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Abstract: In the field of maritime safety research, ship behavior analysis is usually based on
data provided by automatic identification systems (AISs). Prevailing studies predominantly
focus on detecting the behaviors of vessels that may affect maritime safety, especially the
abnormal disappearance of ship AIS signals, neglecting subsequent measures to trace these
illegal ships. To fill this gap, we propose a deep learning model named multi-dimensional
convolutional long short-term memory (MConLSTM) to tackle the challenge of recognizing
ship trajectories in cases where AIS signals are intentionally altered. By employing a
self-supervised approach, the model is trained using historical real-world data. Extensive
experiments show that MConLSTM exhibits superior analytical capabilities when it comes
to processing and analyzing AIS data. Notably, even in scenarios with scant training data,
the model exhibits exceptional performance, with an average accuracy 22.74% higher than
the general model. Finally, we validated the practical significance and feasibility of the
proposed method by simulating real-world scenarios.

Keywords: feature extraction; deep learning; self-supervised learning; automatic identification
system; maritime supervision

1. Introduction
Currently, maritime transport facilitates 90% of global trade, with its prominence

continuing to escalate [1]. The rapid expansion of the global shipping industry has led to
a surge in ship traffic, posing numerous safety and efficiency challenges. To effectively
manage and monitor ships’ dynamic behavior, the automatic identification system (AIS)
has progressively become indispensable. The AIS system broadcasts a ship’s dynamic,
static, and navigation-related data in a standardized format [2], which is received by both
other vessels and shore-based systems. AIS data not only furnish basic ship information
like position, course, and speed but also encompass inter-ship communication data [3], fa-
cilitating easy collection and offering a robust dataset for analyzing ship behavior. AIS data
have typical spatiotemporal characteristics. The ship’s position, speed, course, and other
information change with time, which is usually closely related to the behavioral patterns
and purposes of navigation. Nonetheless, AIS transmits hundreds of millions of messages
globally daily [4], leading to inevitable noise generation within the data due to wireless
transmission instabilities and other objective factors. Consequently, extracting valuable
information from vast and intricate AIS data and utilizing it judiciously have always been
huge challenges.

To evade maritime supervision, deliberately altering AIS signals is a common behavior
of illegal ships, especially in areas where the AIS signal is completely absent, which stems
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from environmental factors. In addition, some illegal ships will turn off AIS signals and
follow other ships, which can also lead to the occurrence of incomplete trajectories. For this
issue, prevailing studies predominantly focus on detecting trajectories with abnormal
interruption, neglecting subsequent measures to trace these illegal ships.

Given the complexity of AIS data, it is difficult to identify trajectories that have
been deliberately tampered with through manual analysis [5]. In recent years, rapidly
developing machine learning has become an important approach for analyzing AIS data.
In the actual process of maritime travel, ships with similar objectives tend to exhibit roughly
similar trajectories, which can not only conserve fuel but also enhance navigation safety.
Therefore, the historical trajectories of ships in an area inevitably correlate with the current
behavior of ships, which provides a data foundation for machine learning methods to solve
trajectory recognition.

To fill the gap in research, this paper proposes a deep learning approach to identify the
subsequent trajectory of ships that tamper with AIS signals. Specifically, we transformed
the issue into a classification problem through analysis. Subsequently, we designed a
deep learning model, termed MConLSTM, that is capable of fully capturing the global
and temporal characteristics of AIS data. Finally, we employed a self-supervised learning
approach to train the deep learning model to address this classification problem.

2. Literature Review
Currently, the primary research focus on AIS data analysis lies in identifying and

predicting abnormal ship behavior. In addition, there are also some other research points,
such as the analysis of ship berthing. Fang and Yin [6] analyzed the behavior characteristics
of ships berthing ashore using AIS data and established an evaluation model. Their focus
is on designing evaluation indicators based on ships’ berthing behavior and conducting
objective evaluations. Traditional machine learning and deep learning are increasingly
pivotal in ship behavior analysis and anomaly detection [7].

2.1. Traditional Machine Learning in Maritime Supervision

Based on the existing analysis, traditional machine learning methods in maritime
supervision can be categorized into two main types: probability-based models and cluster-
ing methods.

Probability models are fundamental for analyzing ship behavior, particularly when
based on historical AIS data. These methods typically assume that ship behavior follows
certain probability distributions and employ statistical learning to detect anomalies or
predict future behavior. Dalsnes et al. [8] proposed a data-driven approach to predict
vessel positions. The predictions are represented as Gaussian mixture models (GMMs),
which provide a measure of uncertainty and can handle multimodality in vessel trajectories.
A nearest neighbor algorithm was applied to two different data structures, and the accuracy
and covariance consistency of both structures were tested on real data. This method was
particularly useful for collision avoidance systems in autonomous surface vessels (ASVs).
Mascaro et al. [9] explored anomaly detection using data-mined Bayesian networks learned
from real-world AIS data and supplementary data. They developed both dynamic and
static Bayesian network models, which are easy to examine and verify despite incorporating
a large number of variables. The combination of dynamic and static modeling approaches
improves the coverage of the overall model, thereby enhancing anomaly detection perfor-
mance. However, the static components of the model might lack adaptability to rapidly
changing maritime conditions, and the reliance on supplementary data could introduce
complexity or potential biases. Zhou et al. [10] employed hierarchical timed colored Petri
nets (HTCPN) and Markov chains to evaluate the emergency response process to ship
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fires. By modeling the ship fire emergency response process and calculating performance
metrics using Markov chains, they provided targeted suggestions for optimizing emergency
response capabilities. But, the static nature of Markov chains might not fully capture the
dynamic and uncertain aspects of real-world emergencies. Validating the model in diverse
scenarios could strengthen its robustness and applicability. Fridman et al. [11] presented
an algorithm for selecting the best satellite observation window to detect moving vessels.
Their model predicted vessel behavior within a time frame of 1–24 h and is integrated
into the KINGFISHER maritime intelligence system for tracking suspected vessels with
satellite sensors. This approach demonstrated the importance of probabilistic modeling in
large-scale maritime surveillance.

Clustering methods are widely used in maritime supervision to group ship trajectories
and detect abnormal behavior while being highly interpretable and applicable to a wide
range of scenarios. Kumar and Ramanarayanan et al. [12] proposed a machine learning
scheme based on HDBSCAN+ to identify abnormal ship behavior through clustering.
By automatically adjusting clustering parameters based on the dataset, this method adapts
to various scenarios and successfully detects maritime accidents reported by the Indian
Ocean Regional Information Fusion Center (IFC-IOR). While the approach is innovative, its
sensitivity to data density variations could be a drawback, and further research could focus
on improving its robustness in heterogeneous datasets. Liu et al. [13] presented a hybrid
clustering model for the probabilistic characterization of ship traffic and anomaly detection.
First, ship trajectory characteristics are constructed based on static and dynamic features,
and dissimilarities between trajectories are calculated using the Hausdorff algorithm. K-
means is used to cluster trajectories based on departure and destination characteristics,
while DBSCAN is applied to further refine the clustering within sub-trajectories. This
hybrid approach was tested in Zhanjiang Port, demonstrating its effectiveness in detecting
anomalies in ships. However, trajectory features extracted based on fixed rules may limit
the effectiveness of anomaly detection, making the method of feature extraction a further
research direction to improve model performance.

Additionally, machine learning has a wide range of application scenarios. To prevent
ship-infrastructure collisions and ensure transportation safety, Komol et al. [14] represented
an emergency clash avoidance control system. They also developed a simulation platform
for movable bridge maritime and dynamic traffic management, which can effectively
improve transportation strategies and reduce collision risks. Maelic et al. [15] proposed a
method for recognizing false AIS signals by incorporating time division multiple access
(TDMA) and employing the Kalman filter. They only analyzed AIS signals from the
perspective of signals without considering the valuable behavioral information contained in
AIS signals, which was not the focus of current research. Bloisi [16] combined different data
to achieve ship monitoring, including AIS data and video data, which enabled effective
monitoring of ship behavior in areas where radar was not available. This multimodal
approach was promising, but challenges related to data synchronization and processing
efficiency need to be addressed in future work to improve its scalability and practicality.

It is noteworthy that Kutluyil [17] conducted a comprehensive review of the applica-
tion of machine learning in AIS data processing. In addition, he pointed out the powerful
ability of artificial intelligence to analyze AIS data and elaborate on future development
trends in areas such as ship behavior pattern recognition and target classification. However,
with the increasing amount of data and more complex regulatory requirements, modern
maritime supervision is gradually developing towards multi-source data fusion, intelli-
gence, automation, and multi-task systems. Traditional machine learning methods are
more suitable for single tasks based on simple data due to their limitations. Daneshfar [18]
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indicated that deep learning is highly effective in extracting features from nonlinear and
complex data, which will play an important role in current and even future research.

2.2. Deep Learning Methods Based on AIS Data

Supervised learning is the most widely used method in deep learning, and it is
especially suitable for mining features from complex nonlinear data. In the application of
deep learning in maritime vessel supervision, existing research can be broadly categorized
into two areas: vessel behavior analysis and anomaly detection and vessel trajectory
prediction and risk assessment.

Deep learning has been widely adopted in vessel behavior analysis and anomaly
detection, particularly for handling complex nonlinear data. Liu et al. [19] proposed
a monitoring and detection mechanism for vessel abnormal behavior based on a graph
attention prediction and Reconstruction Network. This mechanism effectively captures
the interdependencies among vessel behavior characteristics, demonstrating the poten-
tial of graph-based approaches in modeling complex relationships within maritime data.
By introducing advanced deep learning techniques, their approach not only improves
detection accuracy but also enriches the methods for identifying abnormal vessel behaviors.
However, the reliance on graph structures may increase computational complexity, particu-
larly when applied to large-scale AIS datasets, which could pose challenges for real-time
applications. Duong et al. [20] designed a new encoding method (four-hot vector) based on
one-hot encoding, which is different from the 4D real-valued vector [21–23] that is com-
monly used. This encoding method is more conducive to learning the spatial and temporal
characteristics of AIS data. Subsequently, they exploited state-of-the-art neural network
schemes to learn a probabilistic representation of AIS tracks and a contrario detection to
detect abnormal events.

Integrating multiple tasks into a unified system has become a research hotspot, allow-
ing for more efficient and comprehensive maritime data analysis. Duong and Rodolphe [24]
developed a multitasking and universal deep learning framework based on a variational
recurrent neural network (VRNN). This framework could simultaneously handle tasks
such as trajectory reconstruction, abnormal behavior detection, and track type recognition,
showcasing the versatility of VRNNs in maritime applications. Their method embedded
AIS data into a new representation space, effectively addressing noise and sampling issues
in AIS data. Nevertheless, the projection might lead to the loss of important information in
AIS data, which was an unavoidable problem.

Despite the significant role of deep learning in vessel anomaly detection, certain limi-
tations remain. Pierre and Arnaud [25] designed a deep learning model centered on the
transformer architecture, which can effectively identify illegal vessels that deliberately
disable their AIS signals. This highlights the potential of attention mechanisms in captur-
ing long-range dependencies in AIS data. Similarly, Song [26] and Ma [27] implemented
anomalous trajectory detection using recurrent neural networks (RNNs) [28], achieving
high accuracy on manually annotated datasets. However, the reliance on manual annota-
tion, often based on specific thresholds, may introduce bias and limit the adaptability of
these methods to diverse real-world scenarios. Additionally, the interpretability of deep
learning models in explaining detected anomalies remains a challenge, which is crucial for
gaining the trust of maritime operators and regulators.

In the domain of vessel trajectory prediction and risk assessment, deep learning has
also made significant strides. Gao and Zhu et al. [29] developed a model for predicting colli-
sion risks among vessels in a given region. Their approach employed clustering techniques
on raw AIS data to preliminarily identify vessels at potential risk, significantly reducing
the volume of data to be processed. Subsequently, a deep learning framework was uti-
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lized for maritime risk assessment. While this two-step approach enhanced computational
efficiency, the accuracy of the clustering stage might influence the overall performance,
and the method’s sensitivity to varying traffic densities warrants further investigation.

Xiao et al. [30] proposed a bidirectional data-driven trajectory prediction method
based on deep learning. By reversing trajectory data, their approach could more com-
prehensively capture implicit information in AIS data, enabling accurate predictions of
vessel behavior. This innovative use of bidirectional learning demonstrated the potential
for improving prediction robustness. Similarly, Kim [31] designed a layered neural net-
work to predict vessel behavior in port areas, extracting trajectory features from different
perspectives using specialized deep learning modules. While these methods showcased
the power of deep learning in feature extraction, their performance in highly dynamic
environments, such as congested ports or regions with unpredictable traffic patterns, may
require further validation.

In summary, deep learning has been extensively applied in maritime vessel super-
vision, particularly in vessel behavior analysis, anomaly detection, trajectory prediction,
and risk assessment. While deep learning has demonstrated remarkable performance in
these tasks, challenges such as reliance on large datasets and potential labeling biases
remain. Future research should focus on optimizing deep learning models and training
methods to enhance their robustness and accuracy in practical applications. This paper
addresses the challenge of identifying the subsequent trajectories of ships intentionally
tampering with AIS signals, a task that is difficult to achieve using unsupervised methods
like those in [32–34]. To mitigate the bias introduced by manual annotation, self-supervised
learning can be employed to automatically extract supervised information from unlabeled
datasets, offering a promising solution for model training.

3. Method Overview
As depicted in Figure 1, this paper employs self-supervised learning to construct the

training dataset from raw AIS data. Then, we design a deep learning model, MConLSTM,
based on the characteristics of AIS data. This model accepts two trajectories as inputs and
outputs the probability that two trajectories come from the same voyage.

AIS SIgnal
Collecting

Dataset 
Construction

Training 
Dataset

Testing 
Dataset

Labeling

Self-supervised Learning

TrainingLabels

Tracks Model                   

Evaluation and Analysis 
of Model Performance

 Optimal 
  Model

Figure 1. Overall process: In this paper, we provide an in-depth analysis of the subsequent trajectory
recognition problem and use a self-supervised approach to convert the original problem into a
classification problem. In addition, we have designed a deep model called MConLSTM based on the
characteristics of AIS data. Subsequently, a large number of datasets are constructed using the AIS
data to train the model and thus solve the problem.

3.1. Data Processing

In order to accurately reflect the behavior status of ships while minimizing the amount
of data, it is necessary to sample and filter AIS data. The data utilized in this paper originate
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from historical real track segments, and some examples are depicted in Figure 2. Given that
the interval of the original AIS signal typically ranges between 3 and 10 s, and considering
the relatively slow navigation speed of ships, such dense AIS data are unnecessary for
describing ship behavior. Therefore, we filter out duplicate points from the original data
and sample the ship’s trajectory at 10 min intervals.

Figure 2. Visualization of Some AIS Data: We use different colors to distinguish different
ship trajectories.

Given the above, AIS data encompass various types of information, such as latitude,
longitude, ship speed, the direction of travel, maritime mobile service identity (MMSI),
dynamic and static information, as well as other attributes reflecting behavioral states. This
paper only focuses on the attributes in AIS data that are directly related to the behavior
status of ships while disregarding information pertaining to the ship’s identity and behavior.
To enhance understanding of the data and improve model performance, certain features
are expanded upon based on the existing AIS data, as discussed in Equation (1).

mi = [loni, lati, speedi, headi, timei]. (1)
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In Equation (1), mi is the processed AIS data of a ship at a certain time, [lon, lat] is the
longitude and latitude of the trajectory point, speed is the running speed of the ship, and
head is the direction of travel of the ship, namely the angle between the heading and geo-
magnetic north. Continuous trajectory points mi form a complete trajectory [m1, m2, · · · ],
representing a multidimensional time series.

3.2. Dataset Construction

As depicted in Figure 3, complete tracks are randomly selected from two different
ships. Tracks with a duration of one hour are chosen. However, data where the time
interval between two tracks is excessively long or the distance between them is too great
are evidently unsuitable for training purposes. Thus, the selected tracks must adhere
to the following criteria: the time interval between the end of the preceding track and
the commencement of the subsequent track should be under one hour, and the distance
between them should not exceed dmax (dmax represents the maximum distance a ship can
traverse within an hour). Subsequently, these two tracks are concatenated. This procedure
is repeated iteratively to generate 1 million datasets.

Randomly 
select one 

hour of any 
ship's track

Randomly 
select the 
one-hour 

track of ships 
other than A

Whether the time interval between two 
trajectories exceeds one hour and whether 

their distance is no greater than dmax

Stitch the 
trajectory A and 

trajectory B

No

Yes The data with 
the label of 0

AIS Signal

A B

Figure 3. Dataset construction with negative samples.

To ensure the balance of training data, a large amount of opposite training data is
also essential, and the subsequent operations are performed continuously, as illustrated in
Figure 4. Initially, a complete track is randomly chosen from all ship trajectories, followed
by the random selection of two segments with an interval not exceeding one hour. This
one-hour interval between the segments is necessitated by the time taken for the vessel to
update AIS data. Subsequently, these two trajectories are combined to obtain a training
set representing a normal ship. By repeating the above operations, the same number of
opposite training sets will be generated.

Here, we have converted the original problem into a binary classification problem and
preliminarily processed the AIS data into a training dataset for deep learning. The subse-
quent section will involve conducting final preprocessing based on the extracted feature
data, designing a model tailored to the dataset, and strategically utilizing the dataset for
model training.
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Randomly 
select a 

trajectory of 
one hour

Randomly select a 
one-hour trajectory 

within two hours 
after trajectory A

Stitch the 
trajectory A 

and 
trajectory B

The data with 
the label of 1

AIS Signal

A complete 
random trajectory

A

B

Figure 4. Dataset construction with positive samples.

3.3. Model Design

Due to the complexity of AIS data, it is imperative for the deep learning model to
capture the inherent time-series characteristics within the AIS data overall. As shown in
Figure 5, we develop a deep learning model called MConLSTM using a convolutional
neural network (CNN) [35] and long short-term memory (LSTM) [36], which consists of
three parts: separation and processing of attributes, data importance analysis, and temporal
feature extraction.

Input
[[lat,lon,head,speed,time]1,...,[]T]

Attribute Segmentation

Norm

Con1D

Norm

Con1D

Norm

Con1D

Norm

Con1D

Concat

Bi-LSTM

Concat

MLP

Output Probability

Sigmoid

×N

M-CNN

[lat
1
 , ..., lat

T
 ] [lon

1
 , ..., lon

T
 ] [speed

1
 , ..., speed

T
 ] [head

1
 , ..., head

T
 ]

Figure 5. The structure of MConLSTM.

3.3.1. Separation and Processing of Attributes

To ensure that the training data include the behavioral characteristics of all ships and
be as concise as possible, we opted to isolate four attributes from AIS data, including lon, lat,
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head, and speed. Considering that the interval of AIS data has been sampled as a fixed value,
time is not necessary for training. Consequently, the training data is determined as temporal
data with four attributes, which are then segregated into four individual temporal data by
attributes. Trajectory M = [m1, m2, . . . , mT ] containing T AIS data points is processed as
{lon, lat, speed, head}, where lon is [loni], i ∈ {1, 2, . . . , T}, lat is [lati], i ∈ {1, 2, . . . , T},
speed is [speedi], i ∈ {1, 2, . . . , T}, and head is [headi], i ∈ {1, 2, . . . , T}.

Given the potential variance in measurement scales across different attributes, directly
inputting AIS data into the model may result in several challenges, including overfitting,
gradient instability, and convergence issues, which can diminish training efficiency and
accuracy. Consequently, data normalization is also essential before training, which ensures
that all features are adjusted to similar scales. In addition, the normalization methods of
different attributes should also be different. Due to the fixed upper and lower limits of
longitude and latitude and our objective of enabling the model to acquire geographical
knowledge through these coordinates, we normalize lat and lon using Equation (2). How-
ever, the behavior of ships in different trajectories varies greatly and is obviously affected
by the geographical environment. Hence, we employ Equation (3) to normalize speed and
head, which is shown as follows:

Nl(x) =
x

180
, (2)

Nc(x) =
x − xmin

xmax − xmin
, (3)

where xmin is the minimum value of x, and xmax is the maximum value of x. Subsequently,
we obtained the input for the deep learning model:

Input =



l̂on = Nl(lon)

l̂at = Nl(lat)

ŝpeed = Nc(speed)

ĥead = Nc(head)

.

3.3.2. Data Importance Analysis

In order to learn the features of trajectories more accurately, we need to conduct data
importance analysis. AIS data are high-dimensional temporal data containing numerous
noise points and missing values. In addition, the importance of data from different po-
sitions in our task varies within the entire trajectory. If we focus solely on the temporal
characteristics of AIS data, the substantial extraneous data within the trajectory may pre-
vent the model from effectively capturing long-term dependencies. Therefore, we need a
module to judge the importance of data in the trajectory.

In recent years, CNN has been primarily employed in the field of computer vision,
which excels in capturing local features of data with the unique sliding mechanism. Further-
more, it can achieve a broad global perspective through deep structures. Since trajectories
have a similar data format to images, we can employ CNN to obtain the importance of
local data in a trajectory. Moreover, with its powerful feature extraction ability, CNN can
learn these complex spatial features from AIS data preliminarily.

Since image data are not time-series, researchers typically use a convolution kernel
for the entire matrix. However, due to the varying influences of different attributes on
behavior analysis, different attributes may require different parameters to make the deep
model converge during the optimization of deep learning model parameters for AIS data.
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To independently calculate the importance of each position in different attributes, we design
a multidimensional convolution network (M-CNN).

As illustrated in Figure 6, independent convolution kernels are employed to calculate
the importance of various attributes in AIS data. Through M-CNN, we can obtain the
trajectory M̃ that contains the importance of data as follows:

M̃ = M-CNN(M̂), (4)

where M̂ ∈ R4×T is [l̂on, l̂at, ŝpeed, ĥead]T ,which we have obtained in the previous section.
Specifically, we employ different one-dimensional convolution kernels to determine the
importance of different positions in l̂on, l̂at, ŝpeed, ĥead ∈ RT :

τ =
{

Con1D(X, K, N)|X ∈ M̂
}

, (5)

M̃ = Reshape(τ), (6)

where Con1D(X, K, N) represents performing one-dimensional convolution on X using
a K-dimensional convolution kernel with N channels while keeping the length of the tra-
jectory data T unchanged. τ ∈ R4×N×T denotes the result of the convolution operation,
and τ is then reshaped into a two-dimensional matrix M̃ ∈ RT×H for the subsequent ex-
traction of temporal features. Compared to the original trajectory M, important data in the
trajectory are automatically enhanced, while unimportant data are weakened. In addition,
the dimensionality H = 4 × N of each data point in M̃ is higher than that in M, which
is more conducive to the subsequent feature reduction, like word vector embedding in
natural language processing (NIP).

×N

Convolution kernel

lon

lat

speed

head

 

M̂ M
~

Figure 6. M-CNN.

3.3.3. Temporal Feature Extraction

However, relying solely on a CNN is insufficient to comprehensively capture the
characteristics of AIS data. The temporal dependency within AIS data is also crucial.
The navigational status of a vessel depends not only on its current position but also
closely on its previous navigation history. The RNN and transformer [37] exhibit superior
performance in learning from time series data. When designing a model for complex
and large-scale AIS data, the considerations of both the model’s performance and the
consumption of training resources are imperative while avoiding overfitting as much
as possible.

On the other hand, RNNs have evolved into variants such as LSTM, which typically
demonstrate outstanding performance in processing sequential data due to their unique
gating mechanisms, including input gates, forget gates, and output gates, effectively
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alleviating the common issues of gradient vanishing and exploding encountered in a
traditional RNN. Therefore, we chose LSTM with lower resource consumption to extract
temporal features.

For the trajectory M̃ ∈ RT×H that contains the importance of data from different
locations, we utilize a bidirectional LSTM architecture to extract temporal features as
Figure 7. A bidirectional LSTM incorporates two parallel LSTM layers, with its primary
advantage being the capability to capture bidirectional information in time series data. This
advantage allows bidirectional LSTM with the hidden size λ to extract richer features in
long sequence analysis as follows:

HT = Bi-LSTM(M̃)

= h+
T ⊕ h−

T

, (7)

where Bi-LSTM(·) represents the overall function of the bidirectional LSTM for processing
M̃, HT ∈ RT×λ is the temporal features of M̃, and h+

T ∈ RT×λ and h−
T ∈ RT×λ are the

outputs of two LSTM layers:
h+

T = LSTM+(M̃)

= [h+1 , h+2 , . . . , h+T ]
, (8)

h−
T = LSTM−(M̃)

= [h−1 , h−2 , . . . , h−T ]
, (9)

where ht ∈ Rλ, t ∈ {1, 2, . . . , T} represents the output state of the tth time step of an LSTM
layer. In addition, h+t and h−t are not essentially different but only process M̃ in different
directions. The computation process for the tth input xt is as follows:

it = σ(Wixxt + Wihht−1 + bi), (10)

ft = σ(W f xxt + W f hht−1 + b f ), (11)

C̃t = tanh(Wcxxt + Wchht−1 + bc), (12)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t, (13)

ot = σ(Woxxt + Wohht−1 + bo), (14)

ht = ot ⊙ tanh(Ct), (15)

where Ct is the cell state at time step t, it and ft, respectively, represent the input gate and
forget gate, with ot as the output gate, and tanh(·) is the hyperbolic tangent function.

x1

C0

H1

CT

H2 HT

·····
CT

C0

···

H ··· ···

·····

·····

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

x2 xT

Figure 7. Bi-LSTM.
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After T time series points of M̃ have been entirely inputted, the extracted temporal
features HT will be concatenated with M̃, with the computation steps as follows:

ξ = Concat(HT , M̃). (16)

Subsequently, ξ is reshaped into a one-dimensional vector containing global informa-
tion and temporal features of the trajectory M. Finally, a multilayer perceptron (MLP) layer
with Sigmoid(·) as an activation function is applied to obtain the probability P that the
subsequent trajectory is generated by the same ship.

P = Sigmoid(MLP(ξ)). (17)

To measure the possibility of two trajectories being generated by the same voyage,
we completed the design of MConLSTM, which can effectively handle large-scale and
high-dimensional AIS data. In comparison to the traditional model, MConLSTM has the
capability to autonomously acquire the spatiotemporal characteristics of AIS data from
individual attributes. Specifically, M-CNN ensures a global perspective of the model to
prevent it from converging to local optimal solutions, and bidirectional LSTM ensures
the extraction of temporal characteristics from AIS data. Additionally, the model’s depth
is primarily reflected in the deep convolution layer, with the convolutional layer con-
taining significantly fewer parameters than LSTM and transformer, thereby reducing the
computational resources needed for training.

4. Result Evaluation
In this chapter, we will utilize the constructed dataset to train the proposed model.

Following the introduction of the experimental environment and the configuration of key
parameters, our attention will shift towards analyzing the experimental results. Through a
series of comparisons, we aim to evaluate the effectiveness of the model. Subsequently, we
will provide a comprehensive summary of this paper, identifying its limitations and sug-
gesting avenues for future research and prospects.

4.1. Training Environment

When training the model designed in this experiment, the parameters are set as shown
in Table 1. In addition, two callback functions are also employed, one for automatically
adjusting the learning rate and the other for saving the optimal model.

Table 1. Explanation of MConLSTM’s hyperparameters

Module Hyper Parameter Value

M-CNN

Kernel Size 3 × 3
Number of Filters 32

Pooling Size 2 × 2
Stride 2

Activation Function ReLU

Bi-LSTM
Number of Units 64

Number of Layers 2
Activation Function Tanh

MLP
Number of Layers 2

Activation Function GeLU
(For Output) Sigmoid
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Table 1. Cont.

Module Hyper Parameter Value

Regularization Dropout Rate 0.5

Other

Batch Size 512
Optimizer Adam [38]

Loss Function Binary Cross
Entropy

Learning Rate 0.0001
Epochs 300

The dataset constructed in the preceding section comprises two opposite datasets
containing a total of 2 million training data items. To evaluate the performance of MConL-
STM and ensure its generalization capability, three-quarters of the whole training data
are randomly allocated to the training set, with the remaining data designated for the test
set. The computations are executed on the NVIDIA GeForce RTX 4070 Ti and the 13th
Generation Intel (R) Core (TM) i7-13700KF processor operating at 3.40 GHz. Each iteration
requires approximately one min to execute and continually monitors and records changes
in the loss function and accuracy metrics. Subsequently, the optimal model achieved during
the training phase is preserved.

4.2. Training Results

There are two types of errors that may occur during the experiment: one is identifying
the trajectory of the same ship as generated by two ships, and the other is mistaking the
trajectory generated by two ships as that generated by one ship. From the analysis of
Table 2, when testing with two completely opposite datasets, the recognition accuracy of
both datasets can reach almost 99%. Firstly, the effectiveness of the model on AIS data
is demonstrated. This confirms that the model trained on the dataset exhibits excellent
generalization, and the trajectory recognition of the target sea area holds universal value.
Figure 8 demonstrates the entire process of MConLSTM training, and it is evident that
the accuracy of MConLSTM is very close to the optimal value after 40 iterations without
obvious overfitting.

Table 2. Training results.

True False

Pred. True 49.56 0.69
Pred. False 0.44 49.31
Accuracy 99.12% 98.62%

(a) (b)

Figure 8. Training process of MConLSTM. (a) Loss. (b) Accuracy.
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4.3. Hyperparameter Optimization

Among all hyperparameters used in this paper, LearningRate is automatically attenu-
ated, and the Optimizer and LossFunction are selected according to the binary classification
problem. These hyperparameters do not need to be optimized. For the depth of our model,
it varies with the complexity of the problem to be solved. Therefore, against the background
of this paper, we only need to optimize the value of batch size. We experimented with
varying batch sizes ranging from 512, progressively halving it down to 16, and the training
results of the model under different batch sizes are shown in Figure 9. Interestingly, we
observed that a batch size of 64 yielded the optimal results, achieving the highest accuracy
as well as the shortest convergence time.

0 5 10 15 20 25
Epochs

0.80

0.85

0.90

0.95

1.00
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cy

512
256

128
64

32 16

Figure 9. Training under different batch sizes.

The reason behind this phenomenon lies in the balance achieved with a batch size
of 64. Smaller batch sizes, such as 16, mean more noise in the gradient updates due to
the higher variance in the data distribution within each batch. This noise can hinder the
model’s ability to converge to the optimal solution. On the other hand, larger batch sizes,
such as 512, reduce the noise but may compromise the model’s generalization capability by
averaging over a larger portion of the training data, potentially overlooking local details.

A batch size of 64 strikes a balance between these two extremes. It reduces the
noise in the gradient updates compared to smaller batch sizes, allowing the model to
converge more smoothly. At the same time, it still captures enough local details from the
data to maintain good generalization, enabling the model to achieve a higher accuracy.
Additionally, a moderate batch size often leads to improved computational efficiency,
resulting in a shorter convergence time.

Naturally, it can be found that there are obvious differences in training with different
batch sizes. Figure 10 further shows the impact of different batch sizes on model training.
We can easily find that when the value of batch size is 64, the model not only obtains the
highest accuracy but also spends the least training time. Smaller batch sizes (e.g., 16 or 32)
introduce more noise in gradient updates due to higher variance, which can hinder con-
vergence, while larger batch sizes (e.g., 128 or 256) may lead to smoother but less frequent
updates, potentially causing the model to converge to suboptimal solutions. Additionally,
a batch size of 64 aligns well with the hardware’s parallel processing capabilities, reducing
training time without compromising accuracy.
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Figure 10. Accuracy and time consumption under different batch sizes. (a) Accuracy. (b) Time
consumption.

4.4. Ablation Study

As shown in Figure 11, the parameters of MConLSTM are much smaller than trans-
former and LSTM, which represents less computational resource consumption and training
time. This is also an important reason why we gave up using transformer. First of all,
the complexity of the model should be analyzed. This paper compares several models
commonly used to process series data. Among them, MLP is essential for almost all deep
learning models. We ensure that the parameters of each model are as similar as possible,
such as the number of channels of LSTM and CNN and the dimension of MLP. Considering
the above, MConLSTM has a similar number of parameters as MLP, and then we will
evaluate its capability to analyze AIS data.

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000

794,112

657,408

444,417

418,176

Transformer LSTM MConLSTM MLP

Figure 11. Number of parameters for different layers.

To demonstrate the adaptability of our design model to the AIS dataset more clearly,
this paper conducts a series of comparative experiments. Firstly, keeping the size of the test
dataset and model constant, we varied only the size of the training dataset to observe its
impact on the training results of MConLSTM. The performance of our model as the training
dataset size decreases is shown in Figure 12. It is evident that as the size of the training
dataset decreases, the accuracy of the model hardly decreases, all above 95%, and there is
no obvious overfitting phenomenon. On the one hand, convergence problems caused by
more complex training data may explain the sudden drop in accuracy after stabilization
during training. Since the dataset is randomly constructed, it is impossible to avoid such a
problem. However, we can solve it by preserving the optimal model. On the other hand,
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the training curves exhibit a staircase pattern in some portions due to the insufficient initial
learning rate that prevented the model from further convergence. Accuracy can continue
to rise only after the learning rate decays, which increases convergence epochs.

(a) (b)

(c) (d)

Figure 12. Training results of datasets of different sizes. (a) Dataset with 1,000,000 samples. (b) Dataset
with 500,000 samples. (c) Dataset with 100,000 samples. (d) Dataset with 50,000 samples.

Moreover, another comparative experiment was conducted to demonstrate the advan-
tages of MConLSTM in learning AIS data features compared to traditional and widely used
architectures. Specifically, we compare the accuracy of MConLSTM and multiple models
based on CNN, LSTM, and transformer during the training process. Due to the fact that
the transformer is not directly suitable for processing AIS data, we chose its two variants,
CNN+Transformer(CMT) [39] and Bi-LSTM+Transformer [40], for experimentation.

The experiments were carried out using the same dataset, ensuring that all models
were trained under identical conditions and with equivalent depths to ensure a fair com-
parison. As shown in Figure 13, the results revealed that MConLSTM achieved the highest
accuracy on the test set, surpassing the performance of other models. Furthermore, MConL-
STM exhibited the fastest convergence speed during training, indicating its efficiency in
learning the underlying patterns and features from the AIS data. Evidently, MConLSTM not
only excels in capturing spatial features and local correlations in data but also incorporates
the ability to analyze and process sequential data.

In fact, the number of anomalous behaviors is relatively small compared to the vast
total amount of AIS data. Therefore, to verify the performance of our model in the absence
of sufficient training data, we also conduct comparative experiments. Specifically, we
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compare MConLSTM with CNN+LSTM, which directly uses trajectories as input and has
the same depth as MConLSTM. As we can see, the performance of the two models under
different sizes of training datasets is shown in Figure 14. As the training dataset size
decreases continuously, the performance of the CNN + LSTM model declines significantly.
When the training dataset is small, the average accuracy of MConLSTM is 22.74% higher
than that of CNN + LSTM. This shows that MConLSTM can still learn the characteristics of
AIS data well even when data are scarce. Correspondingly, in reality, when there are fewer
special cases, we cannot obtain a mass number of datasets for model training and then
MConLSTM can still achieve excellent results. At the same time, MConLSTM can also give
full play to its characteristics when dealing with other multidimensional time series data.
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Figure 13. Comparison of training processes amongst different models.
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Figure 14. The impact of dataset size.
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4.5. Case Study Simulation

Now, we begin to consider the practical application issues in the actual situation. On the
sea, ships sailing normally and legally continuously broadcast their AIS signals. If a ship
suddenly ceases to broadcast AIS signals, it is deemed suspicious. Considering various
emergencies or objective effects, as illustrated in Figure 15, it is stipulated that a ship failing
to broadcast AIS signals in non-breathable waters for over ten min is deemed suspicious.
Subsequently, all possible subsequent tracks near the vanishing point within two hours,
with the vanishing point as the center, are recorded. The front and rear tracks are then spliced
and input into the model to the probability value of two tracks from the same ship. Eventually,
the track with the highest probability is selected as the most likely new track of the ship.

Figure 15. Judgment of abnormal ship tracking.

To ensure the model’s effectiveness in practical applications, a specific area depicted
in Figure 16a was selected for simulation experiments. As shown in Figure 16a, the area
contained the trajectories of several ships over a certain period. If the whole AIS signal
disappeared in a certain area in the center of Figure 16a, multiple abnormal tracks and
possible subsequent tracks would be generated, as in Figure 16b. We selected a certain
abnormal track and its possible subsequent tracks for analysis, as shown in Figure 16c.
These potential trajectories were combined with the abnormal trajectory and input into the
trained model after processing to obtain the matching probability for the front and rear
trajectories, which were then annotated in Figure 16d. Subsequently, the probability of
these possible follow-up trajectories was compared. The track with a maximum probability
value was considered the most probable subsequent track. If all the results did not exceed
50%, then we had reason to think that the ship deliberately turned off its AIS signal and
followed other legitimate ships. Among all potential subsequent trajectories in Figure 16d,
the trajectories labeled as 3 and 4 met our matching criteria, with trajectory 4 reaching
a probability of 95.77%, the highest among all possible outcomes, surpassing 95%. Conse-
quently, it was natural to conclude that trajectory 4 was the most probable subsequent
trajectory of the abnormal ship that we selected, followed by trajectory 3 . Then, we went
back and observed Figure 16a for verification and found that trajectory 4 was indeed the
real follow-up trajectory of the vessel in Figure 16c.
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(a) (b)

(c) (d)

Figure 16. Case study.

In this section, we simulated the actual trajectory recognition scenario to describe the
application process of our method in addressing practical challenges. The experimental
results demonstrated the effectiveness of our method in solving practical problems. At the
same time, it also reflects the practical significance of the method proposed in this paper.

5. Conclusions
To address the subsequent track identification challenge posed by intentional al-

terations to marine vessel identification information during navigation, this paper first
conducted a detailed analysis of the issue. We then employed the self-supervision learning
method to reframe the problem as a binary classification problem. Leveraging historical
real AIS data to construct a labeled dataset, we developed a model (MConLSTM) to discern
the characteristics of AIS data and solved this binary classification problem. The model
demonstrated the mighty ability to process AIS data. Subsequently, a series of comparative
experiments was designed to validate the model’s learning capabilities with AIS data. Our
model achieves the highest recognition accuracy in this work, outperforming the models
based on transformer. In particular, when faced with a small number of training datasets,
MConLSTM achieved an average accuracy of 22.74% higher than CNN + LSTM. The final
test, simulating real-world scenarios, demonstrated the efficacy of the method proposed in
this paper for addressing real-world challenges.
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However, there are still some issues here. Owing to diverse geographical conditions,
ship densities, and climates across various sea regions worldwide, this paper only utilizes
historical data from a specific sea area for training. Consequently, the trained model lacks
global applicability. Nonetheless, the training of this model exhibits positive generalizability
concerning AIS data. Expanding the scope of AIS data used for training will enhance
the model’s universality. This paper does not address the scenario where illicit vessels
deliberately disable AIS transmission and solely rely on visual navigation, as this would
necessitate a substantial dataset of AIS records to analyze actual illicit vessel behavior
accurately. This aspect could serve as a promising avenue for future research endeavors,
contributing significantly to maritime safety.
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