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Abstract: Remote sensing shows potential for assessing biodiversity of coral reefs. 

Important steps in achieving this objective are better understanding the spectral variability 

of various reef components and correlating these spectral characteristics with field-based 

ecological assessments. Here we analyze >9400 coral reef field spectra from southwestern 

Puerto Rico to evaluate how spectral variability and, more specifically, spectral similarity 

between species influences estimates of biodiversity. Traditional field methods for estimating 

reef biodiversity using photoquadrats are also included to add ecological context to the 

spectral analysis. Results show that while many species can be distinguished using in situ 

field spectra, the addition of the overlying water column significantly reduces the ability to 

differentiate species, and even groups of species. This indicates that the ability to evaluate 

biodiversity with remote sensing decreases with increasing water depth. Due to the inherent 

spectral similarity amongst many species, including taxonomically dissimilar species, remote 

sensing underestimates biodiversity and represents the lower limit of actual species diversity. 
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The overall implication is that coral reef ecologists using remote sensing need to consider 

the spatial and spectral context of the imagery, and remote sensing scientists analyzing 

biodiversity need to define confidence limits as a function of both water depth and the 

scale of information derived, e.g., species, groups of species, or community level.  

Keywords: coral reefs; remote sensing; field spectra; scale; ecology;  

biodiversity; conservation 

 

1. Introduction 

Remote sensing has become increasingly important among the fields of ecology, biodiversity,  

and conservation, appealing to scientists by providing repeat temporal observations over broad spatial 

scales and offering relative simplicity for acquiring data over large areas, as compared to extensive 

fieldwork [1–3]. Given numerous anthropogenic stressors, in conjunction with recent climate change, 

the species range and composition of various marine and terrestrial communities are rapidly  

declining [4–6]. Thus, rapid and repeatable assessment of coral reef ecosystems has become an 

important objective for monitoring the associated impacts of climate change on coral reef  

communities [7–10]. In this regard, remote sensing technologies provide valuable information related 

to the spatial analysis of ecosystem properties, including habitat composition, biodiversity, and the design 

of marine protected areas [11–13]. Further, the available remote sensing tools and analysis techniques are 

ever evolving, and new capabilities continue to emerge, including sensors with improved spatial and 

spectral resolution [3,10,14]. 

Hyperspectral remote sensing (imaging spectrometry) in particular shows strong potential for 

developing enhanced analysis tools to assess patterns and processes of reef composition and 

biodiversity [15–21]. However, to better leverage this technology, it is important to improve our 

understanding of the spectral characteristics and relationships of the various reef components. It is the 

variability in composition and structure of different components that manifests as variability in spectral 

reflectance, and inverting this relationship through image analysis facilitates the identification and 

classification of coral reef biota and substrates using remote sensing. Past research indicates that reef 

components can be differentiated according to general categories, e.g., live coral, carbonate sand, 

macroalgae, and seagrass [16,19–25]. This knowledge has assisted with the development of reef 

classification schemes, but further research is required to evaluate how the spectral variability between 

categories and within categories affects image-derived estimates of biodiversity. 

Additional research is also required to identify and specify limits on our ability to differentiate 

species according to their spectral characteristics. More specifically, it has been shown that reef 

species can be generally categorized into a discrete number of categories [26] with many species 

exhibiting similar spectral characteristics. The inability to classify or distinguish distinct coral species 

as a function of spectral reflectance results because many coral species share a common suite of pigments 

that are conserved over geographic and taxonomic boundaries [22,27]. Additionally, only limited research 

has been conducted to examine how species separability, and hence detectability via remote sensing, 

changes with varying water properties and water depth (e.g., [28–30]). As such, detailed spectral 
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taxonomic classification and further environmental details are needed at appropriate spatial and 

temporal resolutions to improve ecological assessments (e.g., estimates of abundance, distribution, 

patchiness, and biodiversity) and better inform reef management decisions [2,8,12,31,32]. 

Numerous studies have successfully integrated fieldwork and various remote sensing techniques 

that have identified coral morphologies, habitat maps, live coral indices, coral reef resilience 

indicators, and other general reef categories [8,15,16,21,23,33,34]. Likewise, the ability to detect coral 

bleaching [35–38] and diseased states in corals [39], continues to improve with recent advances in 

remotes sensing. Even so, coral reef managers are yet calling for an improved understanding of 

biodiversity (species) estimates derived through remote sensing [1,2,31]. Towards that end, it is 

necessary to further examine detailed spectral variability of the spatially dominant reef species  

(i.e., those species that significantly contribute to the remote sensing signal), as well as analyze how 

inter- and intra-species spectral relationships vary as a function of environmental characteristics and 

water depth. Also of fundamental importance is determining the appropriate spatial scale for a given 

investigation as well as being able to effectively interpret and put that information in context across 

different spatial scales [34,40–43]. To objectively evaluate these requirements, locally optimized 

projects (i.e., fine spatial scale reef habitat plots ~5 m2), where high spatial and high spectral resolution 

imagery (i.e., hyperspectral) coincide with detailed in situ spectral measurements and ecological field 

data, are needed to assess the spectral processes that reflect the composition, distribution, and 

biodiversity found on coral reefs. 

The objective of this study is to provide a broader understanding of reef spectral variability and the 

effect of depth on our ability to distinguish species, groups of species, or even major reef components 

(i.e., sand, algae, seagrass, dead coral, live coral). We also aim to invoke further discussion and 

additional research on the relationships between spectral diversity and species diversity. Here we 

describe methods that provide the opportunity to correlate spectral characteristics with localized in situ 

measurements of biodiversity (species) that can be scaled-up to the spatial resolution and geographic 

extent provided through remote sensing image analysis. Specifically, the goals of this study are to:  

(i) identify the spectral characteristics of the spatially dominant taxa for a coral reef system in 

southwest Puerto Rico; (ii) assess the ability to differentiate species based on spectral characteristics; 

and (iii) examine how spectral separability and varying water depth impact our ability to estimate 

biodiversity and classify species, or groups of species, using remote sensing data.  

2. Materials and Methods 

To evaluate spectral characteristics of different species and different groups of species, an extensive 

sample of in situ spectral measurements were acquired from the spatially dominant reef and seagrass 

species in southwestern Puerto Rico. A semi-analytical algorithm for the water column was next used  

to model the influence of increasing water depth on the average spectral reflectance of each species. 

The resulting spectra at each depth were then grouped according to spectral similarity using 

hierarchical clustering. In the same study area, corresponding photoquadrats were collected from small 

habitat plots and visually analyzed to determine field estimates of biodiversity. These field estimates 

were then recalculated at each depth using the results of the spectral clustering analysis to demonstrate 

the influence of increasing water depth and spectral similarity on remote sensing derived biodiversity. 
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2.1. Reef Field Spectra 

Field reflectance spectra were collected in situ from amongst the inner shelf reefs of southwestern 

Puerto Rico, focusing predominantly on Enrique Reef, using a GER-1500 spectrometer in an 

underwater housing with attached illumination source (Spectra Vista Corporation, Poughkeepsie, NY, 

USA; Figure 1) [44,45]. The GER-1500 measures 512 spectral bands from 350 to 1050 nm at a 1.5 nm 

sampling interval. The unit is self-contained and can be easily operated using external controls on the 

underwater housing. The attached quartz halogen light provided steady, spectrally consistent, light with 

which to acquire measurements, and thus effectively eliminated uncertainties associated with the inherent 

variability of the natural underwater light environment. Field methodology followed standard spectral 

collection protocols, where target measurements of species and substrate were normalized to reflectance 

using contemporaneous in situ reference measurements of a 99% Spectralon panel (Labsphere, North 

Sutton, NH, USA). Included in the final data were measurements of 40 different marine species, 

representing Cnidaria, Porifera, and submerged aquatic vegetation (e.g., seagrass and algae), as well as 

representative samples of numerous sand areas. The resulting coral reef spectral library was organized 

by taxa, size, and spatial dominance, and cataloged using SAMS (Spectral Analysis and Management 

System) [46]. Data was analyzed to calculate the mean and standard deviation for each individual 

species plus sand, resulting in representative reflectance spectra for 41 different reef components. 

 

Figure 1. The GER-1500 spectrometer in underwater housing with attached illumination 

(left) and a map of the study location off the coast of southwestern Puerto Rico (right). 

2.2. Separability Analysis and Water Column Modeling 

Measured field spectra represent reflectance at zero water depth, where the artificial illumination 

and reference Spectralon measurements serve to effectively remove influences of varying water 

properties, fluctuating natural light, and differing water depths. While useful for in situ spectral 

analysis and remote sensing studies with robust water column correction schemes (which are difficult 
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to achieve and not typically the norm), it is informative to investigate how the water column influences 

spectral relationships at different depths. 

To introduce a simulated water column to the average reflectance spectra for each of the measured 

41 reef components, water column modeling was performed using the semi-analytical algorithm 

developed by Lee et al. [47,48]. This is a widely-accepted model in the remote sensing community  

that is commonly used as an “inverse” model to derive coastal water properties from hyperspectral 

imagery [17], whereas here it is used in an equally applicable role as a “forward” water column model. 

Here the model is used as a discrete example of how the water column can influence spectral 

characteristics at the water surface; however, analysis could also be adapted to other water properties, 

models and measurements, or extended to also consider the additional confounding impact of variations 

in water properties. In this study, a set of default values were used to parameterize the model for clear 

tropical water: phytoplankton absorption at 440 nm = 0.05 m−1; detritus/gelbstoff absorption at  

440 nm = 0.05 m−1; and particle backscattering at 440 nm = 0.01 m−1. Output from the model, which 

was replicated at 1, 3, 5 and 10 m water depths, represents reflectance spectra at the water surface  

(i.e., as if viewing each reef component through the water column).  

A quantitative analysis was used to calculate the similarities and differences, and thereby assess the 

ability to spectrally differentiate, between the various reef components at each depth. The metric 

selected for quantifying the level of separability was spectral angle, which calculates the “angle” 

between two spectra in n-dimensional space [49]. The smaller the angle, the less separable two spectra 

are considered. Spectral angle was calculated pairwise at each depth (0, 1, 3, 5 and 10 m) for all 

possible combinations of reef components. A weighted hierarchical clustering scheme (cluster distance 

is the average distance of pairs between each cluster weighted by number of members in each  

cluster [50] was next used to generate optical dendrograms (as opposed to taxonomic) that define how 

components are progressively grouped as a function of increasing spectral angle. 

2.3. Field Estimates of Biodiversity 

To correlate the spectral analysis with reef composition and biodiversity, photoquadrat images were 

obtained from selected habitat plots on Enrique Reef. Photo acquisition coincided with a 2013 airborne 

hyperspectral mission conducted over the same area, which is being used in a related project to 

investigate and develop remote sensing estimates of biodiversity. The particular study location, 

Enrique reef, is an important component of the CenSSIS-SeaBED project [51], where over the last 

decade UPRM researchers have compiled an extensive array of image and field data as support for 

testing and validating remote sensing algorithms for benthic habitat mapping. Habitat types on Enrique 

Reef include large areas of seagrass, patches of pure carbonate sand, and a diverse coral reef 

community including areas of both hard and soft coral. The reef measures approximately 1 × 0.5 km, 

and includes water depths ranging from >10 m along the fore and back reef, 1–3 m along the reef flat, 

and <1 m along the reef crest, with areas of exposed sand and rubble and emergent mangroves.  

Photoquadrat images were obtained from selected plots within the seagrass (n = 44) and coral reef  

(n = 26) habitat areas on Enrique Reef. For each habitat plot, a 1 × 1 m quadrat was randomly placed 

five times within a 2 m distance around a central point (marked with buoys), acquiring high quality 

photographic images of each quadrat location using a Nikon P7000 digital camera (Figure 2). The five 
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photoquadrats sampled for each plot were used to statistically represent the 4 × 4 m (16 m2) habitat 

characteristic for each plot. Individual plots were randomly located within each habitat type a 

minimum distance 10–15 m apart, and a Magellan Mobile Mapper 6 GPS was used to record the 

central location of each plot. 

 

Figure 2. (a) Flagged rebar was hammered into non-living substrate and tightly tethered to 

the surface to mark the GPS location for each habitat plot; (b) Photoquadrat of seagrass 

area mixed with soft corals; (c) Photoquadrat of from the reef crest area showing soft 

corals, hard corals, encrusting sponge, algae and non-living substrate; (d) Recording the 

GPS location of a habitat plot (tethered buoy). 

Summary statistics of habitat composition were derived from each group of five photoquadrats  

for each plot (pooled photoquadrats) using on-screen visual classification and identification [52,53]. 

The resulting statistics were used to calculate diversity using the Shannon Weiner Index, where the 

exponential of Shannon entropy [54,55], “diversity of order one”, was utilized to provide meaningful 

comparisons of biodiversity across this single marine landscape (inclusive of seagrass beds, sand 

patches, and coral communities). Considering that estimates of alpha diversity (habitat) and beta 

diversity (extent of differentiation among those habitats) [54] are independent, the exponential of 

Shannon entropy accounts for all species according to frequency, and rare or common species are not 

favored disproportionately, therefore making it the “fairest” index for the purposes of differentiation 

among the given coral reef habitats (Equation (1)): 

   1

1

exp ln exp
R

i i
i

D p p H


     
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where 1D is diversity of order one, pi is the relative proportion of species i relative to the total number 

of species R, and H' is the Shannon index value calculated using natural logarithms [55]. 

Utilizing results from the separability analysis, which provided an indication of how reef 

components group together spectrally (not taxonomically), calculations of the Shannon index were 

repeated for different water depths using the indicated spectral groupings. In other words, wherever 

analysis revealed certain species could not be reasonably differentiated spectrally, these species were 

grouped together and the Shannon index was recalculated with a reduced number of total “species”. Using 

output from the hierarchical clustering scheme at each depth, species were deemed spectrally 

inseparable if the spectral angle was <0.1; and conversely, separable if the spectral angle was ≥0.1. 

The 0.1 threshold is a common default value in spectral analysis; however, the threshold could be 

adjusted to reflect the specific variability of any given spectral dataset. The separability analysis 

allowed field measurements of biodiversity to be adapted to the remote sensing perspective, 

demonstrating how spectral characteristics influence what can be resolved in remote sensing imagery. 

3. Results 

3.1. Reef Field Spectra 

A total of 9400 in situ spectra samples (after removing erroneous or noisy spectra) were collected 

from 41 reef components in five categories: hard corals, soft corals, sponges, submerged aquatic 

vegetation (SAV; i.e., seagrass and algae), and carbonate sand (Table 1; Figures 3 and 4). Not intended 

to be inclusive of all species in the study area, these components represent a comprehensive sampling 

of those species that are individually or aggregately sizeable enough to contribute significantly to the 

remote sensing signal. Hence, these components also represent the feasible upper limit of taxonomic 

detail that can be achieved for remote sensing of biodiversity in this area. 

Table 1. Summary of field reflectance spectra (R) collected from shallow reef areas in 

southwestern Puerto Rico. Instrument configuration was set to automatically record and 

average four samples for each measurement. 

Phylum Individuals Species/Type Samples Spectra R 

Cnidaria 73 25 5556 1389 

Porifera 34 11 2028 507 

SAV (seagrass/algae) Numerous 4 1268 317 

Sand/Substrate Numerous 1 548 137 

Totals 107 41 9400 2350 

The individual reflectance spectra exhibit smooth curves with negligible noise from 400 to 800 nm, 

demonstrating the advantages of using artificial light. More specifically, given the challenges of 

acquiring in situ underwater measurements using natural sunlight, which are susceptible to fluctuations 

in the incident downwelling light (e.g., associated with light refraction, wave focusing, variable wave 

height, and instrument and diver self-shading), utilizing artificial light minimizes the uncertainty 

associated with these unwanted natural light variations. As a result, observed variations in spectra can 

be confidently attributed to actual physical variations in species and substrate reflectance characteristics. 
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Figure 3 illustrates an example subset of spectra acquired from a single coral species (A. palmata), 

where it is evident that while variability exists within the individual measurements for this species 

there is also a strong degree of similarity. Considering that similar relationships are observed amongst 

all of the measured species (Figure 4), this indicates that spectral similarities can exist both within and 

between different species. 

 

Figure 3. Representative individual spectra measured for Acropora palmata; examples 

shown here are 10 spectra subset from a total sample size = 139 spectra. 

 

Figure 4. Representative average spectra for ten coral species; examples shown here are 

subset of the 25 total Cnidarian species sampled (5556 samples; 1389 reflectance spectra). 
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3.2. Spectral Separability 

Analysis of spectral separability, and correspondingly spectral similarity, was performed at  

two different taxonomic levels: (i) as groups of related species; and (ii) ungrouped as individual 

species. Calculations were performed using 38 of the 41 measured components, eliminating those with 

fewer than 10 spectral measurements and thereby retaining only those components with sufficient 

sampling to be considered representative of each species’ reflectance characteristics. 

 

Figure 5. Optical dendrograms illustrating the effect of increasing depth on separability of 

field spectra grouped into four fundamental reef components: coral, sponge, submerged 

aquatic vegetation (SAV), and sand. 

The first level of analysis grouped the reef spectra into four fundamental components: coral, 

sponge, submerged aquatic vegetation (SAV), and sand. Average spectra were generated, and results 

were used to calculate spectral angles between the components as well as generate optical 

dendrograms for each of five water depths: 0, 1, 3, 5 and 10 m. Using a reasonable spectral angle 

threshold of 0.1 it is evident that the average in situ field spectra of these components exhibit unique 

reflectance characteristics and can be readily differentiated at 0 and 1 m water depth (Figure 5). 

However, with increasing water depth the relative separability of these four components decreases. For 

example, even when considering a lower spectral angle threshold, it is more difficult to differentiate 

sand from SAV and coral from sponge at 3 m water depth, and at 10 m water depth the system is 
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essentially reduced to two differentiable components: sand vs. coral, sponge and SAV (Figure 5). It is also 

instructive to observe that the hierarchical relationships can change with depth (e.g., SAV is most 

closely grouped with sand up to a depth of 5 m and then shifts to coral as its closest spectral 

component at 10 m), an observation that is even more apparent in the results that follow for the 

individual species. 

 

Figure 6. Optical dendrogram for 0 m water depth illustrating separability of field spectra 

from 24 coral species, 10 sponge species, 3 submerged aquatic vegetation (SAV) species, 

and sand. 
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Figure 7. Optical dendrograms for 3 and 10 m water depth illustrating the effects of 

increasing depth on separability of field spectra from 24 coral species, 10 sponge species,  

3 submerged aquatic vegetation (SAV) species, and sand. 

When applying the same pairwise spectral angle calculations and optical dendrogram creation using 

the average individual spectra, results reveal that even at 0 m water depth there are already many 

species that are difficult to separate spectrally (Figure 6). In some cases species group together within 

categories, such as coral with coral (e.g., D. labyrinthiformis and D. cylindricus), but in other cases species 

are grouped outside their respective categories, such as coral with algae (e.g., Porites spp. and  
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Dictyota spp.). While biologically different, this spectral similarity across categories may be explained by 

the presence of common photosynthetic pigments between species. For example, Hochberg et al. [56] 

and Torres et al. [57] both provide evidence that certain corals contain the same pigments  

(e.g., carotenes and xanthophyll) that also characterize brown algae. When the effects of the water 

column are included, the ability to distinguish individual species diminishes significantly with 

increasing water depth (Figure 7). [Note: for brevity only the optical dendrograms from 3 and 10 m 

water depth are displayed here]. Furthermore, varying water depth is also accompanied by substantial 

variations in how spectra are grouped, regardless of taxonomic relationship. For example, Dictyota spp. 

is most closely grouped with Porites spp. at 0 m depth, whereas at 3 m it is grouped with Halimeda spp. 

and at 10 m it is grouped with Diploria spp. These changing spectral relationships are attributed here 

to the inherent nonlinearity of light interaction and attenuation in the water column; but when also 

considering intra-species spectral variations these relationships can be further influenced by depth 

dependent differences in photosynthetic pigment content within species [58]. This indicates that unless 

such variations are accounted for, significant uncertainty can be associated with species-level spectral 

and image analysis. Furthermore, considering the correlation between increasing depth and decreasing 

spectral separability, these results also affirm the importance of compensating for variable water depth 

(e.g., using a depth invariant index, semi-analytical algorithm or radiative transfer model) when 

deriving habitat classifications and biodiversity estimates using remote sensing. 

3.3. Field Estimates of Biodiversity 

Photoquadrats were acquired from a total of 90 plots distributed across three different habitat 

categories: coral reef community (n = 26), dense seagrass (n = 44), and pure sand (n = 20). As 

expected, field estimates of biodiversity derived from photoquadrats using the Shannon index (order 

one diversity) exp(H′), revealed different magnitudes of biodiversity corresponding to each of the three 

habitat areas. Estimates ranged from no biodiversity exp(H') = 1 in areas of pure carbonate sand, 

low/moderate diversity exp(H') = 1–3 in seagrass areas, and high biodiversity exp(H') = 10 in reef 

communities. After using results from the separability analysis to group spectrally similar species and 

recalculate the Shannon index for different depths, it is observed that estimated biodiversity, as well as 

the range and standard deviation, decreases with increasing water depth (Figure 8). This indicates that 

depth-influenced estimates of biodiversity derived from remote sensing (i.e., optical diversity) can 

significantly underestimate biodiversity and represents the lower limit of actual species diversity. For 

example, depending on water depth, species composition, and the associated spectral relationships, a 

hypothetical optical diversity index of 1 for seagrass could indicate an actual biodiversity index of 1–3, 

whereas and optical diversity index of 1 for coral could indicate a biodiversity index as high as 10. 

Based on this analysis, it appears feasible to derive mathematical relationships for each habitat type 

that correlate optical diversity with biodiversity as a function of water depth, and then utilize these 

empirical functions to normalize remote sensing derived estimates of biodiversity. Although 

implementation of such a technique would require knowledge of water depths for a given study area, 

these values are often available from bathymetric charts or can alternatively be estimated directly from 

the imagery. 
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Figure 8. Estimates of biodiversity calculated using the exponential of Shannon entropy, 

exp(H′), illustrating influence of increasing spectral similarity amongst reef species as a 

function of increasing water depth: 0* is biodiversity obtained from photoquadrats, 0** is 

biodiversity calculated using only those species considered prevalent or sizable enough  

to significantly influence the remote sensing signal (i.e., species included in the spectral 

measurements for this study area), and 0–10 is biodiversity calculated with consideration  

for optical similarities amongst species (i.e., based on hierarchical clustering of reflectance 

spectra as influenced by the overlying water column).  

The overall results of this investigation suggest three important implications for remote sensing of 

biodiversity: (i) unless the influence of the water column is accounted for, then estimates of 

biodiversity for any given area will be depth-biased; (ii) given the occurrence of spectral similarity 

amongst reef species, even without influence of the water column, biodiversity estimates should not be 

considered absolute but rather the minimum or lower limit of true biodiversity; and (iii) even small or 

moderate differences in remote sensing derived optical diversity may indicate substantial differences in 

actual species diversity.  

4. Discussion 

This study explored spectral relationships of reef components in southwestern Puerto Rico and 

illustrates how the overlying water column can impact these relationships. Results indicate that the 

ability to distinguish individual species significantly diminishes with increasing water depth, thereby 

contributing a level of uncertainty to any spectrally derived estimates of biodiversity, such as through 

remote sensing. Additional considerations not addressed in this analysis, but that would contribute 

further uncertainty, include: variable water properties and water surface conditions, differing sensor 

spectral and spatial characteristics, within-species spectral variations, and overly simplified or 

imperfect water correction schemes. Thus, it is expected that the observations illustrated here for 

Puerto Rico would be equally applicable to reef remote sensing elsewhere around the globe. So, if 

species level distinctions are not feasible with remote sensing imagery, then what can be detected in a 
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remote sensing pixel? At what level can biodiversity be measured? Moreover, can a biodiversity index 

for coral reefs be conceived using remote sensing? And if so, how do we correlate spectral diversity 

measured in remote sensing with biodiversity and reef composition values generated from field data? 

The answers to these questions lie in continuing to improve our understanding of the complex 

relationships and environmental drivers that govern species distribution, continuing to investigate 

relationships between optical diversity and species diversity, and utilizing this knowledge to improve 

our capacity for monitoring biodiversity using remote sensing imagery. 

Remote sensing is a powerful tool for assessing reef characteristics over large spatial areas, 

including the estimation of biodiversity, but interpretation of image-derived output requires informed 

decision making from remote sensing specialists and ecologists alike regarding physical constraints on 

what is being measured and what the confidence levels are for those measurements. An important 

aspect of consideration for remote sensing users and producers is to understand the scale of 

observation, inclusive of spatial extent, observation detail, and taxonomic level. For example, the 

Pyramids of Observation illustrate the different scales and relationships that exist in remote sensing 

and field-based studies of biodiversity (Figure 9). 

 

Figure 9. The Pyramids of Observation relating the different scales at which biodiversity 

is measured from the perspective of both remote sensing and field-based analysis. 

The lower levels of the pyramids represent the finest scale of observation, such as where the marine 

field ecologist records detailed habitat information and species composition within a local study area. 

Moving up through the pyramids depicts decreasing levels of habitat information acquired at a coarser 

observation scale, but with increasing magnitude in spatial coverage. Remote sensing is represented at 

two levels within the context of these pyramids: high resolution (<5 m pixel scale, e.g., WorldView-2) 

and moderate resolution (5–100 m pixel scale, e.g., Landsat). A caveat here is that the distinction 

between moderate and high-resolution spatial coverage is becoming more a function of processing 

capacity, and less an issue of acquisition extent, as more and higher resolution imagery becomes 

available globally. In this situation, even with high spatial resolution imagery (e.g., 30 cm  

WorldView-3) the primary challenge remains overcoming radiometric and spectral resolution. 

Nonetheless, increasing from moderate to high resolution remote sensing facilitates detection of an 
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increasing number of general habitat categories, such as differentiating more variations in seagrass 

density and coral community type. However, as shown here, except for situations where certain species 

exhibit unique spectral characteristics, even with high spectral, high spatial resolution imagery it is 

currently not possible to spectrally differentiate all individual species. This constraint is a function of 

both spectral similarity amongst species and spatial size or extent, where many species are not 

prevalent or sizable enough to significantly influence the remote sensing signal. This in turn has direct 

relevance to remote sensing estimates of biodiversity, which become inherently limited by these 

spectral characteristics. For example, a large expanse of seagrass can appear as a relatively uniform 

dark area in moderate resolution imagery and as a collection of different seagrass densities in high 

resolution imagery; however, a field ecologist surveying the same area can identify a patchy 

distribution of numerous benthic groups and species, such as scleractinian corals, octocorals, sponges, 

macroalgae, and even different seagrass species. In other words, there is typically an intrinsic tradeoff 

between the scale of observation and the scale of information. 

To better understand the implications of this observation tradeoff there is a need to more explicitly 

define the relationships between optical diversity and species diversity. A common challenge when 

linking remote sensing applications and coral reef ecology is the calibration and validation of field data 

with data from remote sensing imagery [21], especially in marine environments [59]. For example, 

field data and remote sensing image acquisitions are not always coincident [7,8,21,60], and in some 

cases there are even years of difference between the acquisition of field and image data [8,60]. 

Additionally, spectral libraries for marine species remain undersampled, and significant opportunity 

exists for detailed analysis of intra- and inter-species similarities. As such, while there are many 

informative coral reef remote sensing applications, there is yet a need for more studies that incorporate 

specific consideration for calibrating and validating remote sensing estimates of biodiversity. This 

includes directly correlating small-scale localized field estimates of biodiversity and species 

composition in different habitat areas with estimates derived from corresponding high spectral, high 

spatial resolution imagery. It is also instructive to consider information and measurements derived 

from other related disciplines, such as climate patterns, physical processing, ocean chemistry, larval 

dispersal and population connectivity, which can further contribute to the overall assessment of 

biodiversity [1,31,61]. Once the variability in spectral diversity is better understood at these scales, it 

then becomes feasible to extend the observed correlations to other spatial and spectral scales, and 

thereby develop more effective tools for linking remote sensing biodiversity estimates with  

field ecology.  

5. Conclusions 

This study demonstrated that although average field spectra can be used to differentiate many coral 

reef species, once the overlying water column is considered the ability to distinguish species 

significantly declines with increasing water depth. These results illustrate the challenges associated 

with developing a depth-invariant biodiversity index using remote sensing, and reveal that there is 

important groundwork ahead for reef ecologists and remote sensing specialists to better understand the 

relationships between optical diversity and species diversity. 
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Remote sensing will no doubt continue to serve as an important tool for ecology, conservation, and 

biodiversity, particularly considering the current predictions of continued environmental degradation 

related to climate change on a global scale. Consequently, it is imperative that we continue to improve 

our abilities for rapid ecological monitoring using remote sensing, including the capacity to assess and 

monitor changes in coral reef biodiversity. As remote sensing technologies improve in both coverage 

and resolution (spatially, spectrally and temporally), there is increasing opportunity, given 

development of a strong foundation in spectral knowledge, to realize these improvements and put the 

resulting analysis tools into practice.  
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