
Academic Editors: Fausto Pedro

García Márquez and Coro Gianpaolo

Received: 14 February 2025

Revised: 27 February 2025

Accepted: 5 March 2025

Published: 9 March 2025

Citation: Bardiani, J.; Kyaw Oo

D’Amore, G.; Sbarufatti, C.; Manes, A.

Machine Learning Combined with

Numerical Simulations: An Effective

Way to Reconstruct the Detonation

Point of Contact Underwater

Explosions with Seabed Reflection. J.

Mar. Sci. Eng. 2025, 13, 526. https://

doi.org/10.3390/jmse13030526

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Machine Learning Combined with Numerical Simulations:
An Effective Way to Reconstruct the Detonation Point of Contact
Underwater Explosions with Seabed Reflection
Jacopo Bardiani 1 , Giada Kyaw Oo D’Amore 2 , Claudio Sbarufatti 1,* and Andrea Manes 1

1 Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milano, Italy;
jacopo.bardiani@polimi.it (J.B.); andrea.manes@polimi.it (A.M.)

2 Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy;
giada.kyawood’amore@dia.units.it

* Correspondence: claudio.sbarufatti@polimi.it

Abstract: In marine engineering, the study of underwater explosion effects on naval and
offshore structures has gained significant attention due to its critical impact on structural
integrity and safety. In practical applications, a crucial aspect is determining the precise
point at which an underwater explosive charge has detonated. This information is vital
for assessing damage, implementing defensive and security strategies, and ensuring the
structural integrity of marine structures. This paper presents a novel approach that com-
bines coupled numerical simulations performed using the MSC Dytran suite with machine
learning techniques to reconstruct the trigger point of underwater explosions based on
onboard sensor data and leverage seabed wave reflection information. A Multi-Layer
Neural Network (MLNN) was devised to identify the position of the denotation point
of the charge using a classification task based on a user-defined two-dimensional grid of
potential triggering locations. The MLNN underwent training, validation, and testing
phases using simulation data from different underwater blast-loading scenarios for metallic
target plates. Different positions of the charge, seabed typologies, and distances between
the structure and the seabed are considered. The ability to accurately identify a detonation
point using measurable data from onboard systems enhances the knowledge of ship and
offshore structures’ response strategies and the overall safety of naval operations.

Keywords: underwater explosion; fluid-structure interaction; machine learning; multi-layer
neural network; seabed reflection; onboard sensors

1. Introduction
Understanding the dynamic behaviour of floating and submerged structures under

pressure loads is vital for the naval shipbuilding and offshore engineering industries.
Underwater explosions (UNDEXs) are especially important among the different sources of
pressure loads, as they directly affect the safety and performance of underwater vehicles
(like submarines) and various marine structures (such as drilling platforms, cargo ships,
and warships) [1–3].

A typical UNDEX event can induce three separate damaging mechanisms in a marine
structure, depending on the distance from the hull [4–6]; initially, primary shock waves
hit the hull with high velocity and pressure. Following this, lower-frequency pressure
waves, resulting from the pulsation of the gas bubbles produced by the explosion, excite
the structure. Lastly, the collapse of these gas bubbles generates high-speed water jets that
can impact the target structure.
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The three mechanisms described above lead to highly complex phenomena due to
fluid–structure interaction (FSI), significant deformations and fracturing, and material
non-linearity influenced by high strain rates and temperatures [7–9]. In fact, the FSI caused
by UNDEX events can result in several interconnected effects, such as cavitation, wave
reflection, and energy absorption [10].

Based on whether the structure falls within the bubble’s impact zone, UNDEXs can
be classified as either non-contact or contact explosions [11]. Non-contact explosions are
further divided into far-field and near-field explosions, depending on the stand-off distance.
In far-field UNDEXs, the stand-off distance exceeds the maximum radius of the bubbles
formed during the first pulsation [12,13].

There are three main methodologies employed to study UNDEXs and their impacts
on marine structures: experimental tests, analytical models, and numerical simulations [1].

Experimental studies are challenging due to the complex and hazardous nature of
UNDEXs [11,14]. Additionally, high costs and logistical difficulties make these experiments
particularly prohibitive, especially for full-scale tests [15,16]. While scaled specimens offer
a useful approximation, the publication of experimental data is infrequent, hindering a
comprehensive understanding of UNDEX phenomena [17].

Analytical models play a crucial role in studying UNDEX events, offering a theoretical
framework to understand potential effects and outcomes. However, these models often fall
short due to their simplifications and approximations, which may not adequately represent
the complexity of real-world phenomena [1,4,18].

Given these challenges, significant advancements in numerical methods and comput-
ing performance have enabled effective numerical simulations of UNDEX events on high-
performance computers [16]. Advanced software such as LS-DYNA, ABAQUS, ANSYS,
and MSC Dytran is widely used to predict the transient loading and structural responses of
various marine structures [14,17].

Numerical approaches to simulating UNDEXs can be broadly categorised into coupled
and decoupled methodologies. Coupled methodologies address the interaction between
the explosion-induced pressure wave and the dynamic response of the ship’s hull within a
unified computational framework, allowing for simultaneous solutions [19,20]. In contrast,
decoupled methodologies do not directly simulate FSI, and they tackle the fluid and
structural domains separately in two distinct steps [21,22]. It is commonly noted that
coupled models tend to be the most accurate because they closely represent the physical
processes involved. In contrast, decoupled models are typically more efficient, require
fewer computing resources, and are simpler to implement [22].

Coupled numerical approaches used to investigate transient FSI issues in UNDEX
scenarios can be categorised into three main types based on the methods applied to model
the fluid and structural domains [23]: Eulerian–Eulerian (E–E), Lagrangian–Lagrangian
(L–L), and Eulerian-Lagrangian (E–L). The most utilised technique for modelling FSI is the
coupled Eulerian-Lagrangian (CEL) method. The CEL approach leverages the advantages
of Eulerian theory for fluid modelling and Lagrangian theory for structural modelling,
facilitating continuous interaction between the two [24].

Despite extensive research into the dynamic responses of ship hulls and offshore
structures under UNDEX loading, coupled methods such as CEL are still limited by their
high computational cost [1,17]. Naval platforms have big dimensions and require large
Eulerian volumes to accurately model the water around them, resulting in a huge number
of cells. Moreover, the complex algorithms needed to handle the interface and interaction
between the Eulerian and Lagrangian phases pose additional computational challenges.

The computational demands and time required to run such simulations make them
impractical for providing immediate feedback or data, which is crucial in real-time usage
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during operational scenarios regarding marine structures. For that reason, the necessity
of tools that make quick predictions regarding UNDEX effects on marine structures is
imperative.

The integration of machine learning (ML) techniques into this framework offers a
powerful and innovative solution to achieve this goal [1,25]. ML methods can reveal
complex relationships between inputs and outputs by analysing extensive datasets of
intricate phenomena through a comprehensive training process, allowing computers to
learn from past experiences without explicit programming [26].

Nevertheless, only a few studies have utilised ML in the context of UNDEXs. For
example, Refs. [9,17] employed a deep neural network (DNN) to forecast the dynamic
response of reinforced plates exposed to near-field UNDEXs, testing various charge masses,
stand-off distances, and plate thicknesses. Additionally, Ref. [27] used DNNs to predict the
structural response of reinforced cylindrical shells subjected to far-field UNDEXs based on
numerical simulation results. In Ref. [25], a multi-layer perceptron-based neural network
was combined with a multiscale finite element method to estimate the structural response
of a coated composite cylinder under near-field UNDEXs.

Despite the previous examples, which have already provided evidence that machine
learning techniques can be leveraged to deal with UNDEXs against submerged and floating
marine structures, one underexplored aspect is the development of tools that enable the
reconstruction of critical features relevant to practical onboard applications.

The novel idea of the present work concerns the implementation of a framework
for practical applications, in which the detonation point of an underwater explosive is
reconstructed using various sources of information—some known to the ship’s crew and
others obtained from sensors or instrumentation placed on the hull structure. To achieve
this goal, numerical simulations are employed alongside a machine learning model capable
of capturing complex input–output relationships. Currently, no existing frameworks can
provide actionable information immediately after events such as UNDEXs, making our
approach particularly relevant for real-world use.

In fact, determining the precise location of an underwater explosive charge is critical for
military and civilian vessels, as well as offshore structures, because it allows for an accurate
assessment of potential damage to naval vessels or offshore structures, enabling timely and
effective countermeasures to protect these valuable assets and ensure operational safety.

In particular, the information needed as input to the Multi-Layer Neural Network
(MLNN) to achieve the goal of the paper regards the following: the material that charac-
terises the target structure, the type of seabed, the distance between the seabed and the
structure, the initial value of the mass-per-unit-area of the target, the pressure-time history
recorded at a specific point on the structure, and the out-of-plane displacement-time history
registered from the same point where the pressure is measured.

The classification task performed by the MLNN is applied (for simplicity) to a user-
defined two-dimensional grid, equally spaced in both directions, where each class in the
output represents a specific detonation point where the charge is ignited. The output of the
MLNN is represented by the probability that the charge exploded at a specific point in the
user-defined grid.

Given the high computational cost of underwater explosion analysis on real ship
structures, the framework was implemented using a simple, submerged square plate
positioned horizontally and fully clamped along the four sides.

The paper is organised as follows: in Section 2, the entire framework is described in
detail, focusing on the numerical simulations’ dataset and the adopted machine learning
algorithm. MSC Dytran 2024.1 version was used for numerical calculations, and the results
were assessed against the experimental results reported in [28]. Section 3 presents and
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discusses the obtained results. Finally, the conclusions are summarised, highlighting the
advantages and drawbacks of the adopted methodology, and future enhancements and
developments are proposed.

2. Methodology
The proposed data-driven framework for contact UNDEX scenarios is composed of

the following steps:

1. Numerical simulations: Simulations of horizontal, fully clamped, underwater blast-
loaded plates were carried out to generate the dataset for the data-driven approach.
The validation of the simulations against an experimental case scenario is described
in Section 2.1.1. Various scenarios were considered, involving different loading
conditions and plate and seabed characteristics. The CEL approach is employed in all
simulations, ensuring the consideration of fluid–structure interaction (FSI).

2. Dataset generation: All numerical simulations were post-processed using Par-
aView [29] to extract the data necessary to build the MLNN. Data were extracted both
for the fluid and for the structural domains (plate and seabed). The considered struc-
tural parameters are the plate out-of-plane displacement, initial mass-per-unit-area,
elastic modulus of the plate and seabed, vertical distance between the plate and the
seabed, and finally, the position of the charge within the user-defined grid. For the
fluid domain, the fluid pressure at the central point of the plate is the only parameter
considered.

3. Data-driven approach: A Multi-Layer Neural Network (MLNN) was developed to
classify a generic explosive event under the plate into one of several classes, where
each class corresponds to a specific position in the charge’s spatial configuration
(user-defined bidimensional grid). The MLNN is implemented using the PyTorch
2.5.0 library in Python 3.13.0. Training, validation, and testing are performed on the
numerical dataset, as outlined below:

■ Throughout training and validation, the MLNN learns how to correlate input
parameters from each explosive scenario to the specific class, i.e., reconstruct the
position of the explosive detonation point;

■ After training, the MLNN is tested against the unseen scenarios included in the
testing split to verify its generalisation capabilities.

Each part of the present framework is described in detail in the following paragraphs.

2.1. Numerical Simulations
2.1.1. Validation of the Numerical Framework

Due to the challenges in reproducing UNDEX experimental tests, a literature case
study was used to assess the numerical model developed in MSC Dytran. In particular,
the experimental investigation proposed by Ramajeyathilagam et al. is considered [28],
where rectangular, unstiffened steel plates with exposed areas of 0.30 × 0.25 m2 were
subjected to underwater shock. To avoid overburdening the discussion, only a comparison
of the numerical and experimental results is presented in Figure 1, highlighting a strong
agreement, with a maximum error between the numerical model and experimental evidence
of less than 3%. For further details on the experimental trial, refer to [28]. The mesh size
considered in the present model is 5 mm.
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Figure 1. Comparison of the numerical and the experimental results regarding the centreline defor-
mation profile [28].

2.1.2. Numerical Simulations of the Dataset

All numerical simulations are performed using MSC Dytran version 2023.3, which
is an explicit finite element analysis (FEA) solver for the simulation of short-lived events,
such as shocks and collisions, and the analysis of the complex non-linear behaviour that
structures undergo during these events. MSC Patran version 2023.3 was used to discretise
geometries and generate the Eulerian mesh.

Horizontal fully clamped plates, alternatively made using aluminium or steel, are sim-
ulated under different contact underwater explosion loadings according to the schematic
representation presented in Figure 2 (non-scaled drawing).
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Figure 2. Scenarios considered: relative position between structure and charge.

All squared plates have an exposed area of 500 mm × 500 mm, with the same thickness
equal to 5 mm. The geometric centre of the horizontal plates was fixed 2 m below the free
surface. Although contact explosions are considered in the study, it should be noted that
the behaviour of the gas bubble is not considered, and all analyses are stopped before the
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gas bubble touches the structure. This assumption does not compromise the framework
and the validity of the results, aiming at identifying the location of the explosion. For such
purposes, the framework takes information (e.g., pressure and displacement) in a time step
before the starting of gas bubble phenomena. Several UNDEX scenarios were simulated,
considering different materials for the plate, type of seabed, distance between the seabed
and the structure (called R), and final position of the charge within the user-defined two-
dimensional grid reported in Figure 2. The grid is characterised by the constant values
H = 0.40 m, V1 = 0.20 m, and V2 = 0.20 m. Two values of R have been considered: 0.9 m
(signed as R1) and 1.1 m (signed as R2). V1 represents the horizontal distance, measured
along the X-axis of Figure 2, between point A of the structure (Figure 3a) and the centre of
the explosive charge. V2 represents the same distance but is measured along the vertical
Z-axis. Conversely, H is the horizontal distance between point A and the centre of the
explosive charge closest to the structure. H, V1, and V2 allow for the unique identification
of the spacing of the two-dimensional grid and its position with respect to the structure
under examination.

J. Mar. Sci. Eng. 2025, 13, 526 9 of 26 
 

 

It is important to underline the fact that the seabed considered refers to very high-
performance soils, as the weight of the overlying water makes them mechanically more 
resistant. This consideration applies, in general, to all underwater seabed terrains. 

A total of 108 cases were simulated, and Table 6 provides an alphanumeric code for 
each numerical simulation. 

 

 

(a) (b) 

 
(c) 

Figure 3. (a) The 3-D numerical model considered for non-contact UNDEXs; (b) fully clamped plate 
with its mesh, and (c) the solid representing the seabed with full clamps on the bottom surface. 

Table 6. Codes for all the cases considered in the dataset. 

 Code Case Code Case Code 
1 AL-LC1-R1-SB3 37 AL-LC1-R1-SB2 73 ST-LC1-R1-SB1 
2 AL-LC2-R1-SB3 38 AL-LC2-R1-SB2 74 ST-LC2-R1-SB1 
3 AL-LC3-R1-SB3 39 AL-LC3-R1-SB2 75 ST-LC3-R1-SB1 
4 AL-LC4-R1-SB3 40 AL-LC4-R1-SB2 76 ST-LC4-R1-SB1 
5 AL-LC5-R1-SB3 41 AL-LC5-R1-SB2 77 ST-LC5-R1-SB1 
6 AL-LC6-R1-SB3 42 AL-LC6-R1-SB2 78 ST-LC6-R1-SB1 
7 AL-LC7-R1-SB3 43 AL-LC7-R1-SB2 79 ST-LC7-R1-SB1 
8 AL-LC8-R1-SB3 44 AL-LC8-R1-SB2 80 ST-LC8-R1-SB1 

Figure 3. (a) The 3-D numerical model considered for non-contact UNDEXs; (b) fully clamped plate
with its mesh, and (c) the solid representing the seabed with full clamps on the bottom surface.

The explosion load cases are reported in Table 1, including the code, type, and mass
of the charge (TNT, m = 1.47 [kg]), the equation of state used to numerically model the
charge (for all cases Jones-Wilkins-Lee equation, JWL), the radius of the charge’s sphere,
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Rcharge, the Keel Shock Factor ( KSF), and finally, the coordinate of the charge with respect
to the reference system of Figure 2 (xcharge and zcharge).

Table 1. Features of the explosion scenarios considered.

Code Charge m [kg] EOS Rcharge
[m]

xcharge
[m]

zcharge
[m] KSF [−]

LC1 TNT 1.47 JWL 0.060 0.65 0.20 1.95
LC2 TNT 1.47 JWL 0.060 0.65 0.40 1.81
LC3 TNT 1.47 JWL 0.060 0.65 0.60 1.53
LC4 TNT 1.47 JWL 0.060 0.85 0.20 1.25
LC5 TNT 1.47 JWL 0.060 0.85 0.40 1.31
LC6 TNT 1.47 JWL 0.060 0.85 0.60 1.21
LC7 TNT 1.47 JWL 0.060 1.05 0.20 0.91
LC8 TNT 1.47 JWL 0.060 1.05 0.40 0.99
LC9 TNT 1.47 JWL 0.060 1.05 0.60 0.97

As mentioned before, all simulations belong to contact UNDEXs despite the framework
being independent of this classification. To verify it, the authors calculated the maximum
radius of gas bubbles arising from the explosions to compare it with the distance from the
structure, according to the formulation reported in [30,31]:

rb,max =
(

K6·W1/3
)

/
(

D + 9.8
)1/3 (1)

In the above equation, rb,max is the maximum bubble radius, W is the weight of the
charge in kg (TNT equivalent), D is the depth of charge in water in meters, and finally,
K6 is a constant proper of the given type of explosive (for TNT, 3.383

[
m4/3/kg1/3

]
).

Considering, for instance, the charge located in position 9 of Figure 2, Equation (1) provides
a value of the maximum bubble radius equal to 1.66 [m], considering D = 2 + 3·V. Since
rb,max is greater than the distance between the centre of the charge and the first point of
the structure reached by the shock (1.00 [m]), this case belongs to contact type. The same
consideration is valid for all the other scenarios.

Table 1 provides information about the Keel Shock Factor ( KSF), which can be con-
sidered the index of explosion severity regarding the damage suffered by components
mounted inside the hull, for example, on decks and bulkheads. It is computed using the
following [32]:

KSF =
√

W/D·(1 + sinα)/2 (2)

where W is the weight of the charge in kg, D is the minimum distance in meters between
the centre of the charge and the hull, and α represents the angle between the vertical passing
through the keel point and the line joining that point with the centre of the charge. For the
plates under examination, the first point of the plate closest to the charge is considered.

All load cases in Table 1 refer to the detonation point located in the same plane with
Y-normal, moving through the central point of the plate under examination.

As far as the 3-D numerical model is concerned, the Lagrangian domain is split into
two portions, represented by the plate and the seabed (Figure 3). The plates are represented
using Lagrangian quadrilateral shell elements with a base size of 8 mm (Figure 3b). The
chosen mesh size was determined based on a mesh convergence analysis, which demon-
strated that further refinement did not significantly affect the out-of-plane displacement
of the plate. For simplicity, the details of this analysis are not reported here. The physical
properties of the two materials considered for the plates are shown in Table 2. Both steel
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and aluminium plates have been considered since they are the most used in the naval
sector [33].

Table 2. Physical constants of the plate materials used in the numerical simulations.

Material Code Eplate [GPa] ν [−] ρ [kg/m3]

6061-T6 ST 210.0 0.33 7850
AISI-316L AL 70.0 0.30 2700

All plate materials considered are governed by the von Mises criterion, according to
the Johnson–Cook plasticity model, in which the equivalent yield stress, σY, is expressed as

σY =
[

A + B·
(

ε
pl
e

)n]
·
[

1 + C·ln
( .

ε
pl
e
.
ε0

)]
·
[

1 −
(

T − TROOM
TM − TROOM

)m]
(3)

where A is the yield stress, B is the strain-hardening coefficient, ε
pl
e is the equivalent or

effective plastic strain, n is the strain-hardening index, C is the strain-rate parameter,
.
ε0 is

the reference strain rate (measured per unit time),
.
ε

pl
e is the equivalent plastic strain rate, T

is the actual temperature, TROOM is the room temperature, TM is the melting temperature,
and finally, m is the thermal softening coefficient. All the parameters considered for the
two materials are reported in Table 3.

Table 3. Material parameters of the plate materials used in the numerical simulations.

Alloy A [MPa] B [MPa] n [−] C [−]
.
ε0 [s−1] m [−] Ref.

6061-T6 270.0 154.30 0.221 0.130 1.0 1.34 [1]
AISI-316L 490.0 600.00 0.210 0.015 1.0 0.60 [1,8]

For a complete high-fidelity representation of the progressive damage of the structure
under the underwater blast event, structural damage behaviour is considered using the
Johnson–Cook failure model. It defines the properties of a failure model, where failure is
determined by a damage model. The damage model is given by the following expressions:

ε f rac =
[

D1 + D2·eD3·σ∗
]
·
[
1 + D4·ln

( .
εpl/

.
ε

0
pl

)]
·
[
1 + D5· T−TROOM

TM−TROOM

]
σ∗ = p/q

(4)

where ε f rac is the equivalent plastic strain at the onset of damage, D1 − D5 are failure

parameters, p is the mean (or hydrostatic) stress, q is the von Mises stress,
.
ε

0
pl is the

reference strain rate, and
.
εpl is the plastic strain rate. T, TROOM, and TM have already

been defined above. In this study, the effect of temperature on structure response is not
considered due to the adiabaticity of blast wave interaction and only the first two terms of
the equation are implemented. The values of the parameters of the Johnson–Cook damage
model for the materials used are reported in Table 4:

Table 4. Identification of the parameters of the steel and aluminium used within the Johnson-Cook
failure model.

Mat. D1 [MPa] D2 [MPa] D3 [−] D4 [−] D5 [−]
.
εref [−] Ref.

6061-T6 0.025 16.93 −14.8 0.0214 0 1.0 [1]
AISI-316L 0.096 0.049 −3.46 0.0160 0 1.0 [1,8]
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For the solid that represents the seabed portion, Lagrangian hexahedron solid elements
with a base size of 15 mm were used (Figure 3c). Three types of soil were considered, and
the Mohr-Coulomb yield model was used for modelling [34]. The material property values
of the seabed required for the numerical simulation are estimated by referring to the existing
research results and the detailed property values, which were put in order and are shown
in Table 5.

Table 5. Material properties for the different soils of the seabed (values taken from [35]).

Material Code Eseabed [Pa] ν [−] ρ [kg/m3] c′ [Pa] ϕ [◦] Shear
Strength [Pa]

Sand SB1 108 0.20 2100 0 40 -
Clay SB2 2.4·107 0.20 1894 2.5·104 0 2.5·104

Rigid SB3 - - - - - -

For each soil considered, density ρ, cohesion c′, internal friction angle, ϕ, elastic
modulus, Eseabed, and shear strength, Su, are reported [34]. The yield stresses are defined
via a bilinear curve using the following formulation:

τf = c′ + σn·tan ϕ (5)

It is important to underline the fact that the seabed considered refers to very high-
performance soils, as the weight of the overlying water makes them mechanically more
resistant. This consideration applies, in general, to all underwater seabed terrains.

A total of 108 cases were simulated, and Table 6 provides an alphanumeric code for
each numerical simulation.

As far as fluid domain simulation is concerned, MSC Dytran offers two methods [36].
The first method, called general coupling, can be applied to non-orthogonal Euler meshes,
but it is computationally expensive. The second method, which is called fast coupling,
requires the Euler mesh to be orthogonal, and it is considerably faster. This makes the
fast-coupling approach the most used method. An important step within MSC Dytran is
the definition of the coupling surface between the Eulerian and the Lagrangian domains to
solve FSI. The coupling surface defines what part of the Eulerian domain is occupied by
the structure. Therefore, when a submerged body is considered, the coupling surface must
define a closed volume to separate the fluid domain from the structural one. If the object of
the investigation is modelled with shell elements, like the considered plates, the coupling
surface will no longer act as a container but will only act as a barrier to fluid flow. This
approach is called auto-coupling in MSC Dytran. Such a modelling strategy is adopted in
the presented study since it is the preferred choice for plates, allowing for a reduction in
the number of cells involved in the calculations. A specific FSI algorithm was used by the
software to couple both the Lagrangian and Eulerian domains [36,37].

The fluid domain represented by the water underwent discretisation, employing cell-
centred finite volumes (CCFVs), which are advantageous for forecasting discontinuities
arising from the shock wave. This aligns with the Eulerian formulation, wherein the mesh
remained stationary while the fluid traversed through it. The considered fluid domain
(Figure 3a) is a box with dimensions 2.7 m × 2.7 m × 2.7 m meshed with a hexahedral cell
with a base size of 15 mm. This mesh dimension ensures good accuracy regarding the peak
pressure generated by the explosion scenario. At all outer boundaries of the 3-D domain, a
flow non-reflecting boundary condition is imposed.
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Table 6. Codes for all the cases considered in the dataset.

Code Case Code Case Code

1 AL-LC1-R1-SB3 37 AL-LC1-R1-SB2 73 ST-LC1-R1-SB1
2 AL-LC2-R1-SB3 38 AL-LC2-R1-SB2 74 ST-LC2-R1-SB1
3 AL-LC3-R1-SB3 39 AL-LC3-R1-SB2 75 ST-LC3-R1-SB1
4 AL-LC4-R1-SB3 40 AL-LC4-R1-SB2 76 ST-LC4-R1-SB1
5 AL-LC5-R1-SB3 41 AL-LC5-R1-SB2 77 ST-LC5-R1-SB1
6 AL-LC6-R1-SB3 42 AL-LC6-R1-SB2 78 ST-LC6-R1-SB1
7 AL-LC7-R1-SB3 43 AL-LC7-R1-SB2 79 ST-LC7-R1-SB1
8 AL-LC8-R1-SB3 44 AL-LC8-R1-SB2 80 ST-LC8-R1-SB1
9 AL-LC9-R1-SB3 45 AL-LC9-R1-SB2 81 ST-LC9-R1-SB1

10 AL-LC1-R2-SB3 46 AL-LC1-R2-SB2 82 ST-LC1-R2-SB1
11 AL-LC2-R2-SB3 47 AL-LC2-R2-SB2 83 ST-LC2-R2-SB1
12 AL-LC3-R2-SB3 48 AL-LC3-R2-SB2 84 ST-LC3-R2-SB1
13 AL-LC4-R2-SB3 49 AL-LC4-R2-SB2 85 ST-LC4-R2-SB1
14 AL-LC5-R2-SB3 50 AL-LC5-R2-SB2 86 ST-LC5-R2-SB1
15 AL-LC6-R2-SB3 51 AL-LC6-R2-SB2 87 ST-LC6-R2-SB1
16 AL-LC7-R2-SB3 52 AL-LC7-R2-SB2 88 ST-LC7-R2-SB1
17 AL-LC8-R2-SB3 53 AL-LC8-R2-SB2 89 ST-LC8-R2-SB1
18 AL-LC9-R2-SB3 54 AL-LC9-R2-SB2 90 ST-LC9-R2-SB1
19 AL-LC1-R1-SB1 55 ST-LC1-R1-SB3 91 ST-LC1-R1-SB2
20 AL-LC2-R1-SB1 56 ST-LC2-R1-SB3 92 ST-LC2-R1-SB2
21 AL-LC3-R1-SB1 57 ST-LC3-R1-SB3 93 ST-LC3-R1-SB2
22 AL-LC4-R1-SB1 58 ST-LC4-R1-SB3 94 ST-LC4-R1-SB2
23 AL-LC5-R1-SB1 59 ST-LC5-R1-SB3 95 ST-LC5-R1-SB2
24 AL-LC6-R1-SB1 60 ST-LC6-R1-SB3 96 ST-LC6-R1-SB2
25 AL-LC7-R1-SB1 61 ST-LC7-R1-SB3 97 ST-LC7-R1-SB2
26 AL-LC8-R1-SB1 62 ST-LC8-R1-SB3 98 ST-LC8-R1-SB2
27 AL-LC9-R1-SB1 63 ST-LC9-R1-SB3 99 ST-LC9-R1-SB2
28 AL-LC1-R2-SB1 64 ST-LC1-R2-SB3 100 ST-LC1-R2-SB2
29 AL-LC2-R2-SB1 65 ST-LC2-R2-SB3 101 ST-LC2-R2-SB2
30 AL-LC3-R2-SB1 66 ST-LC3-R2-SB3 102 ST-LC3-R2-SB2
31 AL-LC4-R2-SB1 67 ST-LC4-R2-SB3 103 ST-LC4-R2-SB2
32 AL-LC5-R2-SB1 68 ST-LC5-R2-SB3 104 ST-LC5-R2-SB2
33 AL-LC6-R2-SB1 69 ST-LC6-R2-SB3 105 ST-LC6-R2-SB2
34 AL-LC7-R2-SB1 70 ST-LC7-R2-SB3 106 ST-LC7-R2-SB2
35 AL-LC8-R2-SB1 71 ST-LC8-R2-SB3 107 ST-LC8-R2-SB2
36 AL-LC9-R2-SB1 72 ST-LC9-R2-SB3 108 ST-LC9-R2-SB2

To solve the equations of fluid flow, equations of state (EOS) and initial conditions
should be implemented for the different portions of the domain [37].

During the underwater explosion, the fluid domain includes two main materials:
the explosive (detonation product gases) and water. The Jones-Wilkins-Lee (JWL) EOS
is adopted to describe the evolution of the charge explosion, which can be expressed as
follows [38]:

p = A·(1 − ω/(R1·V))·e−R1·V + B·(1 − ω/(R2·V))·e−R2·V + ω·e/V (6)

where p, V, and e are the pressure, relative volume, and relative internal energy of the
detonation products, respectively. A, B, R1, R2, and ω are the adjustable parameters [39].

Finally, polynomial EOS is specified for water. It relates the pressure in the fluid to the
acoustic condensation, µ, and the specific internal energy, e. When µ > 0 (compression),
we have

p = a1·µ + a2·µ2 + a3·µ3 +
(

b0 + b1·µ + b2·µ2
)
·ρ0·e (7)
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while for µ < 0 (tension), we have

p = a1·µ + (b0 + b1·µ)·ρ0·e (8)

where p is the pressure, µ = η − 1, η = ρ/ρ0, ρ0 is the reference density, ρ is the whole
material density, and a1, a2, a3, b0, b1, and b2 are Eulerian fluid constants. Finally, e
represents the specific internal energy per unit mass. The constants were obtained by
comparing the relevant constants between Equations (7) and (8).

A resume of all Eulerian material properties used in the present simulations, with the
related model used in MSC Dytran, is reported in Table 7:

Table 7. Resume of the Eulerian material properties (water, air, and charge) for the experimental
validation model.

Material MSC Dytran
Model Input Parameters

Water
Polynomial

equation of state
(EOSPOL)

ρ = 1025
[
kg/m3], K = 2.2·109 [Pa],

e = 83950 [J/kg], a1 = 2.314·109 [Pa],
a2 = 6.561·109 [Pa], a3 = 1.126·109 [Pa],

b0 = 0.4934 [−], b1 = 1.3937 [−], b2 = 0.00 [−]

Charge (TNT) JWL equation of
state (EOSJWL)

ρ = 1630
[
kg/m3], W = 1.47 [kg],

e = 4.76·106 [kJ/kg], A = 3.7·1011 [−],
B = 2.23·109 [−], R1 = 4.15 [−],

R2 = 0.95 [−], ω = 0.3 [−]

A total time of 3 ms is considered in all simulations. This period does not induce
any effects due to the presence of gas bubbles, and this choice does not affect the machine
learning method investigated in the present work, as previously mentioned. Each analysis
within the dataset required approximately 36 h for a Lenovo workstation (Lenovo Group
Ltd., Beijing, China) with 128 GB of RAM and an Intel® CoreTM i9-13900K 3.00 GHz
CPU. This amount of time highlights the limit of coupled Eulerian–Lagrangian analysis,
especially when thinking about applications for entire ship structures.

2.2. Dataset Generation

The data required for the MLNN is extracted from the numerical simulations using
ParaView scripts. The data extracted from each simulation are the following:

- Distance, R (Figure 2), before the explosive event takes place;
- Type of seabed, identified with the Eseabed of the material shown in Table 5;
- Material of the plate, identified with the Eplate shown in Table 2;
- Initial mass-per-unit-area, ma, values of the plates calculated according to the following

equation:
ma = ρ·s (9)

where ρ is the material density, and s is the plate thickness.
- Position of the charge within the user-defined grid, presented in Figure 2, through the

indication of xcharge and zcharge, as listed in Table 1;
- Pressure-time history p(t) recorded on the central mesh element of the plate (red dot

in Figure 2);
- Vertical displacement-time history, d(t), recorded on the central mesh element of the

plate (red dot in Figure 2).

The p(t) is further processed to extract the most relevant information: the first peak
pressure, p f irst,peak (direct shock), the second peak pressure, psecond,peak (reflected shock),
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the time instant when the first peak occurs, t f irst,peak, the time instant when the second
peak occurs, tsecond,peak, and finally, the time instant of the first rise in the curve, traise. The
identification of psecond,peak and tsecond,peak is not trivial, so a threshold filter is implemented
to obtain both values.

Moreover, for d(t), the most relevant information is extracted, which is the maximum
value of vertical displacement at the end of the transient analysis, Umax.

Representative extracted features are shown in Figure 4 in reference to simulation
AL-LC1-R1-SB3 (Table 6). All inputs have been normalised to ensure that each feature
contributed equally to the analysis.
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Figure 4. (a) Indication of the extraction process for a generic case inside the dataset (AL-LC1-R1-SB3):
pressure and vertical displacement pattern for the central mesh element of the plate, and (b) qualitative,
real-scaled contour plot for the same case at t = 0.003 s (pictures taken using ParaView version 5.12.0).

After some examination, the authors identified that some features are inherently more
influential than others in determining the outcome. In particular, t f irst,peak and Umax were
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found to be significantly influential. In recognising their importance, the authors modified
the sensitivity of the machine learning model with respect to these critical features by
multiplying the weights of these two key features by 10. This adjustment makes the neural
network more influenced by these two features, improving the accuracy of the predictions.

To be highlighted is the fact that the selected input parameters ensure that different
configurations, such as varying charge mass and stand-off distance, do not yield identical
input data, allowing the neural network to accurately infer the detonation point location
by capturing complex relationships and minimising ambiguity, especially in real-world
applications with multiple sensors.

A data augmentation procedure is not exploited in this case study for simplicity.
The training data of all 108 cases were randomly divided into two groups, with 80% for
training and 20% for validation and testing, as is commonly carried out in neural network
applications [36].

It worth noting that for the training and validation steps, xcharge and zcharge are known,
while in a real application, such parameters are unknown and represent the target data to
be obtained from the proposed procedure [40]. All the other parameters are known by the
ship crew by using specific sensors or calculations.

Table 8 shows some methods that the crew can use in a real application to obtain the
information needed for ML procedures to identify the location of the UNDEXs.

Table 8. Examples of research applicable to the present framework to feed the machine learning strategy.

Type of Information Provided By References

Displacement history
• Accelerometers, by integration
• SHM strategies, like the inverse Finite Element Method [41–45]

Pressure history Different types of sensors (FBG, etc.) [46]

Distance between the hull and
seabed Echo Sounders [47]

Type of the seabed Echo Sounders, sonars, underwater drones, etc. [47]

Material and thickness of the plate Known from the design phase (Society of Classification rules) [33]

BCs Known from the design phase (sub-modelling, etc.) [33]

2.3. Data-Driven Approach

Given the complexity of the problem and the need for a balance between accuracy
and computational efficiency, a feed-forward Multi-Layer Neural Network was decided
on as the machine learning model, as it demonstrated superior performance compared
to traditional methods, like linear regression and decision trees, while also offering the
flexibility to scale effectively with larger datasets and real-world scenarios [27,40].

MLNNs are models commonly employed to approximate linear and/or non-linear
functions between input (x) and output (y) vectors according to the following form:

y = f (x) (10)

MLNNs consist of interconnected units known as neurons (or nodes), organised into
multiple layers: an input layer, one or more hidden layers, and an output layer.

Typically, neurons in consecutive layers are fully connected, meaning that each node
in a layer is linked to all the nodes in the subsequent layer.

The i-th component, xi, of the input vector (x) is assigned to the i-th neuron within
the input layer, which transfers information to neuron j in the subsequent layer through a
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weighted connection characterised by the weight of wij. The information obtained by the
j-th node is then aggregated and updated according to the following equation [36]:

zj = g

 Nj

∑
i=1

(
wij·xi

)
+ bj

 (11)

where zj is the output of the j-th node, g(·) is a typically non-linear activation function,
Nj represents the number of nodes from which the j-th node receives information, and bj

is a bias parameter. This message-passing and aggregation process recurs layer-by-layer
until reaching the output layer, where the value of the k-th node corresponds to the k-
th component (ŷk) of the estimated output vector (ŷ). The weights, wij, and biases, bj,
are trainable parameters of the MLNN and are optimised during training through error
back-propagation algorithms with gradient descent aimed at minimising the discrepancy
between the expected output (y) and the predicted output (ŷ).

The training set is used to make the MLNN learn the relationship between inputs
and outputs, the validation set serves as a tool to indicate underfitting or overfitting, and
the testing set is used after training for evaluating the MLNN generalisation capabilities
on unseen data. As usual, a user-defined error metric comparing predicted and expected
outputs guides the iterative update of the trainable parameters using gradient descent,
culminating in achieving satisfactory reconstruction error [40].

Various MLNN architectures are explored in this work, but for the sake of brevity, only
the best-performing configuration is presented in Figure 5 through a schematic diagram.
Here, a feed-forward deep neural network (DNN) architecture with a back-propagation
algorithm is investigated. This choice is due to the predictive capabilities since this archi-
tecture can be faster to train compared to other more complex neural network architectures,
such as recurrent neural networks (RNNs) or convolutional neural networks (CNNs),
especially with a small dataset [48].

The MLNN is characterised by three fully connected layers: the input layer with data
previously discussed, the hidden layers, and the output layer. The number of neurons for
each layer decreases to facilitate prediction; the first hidden layer has 64 neurons, the second
one has 32 neurons, and the last layer (output) has 9 neurons, one for each possible class,
corresponding to a specific detonation point according to the user-defined grid of Figure 2.

Parameter selection for the MLNN model, including the number of hidden layers and
neurons, is determined through empirical testing and guidelines available in the literature [40,49],
with two hidden layers (64 and 32 neurons, respectively) providing the best balance between
complexity and performance without overfitting.

The output class values are represented by 9 binary vectors, thanks to the well-known
one-hot encoding technique [50]. By doing so, the neural network can have 9 neurons in
the last layer, representing the classification probabilities of each possible outcome.

The ReLU activation function is applied to the input and hidden layers, which ensures
non-linearity in the overall system. After the first layer, dropout is applied at a rate of 10%. The
dropout function is a regularisation technique used in machine learning, particularly in neural
networks, to prevent overfitting. Overfitting occurs when a model learns the training data
too well, capturing noise and details that do not generalize to new data. Dropout addresses
this by randomly “dropping out” 10% of the units (neurons) in the neural network during
training, which forces the model to learn more robust features [51]. The SoftMax activation
function [40] is used for the output layer since it ensures that the sum of the probabilities for
all classes equals 1. The output values from the SoftMax function can be interpreted directly
as probabilities. This is useful for model interpretation and decision-making, as the user can
see how confident the model is in its predictions for each class.



J. Mar. Sci. Eng. 2025, 13, 526 15 of 25

J. Mar. Sci. Eng. 2025, 13, 526 15 of 26 
 

 

Various MLNN architectures are explored in this work, but for the sake of brevity, 
only the best-performing configuration is presented in Figure 5 through a schematic 
diagram. Here, a feed-forward deep neural network (DNN) architecture with a back-
propagation algorithm is investigated. This choice is due to the predictive capabilities 
since this architecture can be faster to train compared to other more complex neural 
network architectures, such as recurrent neural networks (RNNs) or convolutional neural 
networks (CNNs), especially with a small dataset [48]. 

 
Figure 5. Schematic diagram of the MLNN model of the present framework. 

The MLNN is characterised by three fully connected layers: the input layer with data 
previously discussed, the hidden layers, and the output layer. The number of neurons for 
each layer decreases to facilitate prediction; the first hidden layer has 64 neurons, the 
second one has 32 neurons, and the last layer (output) has 9 neurons, one for each possible 
class, corresponding to a specific detonation point according to the user-defined grid of 
Figure 2. 

Parameter selection for the MLNN model, including the number of hidden layers 
and neurons, is determined through empirical testing and guidelines available in the 
literature [40,49], with two hidden layers (64 and 32 neurons, respectively) providing the 
best balance between complexity and performance without overfitting. 

The output class values are represented by 9 binary vectors, thanks to the well-known 
one-hot encoding technique [50]. By doing so, the neural network can have 9 neurons in 
the last layer, representing the classification probabilities of each possible outcome. 

The ReLU activation function is applied to the input and hidden layers, which 
ensures non-linearity in the overall system. After the first layer, dropout is applied at a 
rate of 10%. The dropout function is a regularisation technique used in machine learning, 
particularly in neural networks, to prevent overfitting. Overfitting occurs when a model 
learns the training data too well, capturing noise and details that do not generalize to new 
data. Dropout addresses this by randomly “dropping out” 10% of the units (neurons) in 

Figure 5. Schematic diagram of the MLNN model of the present framework.

Training was performed using the Adam optimiser [52], and a total number of
1000 epochs were set up, in which neurons change their weights to try to optimize the
classification function. A cross-entropy loss function was employed since it is widely used
in multi-class classification problems.

Metrics are tracked during the training process, with an early stopping criterion set
to trigger if the validation loss does not decrease for 30 consecutive epochs. Training is
terminated either according to the early stopping criterion or, in particular, when the model
weights are reverted to those from the epoch that had the best validation loss within the
last 30 epochs. This strategy allows for not wasting unnecessary time by terminating all
1000 epochs if not necessary. The learning rate starts from 0.01 and regresses by 1/10 to two
predetermined milestone epochs, which correspond to epoch 400 and epoch 800, to find the
best fitting solution.

Batch size represents the number of samples provided as input for each epoch, which
are processed simultaneously by the network. Normally, a fairly large number is chosen
for the batch size, such as 64; however, in the present case, with a small dataset available,
the authors found that the right compromise was to set the batch size to 16.

3. Results and Discussion
An example of the results of a representative numerical analysis inside the dataset,

regarding the AL-LC1-R1-SB3 case of Table 6, is shown in Figure 6. Here, the pressure and
density contour field are depicted, and, to have a better view, a vertical section of the Eulerian
domain was made, but not for the structure and seabed. All other analyses in the dataset
have the same pattern (qualitatively), with the differences in the values shown (e.g., a charge
farther away from the plate will have lower pressures recorded on the surface of the plate
and will arrive later than a charge closer to it). As shown, the structure is subjected to a
double hit: initially, it is hit by the direct shock caused by the explosion, and in the subsequent
moments, the reflected wave induced by the seabed is present. This double hit is revealed by
the pressure trend recorded at the point of investigation in the plate and is a very important
feature that will be used by the network to learn where the explosion departed.
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t = 0.00070 s, and (h) pressure (MPa) at t = 0.00110 s (pictures taken using ParaView, with the legend
limits rescaled to provide a better view of the shocks).

The authors verified the accuracy of the numerical results in Figure 6 by comparing the
recorded numerical peak pressure with the analytical formulas available in the literature.
In particular, the formulation proposed by Cole was employed [11]. It should be noted,
however, that this formula can be applied to any charge size, from a few grains to nuclear
weapons, detonated at any depth; it describes the shock wave accurately except in the
immediate vicinity of the explosive charge (within 10 times the charge radius Rcharge),
where the peak pressure is higher than the one predicted by the formula. Additionally, it
should be noted that the formulation is valid in the free-field case, and it is specific to TNT
charges. The formulations used are the following:

p(t) = Pm·e−t/θ (12)

Pm = 52.16·
(

W1/3

S

)1.13

(13)

ϑ = 96.5·W1/3·
(

W1/3

S

)−0.22

(14)

where p(t) is the pressure-time history at a fixed location, Pm is the peak pressure in MPa, t
is the time, θ is the decay time in microseconds, W is the equivalent TNT mass in kg, and
finally, S is the stand-off distance in meters. We refer the reader to [46] for more details
about the formulation and coefficients. Three different points of the water domain were
considered for the verification of the pressure trend and pressure peaks. These probe
points are shown in Figure 7a, and they belong to the vertical plane that intersects the
centre of the charge. Figure 7a also shows a red circle, which outlines the validity domain
of the previous formulations (scenario AL-LC1-R1-SB3 of Table 6); Figure 7b shows the
comparison between the numerical and analytical pressure-time histories.
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Figure 7. (a) Indication of the probe locations for the validation of the pressure-time trends, and (b) a
comparison between the numerical and analytical pressure trends.

The performance of the MLNN over the cases within the test set of Table 1 is presented
through the following metrics, which are commonly used for classification problems. The
macro-averaging technique is applied to condense the calculated metrics for each class into
a single global metric.

• Accuracy (proportion of correct predictions (both true positives and true negatives)
out of the total number of predictions made) equal to 99.09;

• Precision (proportion of correctly predicted positive observations to the total predicted
positives) equal to 99.25;

• Recall (proportion of correctly predicted positive observations to all observations in
the actual positive class) equal to 99.55;

• F1 score (harmonic mean of precision and recall) equal to 99.16;
• Confusion matrix (the number of correct and incorrect predictions broken down by

each class); visible in Figure 8a.
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Regarding all the previous metrics, the results provide evidence that the network
successfully learned how to associate the inputs to the correct class. In other words, the
MLNN correctly predicts the position of the detonation point of the explosive events in all
cases within the test set. As shown in Figure 8a, the off-diagonal elements of the confusion
matrix are all zeros, indicating that there are no misclassifications for all cases belonging to
the test samples randomly chosen during the split procedure of the dataset. The predictions
presented in Figure 8a are resumed in Table 9.

Table 9. Prediction for the cases considered in the test set of Figure 8a.

Code Actual Class
(xcharge [m], zcharge [m])

Predicted Class
(xcharge [m], zcharge [m])

1 AL-LC1-R1-SB1 1 (0.65 , 0.20) 1 (0.65 , 0.20)
2 AL-LC1-R2-SB3 1 (0.65 , 0.20) 1 (0.65 , 0.20)
3 ST-LC1-R1-SB1 1 (0.65 , 0.20) 1 (0.65 , 0.20)
4 AL-LC2-R2-SB1 2 (0.85 , 0.20) 2 (0.85 , 0.20)
5 ST-LC2-R2-SB3 2 (0.85 , 0.20) 2 (0.85 , 0.20)
6 ST-LC3-R2-SB2 3 (1.05 , 0.20) 3 (1.05 , 0.20)
7 AL-LC3-R1-SB3 3 (1.05 , 0.20) 3 (1.05 , 0.20)
8 ST-LC4-R1-SB2 4 (0.85 , 0.20) 4 (0.85 , 0.20)
9 AL-LC4-R1-SB1 4 (0.85 , 0.20) 4 (0.85 , 0.20)

10 ST-LC4-R2-SB2 4 (0.85 , 0.20) 4 (0.85 , 0.20)
11 AL-LC5-R2-SB1 5 (0.85 , 0.40) 5 (0.85 , 0.40)
12 ST-LC5-R2-SB3 5 (0.85 , 0.40) 5 (0.85 , 0.40)
13 AL-LC5-R2-SB2 3 (1.05 , 0.20) 5 (0.85 , 0.40)
14 ST-LC6-R2-SB2 6 (0.85 , 0.60) 6 (0.85 , 0.60)
15 ST-LC6-R1-SB1 6 (0.85 , 0.60) 6 (0.85 , 0.60)
16 ST-LC7-R1-SB1 7 (1.05 , 0.20) 7 (1.05 , 0.20)
17 ST-LC8-R2-SB1 8 (1.05 , 0.40) 8 (1.05 , 0.40)
18 AL-LC8-R1-SB1 8 (1.05 , 0.40) 8 (1.05 , 0.40)
19 AL-LC8-R1-SB3 8 (1.05 , 0.40) 8 (1.05 , 0.40)
20 AL-LC9-R2-SB2 9 (1.05 , 0.60) 9 (1.05 , 0.60)

The authors point out that the choice of the number of numerical simulations is because
testing with 90, 100, and 108 cases did not show significant improvements in performance
beyond 90 simulations due to the careful selection of features that allowed the network to
effectively learn the input-output relationships. As a result, it was not necessary to increase
the dataset further.

Neural networks are highly sensitive to the choice of training, validation, and test
splits, especially for very small datasets, where the risk of overfitting or underfitting due to
improper data partitioning is significantly higher [25,40]. Additional investigations were
performed by the authors to check the sensitivity of the present architecture to the random
split of the dataset. A total of 100 trials were tested, where the training, validation, and test
sets were continuously changed at each trial. For the 90% cases, the metrics are accurate
and reliable, as per those presented in Figure 8a. The results for the remaining 10% are still
accurate since a maximum of two misclassifications were revealed. An example of this is
shown in Figure 8b, where the representative matrix contains two errors, specifically two
misclassifications of class 1 as class 2.

To further support the results presented in Figure 8, Figure 9 illustrates the evolution
of the cross-entropy loss for both the training and validation sets as a function of the
number of epochs. The plot confirms that the model successfully converges, with both
losses decreasing smoothly and stabilising after approximately 20 epochs. Although minor
fluctuations are observed beyond this point, particularly in the validation loss, they remain
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within an acceptable range, indicating that the model does not suffer from overfitting. This
further validates the robustness and generalisation capability of the trained network.
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In conclusion, the presented results demonstrate the high accuracy of the proposed
model across different test data, as evidenced by an accuracy of 99.09%, a precision of
99.25%, a recall of 99.55%, and an F1-score of 99.16%. These metrics confirm the effectiveness
of the classification approach for this dataset despite the limited number of simulations.

A crucial point of the present framework lies in the main limitation of being able to
identify the position of the detonation point of an underwater explosive based on the nodes
of a two-dimensional grid. The authors carried out further investigations to understand
what the predicted class would be, i.e., the location of the detonation point, in cases where
the explosive detonates in points other than those of the grid. The new analysis carried out
for this check is visually reported in Figure 10 and described in detail in Tables 10 and 11
(the “N” in front of the new load codes refers to “New”). What emerged is that the network
can provide the class in the output corresponding to the closest point of the grid of new
cases (based on Euclidian’s distance), showing excellent generalisation capabilities.
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Table 10. Codes for the new scenarios considered.

Code Code

1 AL-NLC1-R1-SB3 6 ST-NLC2-R2-SB2
2 AL-NLC3-R2-SB1 7 ST-NLC4-R1-SB3
3 AL-NLC5-R1-SB2 8 ST-NLC6-R2-SB1
4 AL-NLC7-R2-SB2 9 ST-NLC8-R1-SB2
5 AL-NLC9-R1-SB1 10 ST-NLC10-R2-SB1

Table 11. Features of the new explosion scenarios considered.

Code Charge m [kg] EOS Rcharge
[m]

xcharge
[m]

zcharge
[m]

NLC1 TNT 1.47 JWL 0.060 0.72 0.20
NLC2 TNT 1.47 JWL 0.060 0.72 0.20
NLC3 TNT 1.47 JWL 0.060 0.65 0.26
NLC4 TNT 1.47 JWL 0.060 0.82 0.37
NLC5 TNT 1.47 JWL 0.060 0.82 0.37
NLC6 TNT 1.47 JWL 0.060 1.02 0.37
NLC7 TNT 1.47 JWL 0.060 0.65 0.56
NLC8 TNT 1.47 JWL 0.060 0.87 0.54
NLC9 TNT 1.47 JWL 0.060 1.05 0.54

NLC10 TNT 1.47 JWL 0.060 1.05 0.54

In many practical scenarios, such as naval operations, pinpoint accuracy at the mil-
limetre level is not always necessary for reconstructing the detonation point of a generic
underwater threat. Instead, a lower resolution is often sufficient to achieve the objectives
of the analysis. For example, understanding whether an explosion occurred within a 1 m
or 2 m grid area is generally adequate for making informed decisions about response
and impact assessment. High-resolution data may provide excessive detail that does not
significantly alter operational decisions or resource allocation, and a coarser resolution still
offers a clear understanding of the explosion’s general location and effects, allowing for
more efficient and practical decision-making.

4. Conclusions
This work introduces a novel approach using numerical simulations and a Multi-Layer

Neural Network to accurately pinpoint the detonation point of contact of underwater ex-
plosions against horizontal, fully clamped underwater plates. The MLNN learns how to
correlate inputs from numerical coupled simulations with a specific output class, consider-
ing that each class represents a specific position of a detonation point in a bidimensional
user-defined grid.

The authors considered that the following inputs were relevant for the framework: the
distance between the mid-surface of the plate and seabed, the type of seabed, the material
of the plates, the initial mass-per-unit-area, and the pressure and vertical displacement-time
history recorded on the central mesh element of the plate. The choice of the previous
input data is related to the fact that such information can be obtained by the crew through
onboard sensors or instrumentations, allowing for the development of a machine learning
tool ready for practical marine structure applications.

The MLNN model was trained using data obtained from a comprehensive finite
element (FE) model developed using MSC Dytran software [36]. A total of 108 numerical
simulations were generated, including all possible combinations of plate material, type of
seabed, and distance between the plate and seabed.
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The results show the model’s high effectiveness on various test data despite the limited
number of simulations. The proof of the performance is based on different common metrics
related to classification problems, like accuracy, precision, recall, F1 score, and finally, the
well-known confusion matrix.

The primary limitation of the proposed framework is that it can only identify the
detonation point of an underwater explosive based on the nodes of a two-dimensional grid.
The authors further investigated how the network would predict the location of points not
on the grid. The new analysis carried out showed that the network successfully identified
the closest grid point based on Euclidean distance, demonstrating excellent generalisation
capabilities in an extended application. In practical applications, such as naval operations,
pinpoint accuracy at the millimetre level is often unnecessary; instead, a lower resolution,
such as determining whether an explosion occurred within a 1 m or 2 m grid area, is
generally sufficient for effective decision-making and impact assessment.

Further developments of the present framework include the following aspects:

• Given that the internal behaviour of the present MLNN is not directly accessible
without an explainability algorithm, an explainability code should be implemented in
the future to elucidate the network and highlight the parameters that influence the
MLNN prediction process, with the aim of reducing the input parameter to the most
effective setting.

• Gas bubble pulsation and migration against the structure were not considered for the
present investigation due to the limited time considered for each numerical simulation.
Future developments by the authors will be focused on these aspects since they are
the next step in the implementation of the present framework.

• Another improvement for the current framework involves applying it to scenarios
where the structure exhibits damage or failure. In such cases, it would be necessary
to increase the number of input parameters and account for the mass-per-unit-area
variable.

• The present investigation is referred to as a bidimensional user-defined grid (for sim-
plicity) with a certain interspace between the nodes where the charge explodes. In real
applications, a three-dimensional aspect should be implemented due to the complexity
of the geometry of ships. This aspect significantly increases all the computational
efforts required to create a huge database for the machine learning tool.

• A further improvement regarding the present MLNN is represented by its capability to
predict both the detonation point and the mass of the charge. The latter quantity will
be addressed by the authors in future investigations by exploiting the tool presented
here through transfer learning strategies.

Overall, it was found that the MLNN has the great advantage of being accurate and
rapid when predicting a detonation point of contact in underwater explosions against
metallic plates, starting from a known or calculable (by the crew) input and considering
the extremely complex fluid–structure coupling UNDEX effects, as well as geometric and
material non-linearities.
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