ∑
m∈M

xmvs − 1, v ∈ VA
m ∩VA

n , s ∈ S, (40)

zmnvs = xmvs, m ∈ M−, n = m + |M−|,
v ∈ Vm, s ∈ S

| Em = 1. (41)

Constraints (36)–(40) concern the precedence of tasks. Precedence of tasks is also handled by
Constraints (33)–(35) as these constraints ensure that the start time of a task, m, that is performed
immediately before another task, n, is lower than the start time of task n. For all tasks performed by
a CTV, excluding the depot tasks, exactly one task must be performed directly before and directly
after every task. Constraint (36) ensures that if task m is performed, exactly one task is performed
directly after task m, and if task m is not performed zero tasks are performed directly after task m.
Constraint (37) is equivalent for tasks performed directly before task m.

As AVs do not have to start and end at the depot each shift, tasks performed by AVs must be
handled somewhat differently, and this is done by Constraints (38)–(40). If an AV does not start a shift
in the depot, there will not be a task performed directly before the first task it performs during this
shift. The same applies for the last task it performs during a shift if it does not end this shift in the
depot. As it is not known in advance when solving the model which tasks that are performed first and
last, Constraints (36) and (37) do not apply for AVs. It is, however, known that for each task maximum
one task can be performed directly after and directly before this task. It is also known that for tasks
not performed, zero tasks can be performed directly before or after these tasks. This is restricted by
Constraints (38) and (39). Constraint (40) gives a lower limit on the number of zmnvs that get the value
one for for v ∈ VA. This number equals the number of tasks performed minus one.
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Constraints (41) applies for tasks that require the vessel performing the task to stay by the turbine
when the task is being performed. For these tasks, the pick-up task is forced to be performed directly
after the delivery task if the delivery task is performed.

Constraints for the downtime:

lms ≥ TDAY(1− fms), m ∈ MC, s ∈ S, (42)

lms ≥ ∑
v∈Vm

(t(m+|M− |)vs + TPDxmvs)

− TSHIFT
s (1− ( fms − fm(s−1))), m ∈ MC, s ∈ S\{1}, (43)

lms ≥ ∑
v∈Vm

(t(m+|M− |)vs + TPDxmvs)

− TSHIFT
s (1− fms), m ∈ MC, s = 1. (44)

For corrective tasks the turbines are shut down from the failure occurs to the task is completed.
The time counter, lms, of corrective tasks therefore include the total hours from the planning period
starts to the tasks are completed. Constraints (42)–(44) concern this time counter. If a task m is not
completed within the end of shift s, then the time counter of shift s is given the value of the time
from the start of shift s to the start of the next shift, shift s + 1. This is ensured by Constraint (42).
Constraint (43) applies to the shifts where the tasks are completed. The time counter is then given the
value of the time the turbine can be turned on, which is when the technicians are transferred from the
turbine to the vessel after the task is completed. Constraint (44) is a special case of Constraint (43) for
tasks that are completed during the first shift.

lms ≥ ∑
v∈Vm

(t(m+|M− |)vs + TPDxmvs − tmvs), m ∈ MP, s ∈ S, (45)

∑
v∈Vm

(t(m+|M− |)vs + TPDxmvs − tmvs)

≥ TMIN xmvs, m ∈ MP, s ∈ S. (46)

For preventive tasks, the turbines are shut down only during the performance of the tasks.
It starts when a vessel arrives at the turbine and transfers technicians to the turbine, and ends when
the technicians have returned to the vessel after performing the task. Constraint (45) gives value
to the time counter for shifts that preventive tasks are performed. To avoid that technicians are left
at a turbine for a time period that is so short that they in reality do not have time to perform any
maintenance, Constraint (46) ensures that preventive maintenance must be performed continuous for
a minimum amount of time.

Constraints for the balance of technicians:

zmnvs(pmvs − Pn − pnvs) = 0, m ∈ M\{|M|}, n ∈ M\{0},
v ∈ Vm ∩Vn, s ∈ S, (47)

pmvs − Pn − pnvs ≤ (Qv − Pn)(1− zmnvs), m ∈ M\{|M|}, n ∈ M\{0},
v ∈ Vm ∩Vn, s ∈ S, (48)

pmvs − Pn − pnvs ≥ (−Pn −Qv)(1− zmnvs), m ∈ M\{|M|}, n ∈ M\{0},
v ∈ Vm ∩Vn, s ∈ S. (49)
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The technician flow for each task is handled by Constraint (47). These constraints ensure that if
task n is performed directly after task m by vessel v, then the number of technicians onboard vessel v
after visiting task n must be equal to the number of technicians onboard vessel v after visiting task
m and the technicians leaving or entering the turbine of task n. The demand for delivery tasks is
positive and the demand for pick-up tasks is negative. Constraint (47) is non-linear and is linearized
by replacing it with Constraints (48) and (49).

pmvs ≤ (Qv − Pm)xmvs, m ∈ M−, v ∈ Vm, s ∈ S, (50)

pmvs ≤ Qvxmvs, m ∈ M+, v ∈ Vm, s ∈ S, (51)

pmvs ≥ −Pmxmvs, m ∈ M+, v ∈ Vm, s ∈ S, (52)

pmvs ≤ Qvxmvs, m = {0} ∪m = {|M|},
v ∈ Vm, s ∈ S. (53)

pmvs ≥ (Qv − Pm)xmvs, m ∈ M−, v ∈ Vm,

s ∈ S | Em = 1, (54)

Constraints (50)–(53) handle the technician capacity of the vessels for delivery, pick-up and depot
tasks. When a vessel is performing a task m that requires the vessel to stay by the turbine, the vessel are
not allowed to have other technicians performing tasks in parallel at other turbines. This is prevented
by Constraint (54), together with Constraint (50). These constraints force the number of technicians
onboard the vessel after performing task m to be equal to the capacity of the vessel minus the technician
demand at task m. For these types of tasks, the pick-up task must be performed directly after the
delivery task. This means that except for the technicians performing task m, all other technicians have
to be onboard the vessel for the entire time task m is being performed.

The domains of the decision variables:

xmvs ∈ [0, 1], m ∈ M, v ∈ Vm, s ∈ S, (55)

yijvs ∈ [0, 1], i, j ∈ N, v ∈ V, s ∈ S, i 6= j, (56)

zmnvs ∈ [0, 1], i ∈ NW , m, n ∈ Mi, v ∈ Vm ∩Vn, s ∈ S, (57)

wivs ∈ [0, 1], i ∈ N, v ∈ VA, s ∈ S, (58)

fmvs ∈ [0, 1] m ∈ M, v ∈ Vm, s ∈ S, (59)

tmvs ≥ 0, m ∈ M, v ∈ V, s ∈ S, (60)

lms ≥ 0, m ∈ M, s ∈ S, (61)

pmvs ≥ 0, integer m ∈ M, v ∈ Vm, s ∈ S, (62)

cm ≥ 0, integer m ∈ M. (63)

The domain of the decision variables are defined by Constraints (55)–(63). In the supplemental
material a small numerical example is provided to illustrate the model.

4. Solution Methods

The mathematical model presented in Section 3 is large and potentially time consuming to solve.
It is trivial to find a feasible solution, as it is possible to let all vessels be idle, without performing any
tasks. An optimal solution can in principle be found using commercial mixed integer programming
(MIP) solvers, but the branch-and-bound search used in these solvers have a running time that
increases exponentially with the number of binary and integer variables. Some instances of the model
can therefore be solved directly using MIP solvers, whereas for larger instances we have developed



J. Mar. Sci. Eng. 2017, 5, 11 15 of 25

two different rolling horizon heuristics [33]. Furthermore, we propose a set of symmetry breaking
constraints that can be added to the model to remove many variable assignments that correspond to
identical solutions, without changing the resulting optimal value.

4.1. Rolling Horizon Heuristics

Rolling horizon heuristics are used to iteratively produce solutions to MIPs by considering shorter
sub-horizons of the planning horizon. Each sub-horizon is split into two time blocks, one detailed time
block (DTB) and one aggregate time block (ATB). For each iteration k, the DTB is modelled in detail,
while the ATB is simplified according to a simplification strategy and represented in an aggregate
manner to evaluate the impact of future available capacity when solving for the DTB [33]. Before
solving for the next iteration, k + 1, some or all of the decisions made for the DTB are fixed according
to a specified fixing strategy. These variables remain fixed for all subsequent iterations. The fixed part
of the DTB are referred to as the fixed DTB, while the free variables of the DTB are referred to as the
free DTB. For the next iteration, k + 1, the DTB is expanded with a specified number of time periods
so that the first part of ATBk becomes a part of DTBk+1, and the ATBk+1 is shifted towards the end
of the planning period with an equal number of time periods. If the length of the planning period is
equal to the combined length of the DTB and the ATB, then the length of the ATB decreases in each
iteration [33]. The problem is solved when the entire planning period is included in, and solved for,
the DTB. The fixed DTB, the free DTB and the ATB of a general rolling horizon heuristic are illustrated
graphically by Figure 2.

Figure 2. Illustration of the fixed detailed time block (DTB), the free DTB and the aggregate time block
(ATB) of a general rolling horizon heuristic.

Rolling horizon heuristics can reduce the computational requirements significantly, while still
producing close to optimal solutions. The effectiveness of the heuristic is, however, highly dependent
on the simplification strategy used for the ATB and fixing strategy used for the fixed DTB [33].
Two different rolling horizon heuristics, RHH-1 and RHH-2, are proposed for the problem studied here.
The length of the free DTB is set to one shift and identical simplification strategies are implemented for
both RHH-1 and RHH-2. As the planning period of the problem is relatively short, the length of the
ATB is set equal to the remaining part of the planning period. All variables restricted to be binary or
integer are replaced by continuous variables in the ATB. The two rolling horizon heuristics differ in
which decisions are fixed in the DTB.

To account for the inaccuracies caused by variables that take fractional values, and to tighten the
model formulation for the ATB, the redundant Constraint (64) is introduced in the rolling horizon
heuristics. These constraints ensure that the total number of man-hours of maintenance performed in
the planning period does not exceed the man-hour capacity of the vessel fleet for the planning period.
To represent the total capacity of the vessel fleet, the parameter Wivs is introduced. This parameter
equals the available number of hours in shift s that vessel v can perform maintenance in wind farm i.
The number of available hours for the vessel fleet is then multiplied by the number of technicians in the
vessel fleet to represent the total number of available man-hours. The Wivs parameter is adjusted for
weather windows during shift s and transportation times to node i for vessel v. As transportation times
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for AVs are dependent on where the AVs are located during the respective shifts, the transportation
times for AVs are not known when Wivs is calculated. The Wivs therefore gives an optimistic estimate
of the total available hours for the vessel fleet to perform maintenance.

∑
m∈M−i

Pm(t(m+|M− |)vs − tmvs + TPDxmvs) ≤ QvWivs,

i ∈ NW , v ∈ V, s ∈ S. (64)

For both RHH-1 and RHH-2 only the decisions which positively indicate to perform tasks or to
travel between nodes are fixed. That is, if a solution in one iteration suggests not to perform a specific
task, the decision is not fixed. This is to prevent that good solutions that involve doing more than
originally planned are prohibited in subsequent iterations.

In RHH-1, it is not allowed to remove any tasks from the schedules or change the order of existing
tasks, but it is allowed to add new tasks to the schedules at later iterations. The vessels that should
perform a given task is not fixed, but if a task is scheduled to be performed in shift s, then some vessel
u ∈ Vm has to perform it. If vessel v travels between two nodes i and j during shift s, then some vessel
u ∈ Vm must travel between node i and node j during shift s. If a task is scheduled to be completed
during shift s, the decision can not be altered.

To allow for adding new tasks, but not to change the order of existing tasks, the zmnvs-variables
are fixed for tasks that are performed, but not performed in sequence. By keeping the zmnvs-variables
of tasks performed in sequence free, new tasks can be scheduled in between these tasks. As for the
xmvs-variables, the zmnvs-variables are not fixed with respect to what specific vessel that performs the
different sequences of tasks. To allow for additional tasks to be included for earlier shifts in later
iterations, the variables lms, tmvs and pmvs are not fixed. As lms and tmvs are not fixed, this opens up
for the possibility to change the amount of time spent on maintenance tasks in later iterations. This
does not increase the complexity of the heuristic significantly, as these variables are continuous in the
DTB. The combination of the rules presented for RHH-1 also allows for AVs to be relocated during
later iterations. As an AV constitutes a significant amount of the capacity of a vessel fleet, it could be
unfortunate for the solution quality to, for example, fix an AV to the depot during a shift.

In RHH-2 most of the decisions regarding how the vessels move and which tasks they perform
are fixed. The only decisions regarding vessels that are not fixed, are for vessels that are not scheduled
to perform maintenance. This means that vessels that originally were scheduled not to perform
maintenance can be re-scheduled in later iterations. Most of the decisions regarding scheduled tasks are
fixed in RHH-2. Scheduled tasks cannot be removed from the schedules in later iterations, additional
tasks cannot be scheduled in between scheduled tasks and the order of the tasks cannot be changed.
However, tasks can be added at the beginning and at the end of the scheduled tasks. The lms- and
tmvs-variables are not fixed, which allows for the scheduled amount of time to perform each task to be
changed in later iterations. Decisions regarding tasks that are not scheduled to be performed are not
fixed, and these tasks are therefore in later iterations allowed to be scheduled to vessels that originally
were scheduled not to perform maintenance, or at the beginning and the end of a schedule for a vessel
already in the schedule. The mathematical formulation of the fixing strategies for RHH-1 and RHH-2
are provided in the supplemental material.

4.2. Symmetry Breaking Constraints

Symmetry in a problem is problematic as it increases the size of the search space. This can make it
harder to prove optimality of the solutions of the problem and therefore increase the computational
time. One way to reduce symmetry in a problem is to add symmetry breaking constraints in the
model formulation. There can, however, be some problems associated to adding symmetry breaking
constraints in heuristic methods. When adding these constraints particular solutions are eliminated,
and this may conflict with the direction of the branching heuristics [34]. For the problem described
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here, symmetry is caused by tasks of the same type within the same wind farm and vessels of the
same type. Tasks of the same type within a wind farm are assumed identical, and the same applies
for vessels of the same type. Therefore, mathematically different solutions can exist that in practice
refer to identical decisions. In the supplemental material of the paper we provide details of symmetry
breaking constraints dictating that during each shift, tasks of lower task numbers must be performed
before tasks of higher task numbers, for tasks of the same type within the same wind farm. If multiple
vessels are located in the same wind farm, the vessels of lower indices must perform the tasks of lower
indices as long as the tasks are of the same type.

5. Computational Study

A computational study was conducted to test the correctness of the model, as well as to (1) analyze
the computational effort required to solve the model to optimality and heuristically using the rolling
horizon heuristics; (2) analyze different modelling choices, such as the length of the planning horizon,
with respect to the quality of solutions obtained from the perspective of solving a dynamic problem; and
(3) show how the model can be used to evaluate strategic decisions such as fleet size and mix decisions.

The mathematical model and the rolling horizon heuristics were implemented using Xpress
Mosel and solved using Xpress version 7.8.0. To enhance the chance of finding high quality solutions,
the automatic strategies for cuts and heuristics in Xpress were overruled for the implementation of
both the exact model and the heuristics. The cut strategy was set to no cuts, 0, to avoid spending
unnecessary time to improve the bound and instead focus on finding better solutions. For the heuristic
strategy, an extensive heuristic strategy was chosen. Using an extensive search, more time is allocated
at the beginning of the solving process to finding a good solution. Simulations were implemented in
MATLAB, version R2014a. The computational tests were performed on a HP DL 165 G6 computer with
an AMD Opteron 2431 2,4 GHz processor, 24 GB of RAM and running on a Linux operating system.

The tests were conducted with instances created based in part on real data and in part on
reasonable assumptions based on current best practice. The instances include three types of vessels: an
AV, a regular CTV, and a type of CTV called SES (surface effect ship). We consider two wind farms
located 50 kilometers apart, but vary the number of turbines in each wind farm. Instances consider six
types of maintenance tasks: triggered alarms, manual resets, minor repairs, medium repairs, major
repairs, and preventive maintenance. Various sources and expert opinions have been consulted to
obtain realistic parameters for the instances, mainly based on a reference case created for verification
of O&M simulation models for offshore wind farms by Dinwoodie et al. [35]. Additional sources have
been used for data on the wave height limits of the different vessels [36,37], transportation costs [23]
and daily cost rates [38], maintenance task categories and failure rates [39], and weather conditions [40].
Details on the data used to create the test instances are provided in the supplemental material.

Our computational experiments provided support for the correctness of the model, as illustrated
through the small numerical example provided in the supplemental material. The following subsections
present overall findings from our computational study, with respect to the computational effort
required to solve the model and to use the rolling horizon heuristics, to the performance of the
methods in a dynamic setting, and to the evaluation of strategic decisions regarding fleet sizing.

5.1. Evaluating Computational Effort

To assess the computational effort required to solve the model and to use the rolling horizon
heuristics, instances with between 1 and 3 shifts were generated. A group of 20 different instances was
generated for different numbers of turbines, in the range from 120 to 180 turbines. In all instances, the
two wind farms were served by one AV and one SES, using 12 h shifts. We set a time limit of two hours
(7200 s) for solving the model. For the heuristics, a time limit of 2000 s is set per iteration, thereby
limiting the run times to less than 6000 s for instances with three shifts.

Our main results regarding the computational effort required to solve the model are presented
in Table 1. When solving the model directly, finding a proof of optimality within two hours is a
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challenge for the instances included in the test. For instances with 1 shift, the full model can be used to
consistently find feasible solutions, and for problems with relatively few maintenance tasks, solutions
can occasionally be proven optimal within two hours. For instances with two or more shifts, solving
the full model does not always result in any feasible solution.

Table 1. Test instances used to evaluate efficiency of full model, with results from using the full model
and the RHH-2 heuristic with symmetry breaking constraints. For each group of instances, 20 random
instances are generated with different maintenance tasks included.

Shifts, Turbines Tasks Full Model RHH-2

Feasible Optimal Feasible Better

1, 120 8–17 20 9 NA NA
1, 140 11–25 20 3 NA NA
1, 160 11–23 20 3 NA NA
1, 180 14–27 20 1 NA NA
2, 120 8–17 14 8 20 17
2, 140 11–25 8 3 20 19
3, 120 8–17 17 8 20 14
3, 140 11–25 13 2 20 10
3, 160 11–23 10 0 17 13

We also tested the two rolling horizon heuristics on the instances in Table 1 with more than
one shift. The table shows only results for RHH-2 with symmetry breaking constraints included.
The RHH-1 heuristic performs worse than RHH-2. Results are shown for the case with symmetry
breaking constraints, as without those constraints the solution times increase and the method is not
able to find feasible solutions to as many instances. Additional details of these tests are reported in the
Supplementary Materials.

5.2. Performance in a Dynamic Setting

While the mathematical model covers decisions for several shifts, practical use of the model would
entail to solve the model repeatedly as new information about corrective maintenance appears. In the
following tests, all decisions are assumed to be taken before the start of each shift. New information
regarding alarms and maintenance tasks that arrive during a shift is then incorporated into the planning
for the next shift, together with updated weather forecasts and an updates on remaining maintenance
tasks and vessel locations. We focus on using either the full model or the RHH-2 to make decisions
for the upcoming shift, and test the effect of varying the length of the planning period, the number of
iterations solved for a specific length of the planning period, and the upper limit on the solution time
of each iteration in the heuristic.

For the tests of this section, a simulation period of seven shifts are used. The results of a simulation
can be affected somewhat by some start and end effects of the simulation period. To minimize these
effects, two measures are included to reduce start and end effects. Corrective tasks which symbolizes
the result of checked alarms in the shift prior to the first shift of the simulation period are generated
and included in the simulations. This is done to capture some of the decisions made in earlier periods
and, which will reduce the start effects. To reduce the end effects of the simulations, input data
(or information) of all shifts in the planning period of the last shift in the simulations are included.
This means that if the length of the simulation period is n and the length of the planning period is |S|,
then information on all shifts from shift 1 in the simulation period to shift n + |S| − 1 is included in
the simulations.

To evaluate the different aspects of the models studied in each test, solution time and solution
quality are compared. Solution quality is evaluated based on real costs and the number of hours of
maintenance performed. Daily fixed costs, such as daily vessel rates, are not included, as these occur
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for each shift regardless of the schedules generated. The number of hours of maintenance performed
includes both corrective and preventive maintenance.

Changing the length of the planning period was tested to see if the value of additional information
from including more shifts in the planning period improve the solution quality. To test the planning
period length, ten simulation runs spanning seven days were executed for a case with 120 turbines,
using planning periods of one, two, and three shifts, respectively. The RHH-2 heuristic was used to
obtain solutions when using more than one shift in the planning horizon, and the full model was used
for planning horizons of only one shift.

Figure 3 presents the results of comparing RHH-2 solved for planning periods of two and three
shifts. The results of comparing RHH-2 solved for a planning period of two shifts and the exact model
solved for one shift are presented in Figure 4. The upper time limit of the exact model is reduced to the
time that is allocated to solve each iteration of the heuristic, to 2000 seconds. The abbreviations used in
the figures are as follows. RC: real costs (artificial penalty costs not included), TC: transportation costs,
DC: downtime costs, M: hours of maintenance, PM: hours of preventive maintenance, CM: hours of
corrective maintenance, RC/M: real costs per hour of maintenance, ST: solution time.

Figure 3. Ninety-five percent confidence interval for the difference in solution time and solution quality
for RHH-2 with a planning period of two and three shifts. Positive differences mean that the values of
a planning period of three shifts are greater than for a planning period of two shifts.

Figure 4. Ninety-five percent confidence interval for the difference in solution time and solution quality
of RHH-2 with a planning period of two shifts and the exact model with a planning period of one shift.
Positive differences mean that the values of a planning period of RHH-2 with two shifts are greater
than for the exact model with one shift.

The figures show that by reducing the length of the planning period, the solution time is reduced.
This is especially due to reduction in the number of iterations. Reducing the length of the planning
period also improves the solution quality, generally the real costs are reduced and more maintenance
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is performed. It appears that the heuristic puts too little emphasis on the first shift of the planning
period and that it uses too much computational effort on solving later shifts. Reducing the length of
the planning period therefore reduces the computational effort needed to solve the problem. These
results imply that the value of including information on additional shifts in the planning period is
lower than the decrease in solution quality caused by the extra computational effort needed, hence, a
greedy approach is favorable for the problem studied here.

One of the reasons that the value of additional information of later shifts is limited can be that it is
favorable to perform most maintenance task during the first shifts, regardless of the weather forecasts
of later shifts. For corrective tasks this applies due to the running downtime costs; It is never more
favorable to perform a corrective task in a later shift if there is enough capacity to perform it during the
first shifts. As preventive tasks are of a relatively long duration and the penalty costs give incentives
based on the hours of performed maintenance, it is also favorable to perform preventive tasks in earlier
shifts, as long as the electricity production is lower than a specific limit.

Additional tests were executed to see if reducing the number of iterations in the RHH-2, and
allowing more time per iteration, could improve the performance when including two shifts in the
planning horizon. When the number of iterations in RHH-2 is reduced, the heuristic only gives
integer feasible solutions for the shifts included in the detailed time blocks of the performed iterations,
while the remaining shifts may still guide the solution process even though only continuous variables
are used.

Simulation runs for the case with 120 turbines were considered, comparing the use of one or
two iterations of RHH-2 for a planning horizon of two shifts. The results show that reducing the
number of iterations for RHH-2 reduces the solution time, without worsening the simulated costs:
with two iterations the downtime costs are found to be slightly lower and the transportation costs
slightly higher, without being statistically significant. Compared to the exact model with one planning
period, RHH-2 with one iteration reduces the solution time, however, the solution quality of the full
model is significantly higher. The full model with one planning period is therefore also considered
as better than RHH-2 with a planning period of two shifts solved for one iteration. Furthermore,
tests were made in which the RHH-2 was allowed to run for 3600 s instead of 2000 s per iteration for
planning horizons of two shifts. Comparing this to the use of the full model reveals that the difference
in solution quality is not substantial, however, the full model provides slightly better solutions than
RHH-2, while the solution time of the full model is significantly lower. We therefore conclude that in a
dynamic setting, the best choice is to use the full model for a planning horizon of only one shift: even
though longer planning horizons can be handled using the RHH-2, it seems that the end-of horizon
effects are handled well in our mathematical model and that the artificial penalty costs are sufficient to
select good maintenance tasks for execution when only planning for one shift.

5.3. Comparing Strategic Decisions

Simulations can provide valuable information when analyzing strategic aspects of O&M in
offshore wind farms. The simulations can show how the different strategic decisions affect the
performance on an operational level. To illustrate this, this section presents the results of analyzing the
vessel fleet size and mix. The different strategic decisions are simulated for 14 shifts and their effect on
the operational performance are compared in terms of real costs and hours of maintenance performed.

Three different vessel fleets were analyzed using ten simulation runs for a case with two wind
farms and a total of 100 turbines. Fleet 1 consists of 1 AV and 1 SES, Fleet 2 consists of 2 SESes, and Fleet
3 consists of 3 SESs. The confidence intervals for the number of hours of preventive tasks performed
for the ten simulation runs, for each of the three vessel fleets, are presented in Figure 5. The results
indicate that the technician capacity of Fleet 1 and Fleet 3 is sufficient, as they both have capacity to
perform more preventive maintenance than the average hours required during the simulation period
in order to complete all yearly preventive tasks. Using Fleet 2, the number of hours of preventive
maintenance is lower, suggesting that the technician capacity of Fleet 2 may be too small.
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Figure 5. Ninety-five percent confidence intervals of the hours of preventive maintenance performed
during the simulation period by the three different vessel fleets. The orange line represents the average
hours of preventive maintenance that must be performed during the simulation period in order to
complete all yearly preventive tasks.

The effect of changing the fleet capacity by replacing an AV with a SES is further presented in
Figure 6. AVs have twice the capacity of SESes and CTVs, and thus, an AV has a relatively large impact
on the total technician capacity of the fleet. These results show that Fleet 2 performs better than Fleet 1
in terms of costs. This is linked to the higher transportation costs of Fleet 1, as AVs have significantly
higher transportation costs than SESes. However, Fleet 2 has higher downtime costs. This is due to the
fact that the lower capacity of vessel Fleet 2 causes some corrective maintenance tasks to be delayed
until technicians are available, and the turbines are therefore shut down for a longer time period.

Figure 6. Ninety-five percent confidence intervals of the difference in real costs, hours of maintenance
performed, real costs per hour maintenance performed and vessel capacity for Fleet 1 and Fleet 2.
Positive differences mean that the values of Fleet 2 are greater than for Fleet 1.

By comparing the capacity of Fleet 1 and Fleet 2 with the hours of maintenance they perform, it can
be seen that while Fleet 1 has 1.5 times the capacity of Fleet 2, Fleet 1 only performs 10% to 15% more
hours of maintenance. As seen in Figure 5, Fleet 1 performs sufficient preventive maintenance, and one
reason that there is unused capacity in Fleet 1 can therefore be that Fleet 1 has overcapacity. Another
reason for this unused capacity can be the relatively long time it takes to transfer technicians to and
from the turbines, as this puts a limit on the number of maintenance tasks a vessel can perform during
a shift. Fleet 1 is therefore compared to a third fleet, Fleet 3, that has equal technician capacity, but a
larger limit on how many tasks can be performed during a shift, as it consists of an additional vessel.

The results of comparing Fleet 1 and Fleet 3 are presented in Figure 7. Even when adding an
additional SES, the transportation costs of Fleet 1 are considerably higher than for fleets of only
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SESes. Fleet 3 performs more preventive maintenance than Fleet 1, which implies that the amount of
maintenance performed by Fleet 1 is restricted by the limit on how many tasks that can be performed
during a shift.

Figure 7. Ninety-five percent confidence intervals of the difference in real costs, hours of maintenance
performed, real costs per hour maintenance performed and vessel capacity for Fleet 1 and Fleet 3.
Positive differences mean that the values of Fleet 1 are greater than for Fleet 3.

6. Concluding Remarks

Offshore wind energy production is growing, but is currently more expensive than onshore
production. Higher maintenance costs are one of the reasons behind this difference, and it is therefore
considered important to consider how to minimize the costs incurred by performing maintenance
on offshore turbines. This paper presents a mathematical model that can be used for routing and
scheduling of vessels to perform maintenance operations at offshore wind farms. Among the novel
features of the mathematical model is (1) the inclusion of several wind farms at different locations;
(2) covering several shifts in the planning horizon; and (3) modelling both CTVs and AVs.

To the authors knowledge, this is the first time that this problem has been considered in a dynamic
setting, and we use simulations to evaluate solution methods developed to solve instances of the
mathematical model. An unsuspected finding is that the value of modelling several periods appears
to be negative: less efficient solutions are found with a longer planning horizon. This makes us
believe that the end-of-horizon effects are handled efficiently in the mathematical model, and that the
increased computational difficulty associated with a longer planning horizon results in a situation
where it is more efficient to consider only one period when deciding on routes and schedules for
maintenance vessels.

The results show the importance of evaluating a tactical decision support tool by simulation and
not by the results when solving static models: When only considering a static situation, seeking to best
utilize resources over a fixed time horizon, a rolling horizon heuristic outperformed the direct solution
of the full mathematical model. However, when evaluated in a dynamic setting, the direct solution of
the full model over a limited planning horizon gives better results.

We also illustrated how combining the mathematical model with simulations can be used to
evaluate strategic decisions, such as determining an appropriate fleet size and mix. Another use would
be to estimate the consequences of using separate fleets for different wind farms, as opposed to having
a joint vessel fleet.

The amount of preventive maintenance that is scheduled depends on the value of different
penalty parameters. These parameters depend on the particular application, and should be adjusted
for different settings to fit the number of turbines, the vessel fleet, and the preventive maintenance
strategy used by the wind farm operator. When embedded in simulations, the presented mathematical
model may be used to analyze different strategies for scheduling preventive maintenance, which
remains a difficult strategic issue for offshore wind farm operators.
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Applying the model to a real case remains as future work. Most optimization models developed
for scheduling of maintenance tasks and routing of vessels to perform those tasks have been focusing
on strategic decisions, such as determining a suitable fleet composition. As more offshore wind farms
are being put into operation, the need for tactical decision support will continue to grow.
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mathematical model, Figure S3: Illustration of shift 2 of the numerical example of the mathematical model, Figure
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160 turbines, with a planning period of three shifts. Positive differences mean that the values of RHH-2 are greater
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