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Abstract: Climate change has led to the need to transition to clean technologies, which
depend on an number of critical metals. These metals, such as nickel, lithium, and man-
ganese, are essential for developing batteries. However, the scarcity of these elements and
the risks of disruptions to their supply chain have increased interest in exploiting resources
on the deep seabed, particularly polymetallic nodules. As the identification of these nod-
ules must be efficient to minimize disturbance to the marine ecosystem, deep learning
techniques have emerged as a potential solution. Traditional deep learning methods are
based on the use of convolutional layers to extract features, while recent architectures, such
as transformer-based architectures, use self-attention mechanisms to obtain global context.
This paper evaluates the performance of representative models from both categories across
three tasks: detection, object segmentation, and semantic segmentation. The initial results
suggest that transformer-based methods perform better in most evaluation metrics, but at
the cost of higher computational resources. Furthermore, recent versions of You Only Look
Once (YOLO) have obtained competitive results in terms of mean average precision.

Keywords: deep sea; polymetallic nodules; deep learning; object detection; object segmentation

1. Introduction

One significant challenge modern society faces is climate change and its effects on the
Earth’s ecosystems [1,2]. International accords such as the Paris Agreement [3] and the
United Nations Secretariat Climate Action Plan 2020-2030 [4] are examples of initiatives
that aim to find solutions to reducing our carbon footprint and advancing sustainable
practices. In order to achieve these goals, it is necessary to transition to renewable energy
and technologies, which, in turn, depend on critical metals. Critical metals are non-
combustible materials that fulfil essential functions for energy technologies and have major
disruption risks in their supply chain. Examples of these metals include nickel, cobalt,
copper, lithium and others that, due to their characteristics, have an enormous capacity for
storing, conducting or transmitting energy [5]. However, as surface sources become more
strained while demand increases, there has been a growing interest in locating untapped
reserves of these resources, particularly those in the deep sea, including polymetallic
nodules, cobalt-rich ferromanganese crusts, and polymetallic sulphides [6].

Polymetallic nodules are small rounded or oval mineral deposits scattered across the
deep seabed, known for their high concentrations of essential metals such as manganese,
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iron, cobalt, nickel, copper, and other rare-earth elements of economic interest [7]. Tra-
ditional mining machines typically rely on a collector that sweeps these nodules off the
seafloor and pump systems that transport them up to a surface vessel. Hazard assessment
studies have already highlighted the immense impact of these technologies on the seabed,
including habitat alterations and sediment plumes [8,9]. Besides this, mining efforts must
comply with the regulatory standards set by The International Seabed Authority (ISA),
guaranteeing the protection of biodiversity. Therefore, the feasibility of resource exploita-
tion depends directly on our ability to identify and map these resources efficiently. Given
the extreme environmental conditions in which they are located, such as high pressure,
low visibility, uneven terrain, and with marine life present, this task becomes even more
challenging. Although box-corers and photographic profiling remain fundamental for
large-scale resource assessments, Autonomous Underwater Vehicles (AUVs) or Remotely
Operated Vehicles (ROVs) embedded with a multimodal set of sensors allows for resource
exploitation by enabling detailed environmental monitoring and informed decision-making.
However, the data processing involved is complex and time-consuming due to the large
amount of data those sensors provide.

Recent advances in artificial intelligence, particularly deep learning (DL) techniques,
provide promising tools for handling extensive data [10]. These methods may enable
real-time monitoring and supervision of the seafloor during mining campaigns, thus
enabling impact assessment studies to be carried out. For instance, the Trident project
aims to conduct a baseline assessment of the deep-sea environment to establish a detailed
understanding of seabed conditions before any activity occurs [11]. Using deep learning
techniques to process sensor data, such as seafloor imagery, enables rapid the identification
and mapping of the polymetallic nodules.

Classic DL architectures use convolutional neural networks (CNNs), which use con-
volutional filters to detect feature patterns in an image, generating a hierarchical repre-
sentation of features through successive layers. On the other hand, recent advances have
introduced transformer-based models, in which self-attention mechanisms are used to
gather global context from an image [12].

This paper aims to evaluate the performance of several CNN and transformer-based
models in detecting and segmenting polymetallic nodules in optical images. For this reason,
three types of tasks are considered: object detection, instance segmentation, and semantic
segmentation. Object detection identifies the locations of nodules, instance segmentation
distinguishes individual nodules, and semantic segmentation provides detailed pixel-level
seafloor segmentation. Existing studies often address only a single task and employ traditional
deep-learning architectures [13-15], without evaluating the recent advances in attention-based
or hybrid models. In addition, focusing on a single task may cause researchers to miss important
contextual cues. This study expands on prior work by comprehensively analysing several neural
network models (convolution-based and transformer-based) over the three tasks, leveraging
state-of-the-art architectures based on different approaches and addressing the limitations of
these models in terms of their inference performance and computational resource requirements.

This paper is structured as follows: Section 2 provides an overview of related work,
focusing on polymetallic nodule detection and segmentation based on deep learning tech-
niques. Next, Section 3 presents the dataset used in this study and describes the annotation
and preprocessing techniques applied for the models’ training. Section 4 describes the
model selection process carried out for each task. This section details the experimental
setup, the models” hyperparameters, and the evaluation metrics used. Section 5 then
presents a comprehensive evaluation of model performance with quantitative metrics and
qualitative examples. Finally, Section 6 presents a discussion of the obtained results and a
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comparison of the different methods, highlighting their respective advantages and disad-
vantages, followed by our conclusions and recommendations for future research directions.

2. Related Work

Our prior work [16] surveyed a wide range of seafloor mapping techniques, including
applying deep learning models for the mapping of polymetallic nodules. We have identi-
fied that seabed mapping and characterisation have usually relied on acoustic sensors and
optical imagery. This paper expands on that work, focusing on approaches related to poly-
metallic nodules and analysing their performance in terms of detection and segmentation.

In terms of object detection tasks, state-of-the-art architectures are usually presented in
the literature. Quintana et al. [17] applied You Only Look Once (YOLO) and Faster R-CNN
models for nodule detection. Faster R-CNN outperformed YOLO in all evaluation metrics.
However, a direct comparison of the inference times of the two models was not carried out.
Their models were evaluated in a pool and in situ [18,19].

Due to their real-time performance and lightweight architecture, several approaches
have employed YOLO models extensively. Sun et al. [20] utilised the YOLOv5s model
to detect small-sized polymetallic nodules in hyperspectral data. The model served as
a reference network to be fused with the Normalized Wasserstein Distance (NWD) and
Intersection Over Union (IoU), improving its performance. Conversely, most of the small
nodules, with a diameter of less than 5 cm, covered or buried under seafloor sediment
did not appear in the image. Similarly, Cui et al. [21] addressed the challenge of picking
nodules with a robotic manipulator using an improved YOLOV5 network, integrating a
dual loss function based on NWD and IoU. Eight models were trained for comparison,
and the average precision, precision, and recall metrics were used. The improved model
increased the average precision by 2.3% compared with the classical YOLOv5. However,
the more recent model, YOLOVS, presented a better performance.

For segmentation tasks, a Mask R-CNN model pre-trained on the Common Objects in
Context (COCO) dataset was used by Dong et al. [22] to segment nodules in optical images.
The model performance was also compared to U-Net and Generative Adversarial Network
(GAN) networks, outperforming them in the accuracy, recall, and IoU metrics used.

Tomczak et al. [23] proposed a U-Net model to estimate nodule abundance in seabed
images. First, the U-Net segments the nodules and then Connected Component Analysis
(CCA) is applied to isolate connected areas on the image. Since the CCA algorithm does not
perform well in cases where different nodules form a single region, a watershed algorithm
is applied to identify and delineate the boundaries.

Song et al. [24] introduced an improved version of a U-Net to perform image segmentation
in mineral images. Their proposal applies an encoder—decoder structure to the U-Net, in which
the decoder up-samples the features at several scales to generate the final segmentation map.
While the method demonstrated reduced training loss compared to the original U-Net, the lim-
ited dataset of 49 seabed mineral images may impact the model’s generalisation capabilities.

Besides these deep learning techniques, several approaches have used traditional meth-
ods, such as threshold [25,26] and clustering segmentation [27]. Among those using these
techniques, Schoening et al. [28] proposed the Compact-Morphology-based poly-metallic
Nodule Delineation (CoMoNoD) algorithm. Their algorithm is divided into two steps: con-
trast maximisation, which is used to generate a binary image, increasing the contrast between
the nodules and the seabed sediments, and nodule delineation using several blob detections,
splitting, and fusion in order to separate individual nodules. The authors assumed that
the nodules have an elliptical and convex shape, and then the potential nodule blobs were
outlined by a convex hull. However, the method did not perform well when marine fauna
was present in the image and misidentified it as nodules. Hence, deep learning models may
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perform better because they can handle complex object shapes and appearance variations,
especially in the context of polymetallic nodules, which may be spherical, discoidal, irregular,
poly-nodule, or otherwise variably shaped [29]. For instance, binary segmentation may fail
when the nodules are partially occluded or buried.

3. Dataset Overview
3.1. Polymetallic Nodule Dataset

This study makes use of an existing dataset that is publicly available and licensed
under a Creative Commons Attribution 4.0 International (CC-BY-4.0) license, allowing for its
reuse with proper attribution. This dataset, “Seafloor images of undisturbed and disturbed
polymetallic nodule province seafloor collected during RV SONNE expeditions SO268/1+2”,
developed by Purser et al. [30], was collected during the RV SONNE expeditions SO268/1+2
and is composed of raw high-resolution images from the Clarion-Clipperton Fracture Zone
(CCZ) in the Pacific Ocean, part of JPI Oceans project MiningImpact [30]. The data collection
period spanned from 17 February 2019 to 27 May 2019, ensuring environmental variation,
and occurred within the German (BGR) and Belgian (GSR) contract areas [31]. There are
12 subsets that contain 41,088 images in total. The images present diverse lighting, contrast,
and brightness conditions, making them ideal for training neural network models. Figure 1
presents example images from the dataset.

The data were acquired using the Ocean Floor Observation System (OFOS), a towed un-
derwater camera system equipped with a high-resolution photo camera (iSiTEC, CANON
EOS 5D Mark III) and a high-definition video camera (iSiTEC, Sony FCB-H11). The OFOS
setup included two strobe lights, three laser pointers spaced 50 cm apart for scale estima-
tion, four LED lights, a Tritech Altimeter, and a USBL positioning system (Posidonia) for
tracking during deployments.

(d)
Figure 1. Original images from the dataset “Seafloor images of undisturbed and disturbed polymetallic
nodule province seafloor collected during RV SONNE expeditions SO268/1+2” (images provided by
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Purser et al. [30]). (a) Image captured in the CCZ at —117.021376 longitude and 11.930071 latitude.
(b) Image captured in the CCZ at —117.0118958 longitude and 11.86299783 latitude. (c) Image
captured in the CCZ at —117.0125630 longitude and 11.8621353 latitude. (d) Image captured in the
CCZ at —125.9254465 longitude and 14.02936067 latitude.

3.2. Annotation Process

Due to the high resolution of the images and the typical architectures of deep learning
models, using the entire images for training is not the optimal approach. Resizing the
images to smaller sizes can lead to a loss of critical nodule features, while using the full-
resolution image substantially increases computational requirements, such as memory
usage and training time. Additionally, manual annotation of the entire dataset would
be highly time-consuming, considering that one image may have hundreds of nodules.
In order to address these challenges, a semi-automated iterative approach was employed,
which was as follows:

1.  The original images were cropped into smaller patches of 640 x 640 pixels using a
sliding window approach. Horizontal and vertical strides of 320 pixels were used to
create enough overlap between patches, ensuring that nodules near the edges of the
image were included. Zero-padding was added to maintain consistent dimensions.
This approach standardized input sizes to enable efficient training across all models.
Figure 2 demonstrates the cropping process.

Figure 2. Example of cropped image and original dataset image.

2. The next step consisted of selecting a small subset of cropped patches and manually
annotating their nodules using the Supervisely platform [32]. These labels served as
the ground truth for training an initial Faster R-CNN model for object detection.

3. The trained model was used to infer and label potential nodules on new images. Then,
the predicted bounding boxes were reviewed and corrected, addressing issues such as
false negatives and positives. This approach sped up the annotation process.
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4.  Finally, the corrected labels were added to the dataset, and the model was retrained to
improve its performance. This iterative process continued until the model achieved a
mean Average Precision (mAP) of 80%. This threshold value minimized the need for
manual corrections.

For the segmentation annotation process, the bounding boxes from object detection
were used to generate instance masks. The conversion from bounding boxes to instance
masks was achieved using the Segment Anything Model (SAM) [33], a state-of-the-art
model used for segmentation tasks. The model produced pixel-level masks corresponding
to each detected object instance, enabling the delineation of each object’s boundaries.

The masks generated by SAM were then reviewed and manually corrected to address
potential issues such as over-segmentation, under-segmentation, or inaccuracies in mask
boundaries caused by occlusions or overlapping regions. Figure 3 displays the result of
converting the bounding box annotations to masks. It is worth noting that some parts of
the nodules were not entirely segmented and required manual revision.

(@) (b)
Figure 3. Conversion from bounding box labels to instance segmentation labels using SAM. (a) Bound-
ing box annotations. (b) Instance segmentation annotations.

Finally, the semantic segmentation annotation process was carried out by converting
the instance masks to a single label and the remaining pixels to a background class.
3.3. Dataset Statistics

Finally, the total dataset used consisted of 779 images with a resolution of 640 x 640 pix-
els. The dataset was randomly split into three subsets: 70% for training, 20% for validation,
and 10% for testing, distributed as in Table 1.

Table 1. Dataset statistics.

Subset Image Count Nodule Count
train 546 9255
val 156 2718
test 77 1403

total 779 13,376
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4. Benchmark Setup
4.1. Model Selection

Five models were selected and trained for each task: object detection, instance seg-

mentation, and semantic segmentation. Based on related work, we established that state-of-
the-art models such as Faster R-CNN, YOLO and Mask R-CNN, U-Net are widely used for
detecting or segmenting nodules. For this reason, more recent models were also chosen,

such as those based on transformers. The objective was to compare the performance of

models based on different architectures.

4.1.1. Object Detection Models

Table 2 summarises the key ideas of the five models chosen for the assessment of their

object detection performance.

Table 2. Summary of the evaluated object detection models.

Model Category Type Architecture Key Ideas
— A Region Proposal Network (RPN) is used to generate candidate regions
) ) . : that could potentially contain objects
Faster R-CNN [34] Convolutional Two-stage - Rol (Region of Interest) Pooling is applied to extract fixed-size feature
representations for each proposal
. . g — Directly predicts bounding boxes from the image (anchor-free)
YOLOVS [35] Convolutional Single-stage — Employs a convolutional backbone and multi-scale feature pyramids
. . — The encoder processes feature maps to learn contextual information
DEtection Single-stage . . .
— The decoder uses fixed-object queries to focus on relevant features from the
TRansformer Transformer (transformer encoder’s output
(DETR) [36] encoder-decoder)  _ The decoder then predicts bounding boxes for detected objects
DETR with Improved Single-stage - DINQ extends DETR by introducing mixed query d.en0151ng, query
- selection, and a look-forward scheme for box prediction
deNoising anchOr boxes ~ Transformer (transformer . L -
— During training, noise is added to the decoder, and the model learns to
(DINO) [37] encoder—-decoder) . .
reconstruct both the ground truth and noisy queries
— The model uses a compound scaling method to balance depth, width,
and resolution for multi-scale feature extraction
EfficientNet [38] Convolutional Single-stage — A Bi-Directional Feature Pyramid Network (BiFPN) enables adaptive
multi-scale feature fusion for improved detection across object sizes
— The model employs anchor boxes for bounding box predictions
4.1.2. Instance Segmentation
In addition to object detection, a YOLOv8 model was trained for instance segmentation.
The other four models are summarised in Table 3.
Table 3. Summary of the evaluated instance segmentation models.
Model Category Type Architecture Key Ideas
— Extends Faster R-CNN by adding a branch for pixel-level mask prediction
Mask R-CNN [39] Convolutional Two-stage — Uses RolAlign to align extracted features with input images accurately
— The model adds a segmentation mask for each detected object
— Directly predicts instance masks in a single forward pass without an
Segmenting Objects by Convolutional Sinele-stage intermediate object detection stage
Locations (SOLOv2) [40] & 8 — The model divides the image into a uniform grid, predicting instance masks
for each cell
Point-based Renderin — Two-stage instance and semantic segmentation method
. ) & Convolutional Two-stage — The method iteratively refines predictions at selected points near the edges
(PointRend) [41] . . - .
instead of directly predicting all masks simultaneously
— The model predicts a fixed set of masks and their associated categories
Multi-stage using attention mechanisms
Mask2Former [42] Transformer (transformer — The model employs query embeddings, and each query represents a

encoder—decoder)

specific region
— The decoder iteratively refines the queries to predict the masks
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4.1.3. Semantic Segmentation

Besides PointRend, the other four models chosen for the semantic segmentation task
are presented in Table 4:

Table 4. Summary of the evaluated semantic segmentation models.

Model Category Type Architecture Key Ideas
— Symmetric encoder—decoder architecture
U-Net [43] Convolutional Fully convolutional —The epcogler conducts several convolutional and down-sampling operations
(encoder-decoder) to obtain high-level features
— The decoder uses up-sampling layers to reconstruct a dense pixel-wise output
. — Encoder-decoder architecture used to gather multi-scale features based on
Encoder—decoder with . - .
. Atrous Spatial Pyramid Pooling (ASPP)
DeepLabv3+ [44]  Convolutional Atrous . . . . .
. — The decoder refines the segmentation output by recovering spatial details
Convolutions . .
through up-sampling and feature fusion
— Two-stage instance and semantic segmentation method
— Optimised for mobile and edge devices
. . — Used as an encoder for semantic segmentation tasks
MobileNetv3 [45]  Convolutional Fncoder-decoder — Lite Reduced Atrous Spatial Pyramid Pooling (LRASPP) Head as the decoder
— The decoder applies convolutions for multi-scale context aggregation,
generating dense segmentation maps
SegFormer [46] Transformer Hierarchical — The model has a lightweight design and uses hierarchical transformers as a

Transformer Backbone  backbone to extract global and local information

4.2. Training Setup

In order to ensure consistency during training, the hardware setup used to train and
evaluate each task was the same. All experiments were conducted using an NVIDIA
GeForce GTX 1080 Ti GPU with 12 GB VRAM, an Intel Core i9-10940X @ 3.30 GHz (28 cores)
CPU, and 128 GB of RAM. The training was carried out using Ubuntu 20.04.6 as the
operating system. The MMDetection and MMSegmentation frameworks [47,48] were
utilised for implementing the models. These frameworks are open-source object detection
and segmentation toolboxes based on PyTorch, which enables the seamless configuration
of state-of-the-art architectures.

The hyperparameters used for training were chosen to balance computational effi-
ciency and performance. The hyperparameter configuration was applied uniformly across
all models when possible, ensuring a consistent comparison of their performance. Due
to GPU limitations, a batch size of 2 was used. Besides this, the models were trained for
12 epochs, a value previously selected to allow for sufficient convergence while avoiding
overfitting. As exceptions, the YOLOs models were trained with a batch size of 8 and
100 epochs due to their lightweight architecture and the DINO and DETR models were
trained with a batch size of 1 due to GPU restraints.

The learning rate schedule followed a multi-step decay policy, where the learning
rate was reduced by 10% at epochs 4 and 8. This approach hastened initial learning and
stabilised training in later stages, enabling the models to converge effectively. The optimiser
chosen varied depending on the model, with Stochastic Gradient Descent (SGD [49]) and
AdamW [50] being chosen. Table 5 summarises the hyperparameter setup.

Finally, we have utilised pre-trained models provided by the MMDetection and MM-
Segmentation toolboxes to train the new models. By using transfer learning, the need
for extensive data and computational resources was reduced. Given their larger GPU
requirements, the batch size for the DINO and DETR models was set to 1.
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Table 5. Hyperparameter setup for each model.

Task Model Batch Size Epochs Optimiser Learning Rate Schedule

YOLOVS 8 100 AdamW Initially 0.01, reduce 10%
at epochs 4, 8

Faster R-CNN ) 12 SGD Initially 0.01, reduce 10%
at epochs 4, 8

Object Detection DINO 1 12 AdamW Imtlally 0.01, reduce 10%
at epochs 4, 8

EfficientDet ’ 12 SCD Initially 0.01, reduce 10%
at epochs 4, 8

DETR 1 12 AdamW Initially 0.01, reduce 10%
at epochs 4, 8

YOLOvSs-seg 8 100 AdamW Initially 0.01, reduce 10%
at epochs 4, 8

L o

Mask R-CNN 5 12 SGD Initially 0.01, reduce 10%
atepochs 4, 8

Instance Segmentation PointRend 2 12 SGD Initially 0.01, reduce 10%
at epochs 4, 8

SOLOV?2 ) 12 SGD Initially 0.01, reduce 10%
at epochs 4, 8

L o

Mask2Former 5 12 AdamW Initially 0.01, reduce 10%
at epochs 4, 8

U-Net 5 12 Adam Initially 0.01, reduce 10%
at epochs 4, 8

DeepLabV3+ 2 12 Adam Initially 0.01, reduce 10%
at epochs 4, 8

Semantic Segmentation SegFormer 2 12 AdamW Initially 0.01, reduce 10%
atepochs 4, 8

PointRend 5 12 Adam Initially 0.01, reduce 10%
at epochs 4, 8

MobileNetv3 2 12 Adam Multi-step: reduce 10%

at epochs 4, 8

Additionally, data augmentation techniques were implemented during training to
increase the models” generalization and robustness. Transformations such as random
flips, rotations, scale changes, and changes in brightness and contrast were applied to the
training data.

4.3. Evaluation Metrics

Standard metrics were chosen to guarantee an efficient evaluation of the models’
performance of each task. The standard COCO evaluation metrics were used for object
detection and instance segmentation. These metrics permit us to assess the models” perfor-
mance across varying levels of overlap.

*  Mean Average Precision (mAP): mAP is calculated as the mean of the average precision
(AP) over multiple Intersection over Union (IoU) thresholds (0.5 to 0.95 in steps of
0.05) [51].

For a specific IoU threshold ¢, AP is defined as
1 N
AP(t) = — ) P(i)AR(i), (1)
N i=1
where N, P(i), R(i),and AR(i), are the total number of object classes. Precision is
determined at the i-th threshold, and recall and change in recall at i.
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Then, the mAP is computed as follows:
1 N
AP = — ) AP(i 2
mAP = 7 ) AP() @

For a better understanding of the models” accuracy, we evaluated their performance
over different IoU, using mAPs5y and mAP75. Besides this, we also assessed their
performance at different object scales based on pixel size, using the mAP;, mAP,,
and mAP; metrics, which corresponded to small (less than 32 x 32 pixels), medium
(32 x 32 t0 96 x 96), and large objects (greater than 96 x 96).

On the other hand, the semantic segmentation models were evaluated using metrics
that require pixel-wise classification, measuring the overlap between the predicted and
ground-truth areas.

*  Accuracy: The accuracy metric evaluates the correctly predicted pixels in comparison
to the total number of pixels [52]. This metric may be inadequate for use in cases of
class imbalance since the favoured class increases the accuracy score.

* Intersection over Union: This quantifies the overlap between predictions and ground
truth [53] and is computed as follows:

Area of Overlap

ToU = Area of Union

©)
The mean Intersection over Union (mloU) is also used to measure the mean IoU over
the nodules and background classes. The mloU is computed considering a target #.

*  Dice Coefficient: A harmonic mean of precision and recall [54], which is computed

as follows:
2 - Area of Overlap

Total Area of Predicted and Ground Truth

Similarly, mDice is also utilised to measure the mean over all targets.

Dice =

(4)

All metrics are complementary in assessing segmentation accuracy, penalising
false positives.

5. Results

The models were implemented using three established frameworks. Both YOLOVS8
models were implemented using the Ultralytics repository [55]. The remaining object
detection and instance segmentation models were trained using the MMDetection toolbox,
while the MMSegmentation toolbox was used for semantic segmentation. These tools
enable seamless implementation, providing robust and modular architectures for training
and evaluation.

Since the MMDetection and MMSegmentation toolboxes do not compute validation
losses, we compared the models” map trends on the validation set with their training losses
to identify potential overfitting. Additionally, an early stopping mechanism was employed
to avoid overfitting.

5.1. Object Detection Results

Table 6 summarises the evaluation metrics obtained for all models. DINO demonstrated
the highest overall performance, achieving a mAP of 0.899 and outperforming all other models
across all evaluated metrics. These results highlight the model’s ability to detect objects over
several object scales and IoU thresholds. YOLOvS8s and Faster R-CNN achieved reasonable
results, although inferior to those of DINO. In contrast, DETR and EfficientNet showed
relatively poor performances, indicating a need for additional training epochs.
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Table 6. Evaluation metrics for object detection. Best results are presented in bold.

Model mAP mAP_50 mAP_75 mAP_s mAP_m mAP_1
YOLOvS8s 0.856 0.974 0.955 0.295 0.840 0.878
Faster R-CNN 0.832 0.979 0.957 0.227 0.814 0.851
DINO 0.899 0.990 0.979 0.472 0.895 0.910
DETR 0.772 0.967 0.928 0.256 0.752 0.800
EfficientNet 0.7473 0.936 0.904 0.375 0.731 0.759

The majority of the models struggled to detect small objects. Considering the deep-sea
mining scenario, in which nodules can be partially buried or fragmented into less distinct
clusters, their low performance in this metric is a challenge for DL models.

The models were also evaluated in terms of their computational performance to assess
their training efficiency and resource usage. Considering that the other models were trained
for only 12 epochs and used a smaller batch size, YOLOvS8s presented the fastest training time
despite its larger workload, attributable to its lightweight design. Additionally, YOLOvS8s
outperformed the others in inference speed and GPU usage, highlighting its suitability for
deployment on edge devices. On the other hand, the transformer-based models were com-
putationally intensive. Among the models trained for 12 epochs, Faster R-CNN achieved
the shortest training duration, making it the most time-efficient for smaller training setups.
Table 7 displays the computational performance of each object detection model.

Table 7. Computational performance of models in terms of object detection. Best results are presented
in bold.

Model Training Duration Inference Time per Image Max GPU Memory Used
YOLOvS8s 42 min 41 s 28.9 ms 105.54 MB
Faster R-CNN 26 min 26 s 72.7 ms 423.90 MB
DINO 2h11min32s 128.6 ms 419.01 MB
DETR 1h20min 23 s 48.6 ms 396.17 MB
EfficientNet 34 min 39 s 87.1 ms 428.84 MB

To illustrate the results obtained, Figure 4 shows the bounding boxes created for each
detection. It is worth noting that, despite the good values obtained in the evaluation metrics,
the models were not able to localise all the nodules.
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Figure 4. Cont.
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(d)

(e) ()
Figure 4. Example of object detection results for each model. (a) Original image. (b) YOLOvS8s
detection results. (c¢) Faster R-CNN detection results. (d) DETR detection results. (e) DINO detection
results. (f) EfficientNet detection results.

Since MMDetection does not compute validation losses, the training losses were also
logged to assess possible overfitting during training. Figure 5 displays the localisation
(in blue) and classification (in orange) achieved by all models. It is noticeable that all
losses tend to decrease rapidly before stabilising, with both losses converging to relatively
satisfactory values. This behaviour, coupled with the mAP values obtained for validation,
indicates that the models are not overfitting.
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Figure 5. Localisation and classification losses for each object detection model. (a) YOLOvS8s localisa-
tion (blue) and classification (orange) losses. (b) Faster R-CNN localisation (blue) and classification
(orange) losses. (c) DETR localisation (blue) and classification (orange) losses. (d) DINO localisa-
tion (blue) and classification (orange) losses. (e) EfficientNet localisation (blue) and classification
(orange) losses.
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5.2. Instance Segmentation Results

Similarly, the instance segmentation models were evaluated regarding their localiza-
tion efficiency and ability to identify nodules of different sizes. PointRend presented the
highest mAP, followed closely by SOLOv2 and Mask R-CNN. At higher IoU thresholds,
SOLOV2 attained better results, suggesting it had a better capacity to localise a larger
number of nodules, excelling at capturing spatial and fine-grained features. Considering
the scale-based metrics used, YOLOvVS had difficulty identifying small nodules, as ex-
pected. Conversely, SOLOV2 scored the best mAP value for small objects. Most models
performed well for medium and large objects, with the exception of Mask2Former and
YOLOvVS-seg. Despite its transformer-based architecture, the poor performance of the
Mask2Former model in comparison with the other models may indicate a need for longer
training durations and larger batch sizes. Interestingly, the models obtained better results
for segmenting small-scale nodules than the object detection models. In the case of YOLOVS,
there was a drop in performance compared to the object detection model. Table 8 displays
the evaluation metrics for all models.

Table 8. Evaluation metrics for instance segmentation. Best results are presented in bold.

Model mAP_seg mAP_50_seg mAP_75_seg mAP_s_seg mAP_m_seg mAP_]_seg
YOLOv8s-seg 0.493 0.611 0.551 0.175 0.484 0.858
Mask R-CNN 0.842 0.968 0.941 0.538 0.844 0.967

PointRend 0.857 0.973 0.937 0.515 0.856 0.900
SOLOv2 0.849 0.973 0.943 0.571 0.846 0.894
Mask2Former 0.523 0.586 0.567 0.001 0.625 0.814

Consistent with the results seen in object detection tasks, YOLOvS achieved the best
overall performance concerning computational requirements, as outlined in Table 9. Con-
versely, the transformer-based Mask2Former showed the highest inference time, mirroring
the behaviour of its object detection counterpart, DINO.

Table 9. Computational performance of models in terms of instance segmentation. Best results are

presented in bold.
Model Training Duration Inference Time per Image Max GPU Memory Used
YOLOv8s-seg 56 min 9 s 12.3 ms 202.45 MB
Mask R-CNN 40 min 57 s 94.4 ms 482.09 MB
PointRend 43 min 3 s 117.0 ms 995.41 MB
SOLOv2 59 min 171.1 ms 757.30 MB
Mask2Former 57 min 12 s 223.4 ms 2506.53 MB

Figure 6 presents examples of segmentation achieved by all models. Despite the
proximity of some nodules, the models successfully segmented them, achieving relatively
high accuracy scores.

Similarly, the mask and classification losses were also obtained for each instance
segmentation model, as presented in Figure 7. With the exception of the Mask2Former
model, the losses for the remaining models showed the same pattern of a quick drop and
stabilisation. The high variance of the Mask2Former model may be due to the small batch
size, with its classification loss presenting larger spikes. This behaviour is aligned with the
metrics achieved, showing its poor performance compared to the other models.
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Figure 6. Examples of instance segmentation results for each model. (a) Original image. (b) YOLOv8s
segmentation results.(c) Mask R-CNN segmentation results. (d) PointRend segmentation results.
(e) SOLOV2 segmentation results. (f) Mask2Former segmentation results.
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Figure 7. Segmentation and classification losses for each instance segmentation model. (a) YOLOv8s
mask (in blue) and classification (in orange) losses. (b) Mask R-CNN mask (in blue) and classification
(in orange) losses. (c) PointRend mask (in blue) and classification (in orange) losses. (d) SOLOv2
mask (in blue) and classification (in orange) losses. (e) Mask2Former mask (in blue) and classification
(in orange) losses.
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5.3. Semantic Segmentation

PointTrend and Segformer achieved the highest performance overall, with Segformer
slightly outperforming the others in terms of mloU (75.41 and 73.85, respectively) and
mbDice (84.8 and 83.69, respectively). Both models demonstrated superior capabilities in
handling segmentation tasks, achieving an aAcc of over 92%. DeepLabv3+ followed with a
moderate performance, while MobileNetV3 achieved a lower mloU but comparable mAcc
to the higher-performing models. Among all models, Unet demonstrated the lowest overall
and class-specific performance, struggling particularly with nodule localisation. Table 10
displays the results for semantic segmentation.

Table 10. Evaluation metrics for semantic segmentation. Best results are presented in bold.

Model aAcc (%) mloU (%) mAcc (%) mDice (%)
PoinTrend 92.75 73.85 88.65 83.69
Segformer 93.72 75.41 87.0 84.8

MobileNetV3 86.22 61.94 83.75 73.97

U-Net 54.3 33.34 68.46 47.76

DeepLabv3+ 84.24 59.97 84.98 72.42

Regarding the class-specific analysis, all models have a low IoU for nodules compared
to the background, even with a relatively high accuracy. Therefore, this may suggest that
the models can correctly identify polymetallic nodule objects but fail to segment their
regions. Additionally, given that there are model background pixels rather than nodules,
the models favour the background class. Table 11 summarises the results.

Table 11. Class-specific evaluation metrics for semantic segmentation. Best results are presented
in bold.

Model Class IoU (%) Acc (%) Dice (%)
PoinTrend nodules 55.69 83.42 71.54
background 92.02 93.89 95.84
Seeformer nodules 57.69 78.41 73.17
& background 93.13 95.59 96.44
. nodules 39.0 80.59 56.11
MobileNetV3 background 84.89 86.91 91.83
U-Net nodules 17.15 86.57 29.28
background 49.53 50.34 66.24
nodules 37.34 85.93 54.37
DeepLabv3+ background 82.61 84.03 90.48

Regarding computational performance, the lightweight model MobileNetV3 attained
the fastest inference time and smallest GPU usage, as displayed in Table 12. This result was
expected, as the model balances efficiency and speed. On the other hand, Unet displayed
the longest training time and the slowest inference speed; hence, it is less suitable for
real-time scenarios.

Figure 8 illustrates the results for semantic segmentation. It is worth noting that certain
models, such as DeepLabv3+, struggled to distinguish adjacent nodule regions, grouping
them into one region. PointRend and UNet achieved better performances in identifying the
small-sized nodules in the images.
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Table 12. Computational performance of models in terms of semantic segmentation. Best results are

presented in bold.

Model Training Duration Inference Time per Image Max GPU Memory Used
PointRend 21 min15s 249.1 ms 1848.49 MB
Segformer 1h12min29s 362.3 ms 1440.40 MB

MobileNetV3 31 min2s 152.9 ms 1300.24 MB

U-Net 3h52min8s 6090.5 ms 2092.89 MB

DeepLabv3+ 1h13min56s 547.5 ms 4895.89 MB

(b) (0)
(e) ()
Figure 8. Examples of semantic segmentations results for each model. (a) Original image.

(b) PointRend segmentation results. (c) Segformer segmentation results. (d) MobilenNetV3 segmen-
tation results. (e) U-Net segmentation results. (f) DeepLabv3+ segmentation results.

(d)

Figure 9 displays the segmentation loss trends for all models during training. All mod-
els presented a downward trend, indicating effective learning and convergence. However,
the variations seen at the end of training suggest that the models do not fully stabilise,
indicating that the number of epochs may need to be increased.

5.4. Colour Analysis

Due to the great variety in the shapes and contours of the nodules, we decided to
analyse the effect of colour as a feature, as there was a large contrast between the nodules
and surrounding sediments. To accomplish this, the test-subset images were converted
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to greyscale and the models were evaluated again. Table 13 displays the results for the
greyscale images. All models showed a sharp drop in performance when tested on greyscale
images, with only the YOLOvS8s object detection model achieving better results. These
results suggest that the models rely on features presented in colour channels. Surprisingly,
the Mask2Former model achieved the best results in greyscale segmentation, which might
indicate a strong reliance on structural and spatial information.
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Figure 9. Segmentation loss of each model. (a) PointRend segmentation loss. (b) Segformer seg-
mentation loss. (¢) MobilenNetV3 segmentation loss. (d) U-Net segmentation loss. (e) DeepLabv3+
segmentation loss.

Table 13. Evaluation metrics for greyscale images.

Detection Models mAP mAP_50 mAP_75
YOLOvS8s-detection 0.591 0.830 0.755
Faster R-CNN 0.335 0.529 0.401
DINO 0.449 0.718 0.557
DETR 0.481 0.777 0.558
EfficientNet 0.498 0.790 0.543

Segmentation Models mAP mAP_50 mAP_75
YOLOvV8s-seg 0.343 0.479 0.398
Mask R-CNN 0.484 0.601 0.554
PointRend 0.547 0.692 0.624
SOLOv2 0.564 0.722 0.649
Mask2Former 0.576 0.767 0.667

6. Discussion

Novel transformer-based methods, such as DINO for object detection and Segformer
for semantic segmentation, demonstrate better results due to their ability to effectively
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model global contexts and capture fine-grained details. Unlike traditional convolutional
architectures, transformers rely on self-attention mechanisms that enable them to simulta-
neously process the relationships between all pixels or features, making them particularly
well-suited for complex tasks like detecting and segmenting polymetallic nodules in clut-
tered or noisy environments. However, Mask2Former showed worse results on the instance
segmentation task. This may indicate the need to fine-tune the hyperparameters to improve
this model’s behaviour, such as increasing the batch size and number of epochs.

The results show a trade-off between speed and performance, particularly when
comparing lightweight architectures like YOLOv8s to more computationally intensive
transformer-based models. Considering that YOLOVS is designed for real-time applica-
tion, the results highlight its applicability for AUVs or ROVs. Similarly, while Segformer
achieved a better performance in semantic segmentation, it needs more processing power
than simpler models like MobileNetV3. This trade-off emphasises the need to balance task
requirements, where the choice of model may depend on the need for greater accuracy or
hardware constraints.

In addition, identifying small nodules and delineating their boundaries pose sig-
nificant challenges for the evaluated models, as reflected in their lower performance on
small objects and the nodules’ class-specific metrics. These limitations are probably due
to the irregular morphology of nodules, their visual similarity to the surrounding seabed,
and insufficient boundary refinement.

The results indicate a class imbalance issue within semantic segmentation due to the
bias toward the background class. Since most image pixels correspond to the background,
the networks fail to learn features in the training data. Thus, further strategies must be
applied to improve their performance, such as using weighted loss functions.

Finally, the greyscale test indicates that the models rely heavily on the colour channels.
Due to the varying shapes and formats of the nodules, the models struggle to generalise.
One potential solution is to include greyscale images in the training set and apply contrast-
based data augmentation during training.

Although the results are relatively satisfactory, there remains potential for improve-
ment. One potential improvement could be the use of multimodal learning. Prior studies
in the literature have used deep learning approaches to characterise polymetallic nodules
in acoustic data (e.g., MBES backscatter or side-scan sonar) [56,57]. Thus, developing a
method for fusing optical and acoustic features could have a significant impact on the
polymetallic nodules’ characterisation. For instance, backscatter data can be used to obtain
depth information, which, when fused with optical data, may enable the estimation of 3D
bounding boxes.

7. Conclusions

This paper evaluated the performance of deep learning models in three different
tasks: object detection, instance segmentation, and semantic segmentation. To this end,
a semi-autonomous approach was adopted to annotate the dataset. Additionally, the logic
for choosing the trained models was based on comparing classic architectures and more
recent methods, such as those based on transformers.

The results indicate that the transformer-based techniques perform very efficiently in
terms of precision. However, this improvement requires larger computational resources.
Considering that deep sea mining uses autonomous vehicles such as ROVs and AUVs,
which generally do not have large GPU capacities, these techniques should be chosen
according to the hardware setup. In this context, lighter models such as YOLO showed
results that were very competitive with those of the transformer-based methods, presenting
good accuracy and faster inference.
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Nevertheless, there is significant room for improvement. Further studies are required
to thoroughly evaluate the performance of these models, particularly their generalisability
to other images. Furthermore, the presence of marine life still needs to be evaluated. While
some images reveal instances of marine fauna, their occurrence is significantly less frequent
than that of the nodules, leading to a notable class imbalance. Future work should focus
on adding marine life classes to the dataset to increase variety, improving the models’
generalisation capabilities.
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BiFPN Bi-Directional Feature Pyramid Network
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CC-BY-4.0  Creative Commons Attribution 4.0

ccz Clarion-Clipperton Fracture Zone

CNN Convolutional Neural Networks

COCO Common Objects in Context

CoMoNoD  Compact-Morphology-based poly-metallic Nodule Delineation
DETR DEtection TRansformer

DINO DETR with Improved deNoising anchOr boxes
DL Deep Learning

GAN Generative Adversarial Network
TIoU Intersection Over Union

ISA International Seabed Authority
mAP mean Average Precision

NWD Normalized Wasserstein Distance
OFOS Ocean Floor Observation System
PointRend  Point-based Rendering

ROV Remotely Operated Vehicle

RPN Region Proposal Network

SAM Segment Anything Model

SOLOv2 Segmenting Objects by Locations
YOLO You Only Look Once
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