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Abstract

Collision avoidance technology serves as a critical enabler for autonomous navigation of
unmanned surface vehicles (USVs). To address the limitations of incomplete environmental
perception and inefficient decision-making for collision avoidance in USVs, this paper
proposes an autonomous collision avoidance method based on deep reinforcement learning.
To overcome the restricted field of view of USV perception systems, visual assistance from
an unmanned aerial vehicle (UAV) is introduced. Perception data acquired by the UAV
are utilized to construct a high-dimensional state space that characterizes the distribution
and motion trends of obstacles, while a low-dimensional state space is established using
the USV’s own state information, together forming a hierarchical state space structure.
Furthermore, to enhance navigation efficiency and mitigate the sparse-reward problem,
this paper draws on the trajectory evaluation concept of the dynamic window approach
(DWA) to design a set of process rewards. These are integrated with COLREGs-compliant
rewards, collision penalties, and arrival rewards to construct a multi-dimensional reward
function system. To validate the superiority of the proposed method, collision avoidance
experiments are conducted across various scenarios. The results demonstrate that the
proposed method enables USVs to achieve more efficient autonomous collision avoidance,
indicating strong potential for engineering applications.

Keywords: collision avoidance; unmanned surface vehicle; unmanned aerial vehicle; deep
reinforcement learning; dynamic window approach

1. Introduction
In the context of the rapid advancement of intelligent shipping and autonomous un-

manned systems, unmanned surface vehicles (USVs) have shown considerable application
potential in fields such as environmental monitoring and maritime search and rescue, ow-
ing to their flexibility and low cost [1]. However, current obstacle avoidance technologies
for USVs still face dual challenges. Firstly, the perception systems of single-platform USVs
are limited by the field of view of sensors and are susceptible to environmental occlusion,
resulting in notable perceptual blind spots in complex scenarios. Secondly, traditional
collision avoidance algorithms generally suffer from inefficiencies in path planning and
insufficient generalization performance, making it difficult for them to adapt to complex
and dynamic navigation environments. In light of these shortcomings in both perception
and decision-making, improving the efficient autonomous obstacle avoidance capability of
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USVs in complex waters has become a crucial technology for overcoming the bottlenecks
that restrict their wider application [2,3].

Currently, most USVs rely on lidar for environmental perception to support decision-
making for obstacle avoidance [4]. Although lidar can fulfill basic perception requirements
in conventional scenarios, it still exhibits certain limitations. Owing to the attenuation
of laser wavelengths, the detection range of lidar is generally confined to within 200 me-
ters, which hinders the perception of distant obstacles. More critically, in environments
with dense obstacles, lidar has difficulty detecting vessels obscured by other objects, lead-
ing to localized perceptual blind spots [5,6]. These perceptual deficiencies considerably
compromise the safety of autonomous navigation for USVs.

With the rapid development of the low-altitude economy, an increasing number of
researchers have introduced unmanned aerial vehicles (UAVs) into the maritime domain,
aiming to leverage their high-altitude perception advantages to compensate for the limi-
tations of USVs in environmental perception [7,8]. For instance, Wang et al. proposed a
vision-based collaborative search-and-rescue system involving UAVs and USVs, in which
the UAV identifies targets and the USV serves as a rescue platform, navigating to the
target location to execute rescue operations [9]. Li et al. implemented cooperative tracking
and landing between UAVs and USVs using nonlinear model predictive control, ensuring
stable tracking of USVs by UAVs and enabling remote target detection in maritime combat
systems [10]. Zhang et al. developed a cooperative control algorithm for USV-UAV teams
performing maritime inspection tasks, achieving coordinated path following between the
vehicles [11]. Chen et al. integrated visual data from USVs and UAVs with multi-target
recognition and semantic segmentation techniques to successfully detect and classify vari-
ous objects around USVs, as well as to accurately distinguish navigable from non-navigable
regions [12]. Despite these significant achievements, existing studies predominantly treat
UAVs as external sensing units and fall short of effectively integrating perceptual informa-
tion into USVs’ decision-making systems. This limitation curtails the potential of UAVs to
enhance the autonomous navigation capabilities of USVs. Consequently, there is a pressing
need to develop methodologies that embed UAV-derived perceptual information into the
obstacle avoidance decision-making process of USVs, thereby extending their environmen-
tal perception range and improving navigation safety in complex aquatic environments.

In the domain of collision avoidance algorithms for USVs, traditional path planning
methods continue to encounter significant challenges. Although the A* algorithm guar-
antees globally optimal paths, its high computational complexity in high-dimensional
dynamic environments leads to inadequate real-time performance [13]. The RRT* algo-
rithm provides probabilistic completeness but exhibits limitations in path smoothness and
dynamic adaptability [14]. The dynamic window approach (DWA) is susceptible to local
optima, primarily due to its dependence on local perception information for velocity space
sampling [15]. Meanwhile, the velocity obstacle (VO) method demands high precision
in obstacle motion prediction and often demonstrates delayed responses in complex dy-
namic environments [16]. In summary, these conventional approaches rely on manually
predefined rules and model parameters, resulting in limited generalization capability in
complex scenarios, which directly constrains the efficiency of USV decision-making for
collision avoidance.

Breakthroughs in artificial intelligence have opened new pathways for collision avoid-
ance research in USVs through learning-based intelligent decision-making methods [17–19].
Among these, deep reinforcement learning (DRL) algorithms optimize navigation poli-
cies through continuous interaction with complex dynamic environments, leveraging
autonomous learning mechanisms to enhance generalization capability in unknown sce-
narios. As a result, DRL has been widely adopted for ship collision avoidance tasks [20–22].



J. Mar. Sci. Eng. 2025, 13, 1955 3 of 25

For instance, Chen et al. developed a Q-learning-based path planning algorithm that
enabled USVs to achieve autonomous navigation through iterative policy optimization,
without relying on manual expertise [23]. However, Q-learning was susceptible to the
curse of dimensionality in high-dimensional state spaces. The Deep Q-Network (DQN)
mitigated computational burden by substituting Q-tables with deep neural networks. Fan
et al. implemented an enhanced DQN for USV obstacle avoidance, reporting favorable
performance in dynamic settings [24]. Despite these advances, DQN and other value-based
DRL algorithms operate on discrete action spaces, which limits fine-grained and continuous
control in obstacle avoidance behavior and often results in oscillatory trajectories [25].

To address the limitations of discrete action spaces, policy gradient-based deep rein-
forcement learning methods have increasingly become a research focus. These approaches
leverage an Actor network to directly output continuous actions, thereby substantially
enhancing control precision. For example, Cui et al. enhanced the Twin Delayed Deep
Deterministic Policy Gradient algorithm by incorporating multi-head self-attention and
Long Short-Term Memory mechanisms, constructing a historical environmental informa-
tion processing framework that improves the stability of continuous action generation
in complex environments [26]. Lou et al. combined the dynamic window approach and
velocity obstacle method within the Deep Deterministic Policy Gradient framework to
optimize the reward mechanism, achieving a multi-objective balance between collision
avoidance safety and navigation efficiency [27]. Xu et al. integrated a prioritized experience
replay strategy into DDPG, dynamically adjusting sample weights to expedite training
convergence in critical collision avoidance scenarios [28]. Despite these advancements,
the aforementioned methods still exhibit certain limitations regarding training stability,
convergence efficiency, or sensitivity to hyperparameters.

In contrast, the proximal policy optimization (PPO) algorithm significantly enhances
training stability and convergence reliability by utilizing importance sampling and a policy
clipping mechanism. Xia et al. constructed a multi-layer perceptual state space and incor-
porated convolutional neural networks, demonstrating the effectiveness of PPO in complex
obstacle avoidance scenarios [29]. Sun et al. further extended its environmental percep-
tion capability, enabling stronger generalization performance in unfamiliar waters [30].
Although these studies show promising results, the design of their reward functions re-
mains subject to notable limitations. Firstly, reward function design often relies heavily
on researchers’ empirical knowledge, lacking a systematic theoretical foundation and in-
terpretability. Secondly, most existing works focus predominantly on collision avoidance
safety while overlooking other navigation metrics such as path smoothness [31]. This inad-
equacy not only leads to convoluted USV trajectories but also causes low learning efficiency
during training due to sparse-reward problems [32]. These limitations substantially con-
strain further improvement of overall algorithm performance. Consequently, developing a
theoretically sound, highly interpretable, and multi-objective balanced reward mechanism
has emerged as a crucial research direction for advancing the performance of unmanned
surface vehicle collision avoidance systems.

To address the aforementioned challenges, this paper proposes an obstacle avoidance
scheme for USVs incorporating vision assistance from a UAV, and develops the DWA-
PPO (DPPO) collision avoidance algorithm. The principal contributions of this work are
summarized as follows:

(1). By leveraging the high-altitude perspective of UAVs, a high-dimensional state
space characterizing obstacle distribution is constructed. This representation is integrated
with a low-dimensional state space derived from the USV’s own state information, forming
a hierarchical state space framework that enhances the comprehensiveness and reliability
of environmental information for decision-making during navigation.
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(2). By integrating DWA’s trajectory evaluation, a multi-layered dense reward mecha-
nism is established, combining heading, distance, and proximity rewards with COLREGs-
based compliance incentives to guide USVs toward safe, efficient, and regulation-compliant
collision avoidance.

The remainder of this paper is organized as follows. Section 2 introduces the mathe-
matical models of UAV/USV and COLREGs, and constructs the collision risk assessment
model. Section 3 provides a detailed description of the proposed collision avoidance
method. The design of simulation experiments and analysis of results are presented in
Section 4. Finally, Section 5 concludes the paper and outlines future research directions.

2. Materials and Methods
2.1. Mathematical Models of UAV and USV

To describe the UAV and USV models, a coordinate system architecture as shown in
Figure 1 is established. The OE − XEYEZE represents the inertial coordinate system, with
its origin OE fixed at a specific point. Assuming that both the UAV and the USV are rigid
bodies, the coordinate systems Oa − XaYaZa and Os − XsYsZs denote the body coordinate
system and the USV-attached coordinate system, respectively, with their origins Oa and
Os positioned at the respective centers of mass. Based on the above coordinate system
architecture, the mathematical models of the UAV and the USV are established as follows:

ma
..
xa = T(cos ψa sin θa cos ϕa + sin ψa sin ϕa)− kd

.
xa

ma
..
ya = T(sin ψa sin θa cos ϕa − cos ψa sin ϕa)− kd

.
ya

ma
..
za = T cos θa cos ϕa − mag − kd

.
za

Iax
..
ϕa = τϕ − (Iaz − Iay)qara − kd

.
ϕa

Iay
..
θa = τθ − (Iax − Iaz)para − kd

.
θa

Iaz
..
ψa = τψ − (Iay − Iax)paqa − kd

.
ψa

(1)



.
xs = us cos ψs − vs sin ψs
.
ys = us sin ψs + vs cos ψs.
ψs = rs
.
rs = − rs

Ts
+ K

Ts
δ + f

f = fn + fm

(2)

 
Figure 1. UAV-USV cooperative coordinate system.

In Equation (1), ma is the total mass of the UAV, [xa, ya, za]
T represents the position

of the UAV in the inertial coordinate system, [ϕa, θa, ψa]
T denote the roll, pitch, and yaw

angles of the UAV, T is the total thrust generated by the rotors, [Iax, Iay, Iaz]
T is the moment

of inertia of the UAV, [pa, qa, ra]
T is the angular velocity of the UAV in the body coordinate

system, kd is the air resistance coefficient.
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In Equation (2), [xs, ys, ψs]
T represents the ship’s position and heading angle in the

inertial frame, [us, vs, rs]
T denote the longitudinal velocity, lateral velocity, and angular

velocity around the z-axis in the body-fixed frame, respectively. Ts is the yaw response time
constant, K is the maneuverability index, f represents disturbances caused by unmodeled
dynamics, fn denotes inherent uncertainties in the internal model, and fm stands for
uncertain external disturbances. δ is the rudder angle. A change in the rudder angle δ

will alter the forces acting on the ship, which in turn affects the angular velocity, thereby
achieving the steering operation of the ship.

2.2. Ship Domain Model

The ship domain serves as a critical criterion for assessing collision risk at sea. The
potential intrusion of another vessel into this domain signifies a substantial increase in
collision risk, making immediate collision avoidance preparations mandatory. This paper
draws on the ship domain research of Lou et al. for USVs and constructs a concentric
circular ship domain model based on the Distance to Closest Point of Approach (DCPA),
as illustrated in Figure 2 [27]. The model is centered on the USV and radiates outward. It
uses DCPA thresholds to define different risk zones: ds is set as the boundary threshold
between the danger zone and the warning zone, and dw as the threshold between the
warning zone and the safe zone. These two distance thresholds allow for a clear distinction
among various collision risk levels. The characteristics of each zone and the corresponding
collision avoidance strategies are described as follows:

Figure 2. Ship Domain Model.

Safe zone: Defined with dw as the inner boundary, the USV possesses sufficient
controllable maneuvering space within this region, making collision avoidance measures
unnecessary.

Warning zone: Situated between dw and ds, this is the critical threshold interval for
collision decision-making. If the DCPA decreases over time, it indicates an increasing
collision risk, and the USV must enter a preparedness state for collision avoidance to
prevent entering the danger zone.

Dangerous zone: Defined with ds as the outer boundary, when other ships enter this
region, they pose a direct threat to the navigation safety of the USV, necessitating immediate
emergency collision avoidance measures.

Based on the above ship domain division, the USV can execute differentiated collision
avoidance strategies according to the zone it is in, enabling precise prevention and control
of collision risks.
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2.3. COLREGs

The core objective of COLREGs is to standardize ship operations to prevent maritime
collisions. In the research of autonomous USV collision avoidance, strictly adhering to
COLREGs rules is fundamental to ensuring safe navigation [28]. This paper focuses on
rules 13 to 17, which are directly related to ship collision avoidance. These rules clearly
define the responsibilities for collision avoidance in three typical encounter scenarios: head-
on encounter, overtaking encounter, and crossing encounter. As shown in Figure 3, in a
head-on encounter, both ships must turn to starboard. During an overtaking encounter, the
overtaking ship is the give-way ship. In a crossing encounter, the ship with another ship on
its starboard side is the stand-on ship, while the ship with another ship on its port side is
the give-way ship.

Figure 3. The model of two-ship encounter situations for clauses 13–17 of COLREGs: (a) Head-on;
(b) Crossing give-way; (c) Overtaking; (d) Crossing stand-on.

3. Proposed Approach
3.1. Improved PPO Algorithm

The PPO algorithm, relying on the importance sampling and policy clipping mech-
anisms, significantly enhances stability and reduces the sensitivity to hyperparameters,
and performs excellently in the USV collision avoidance scenario [22,29,30]. However, this
algorithm has problems of low sample efficiency and an imbalance between exploration
and exploitation, and further optimization is still needed.

The core goal of PPO is to solve the optimal policy to maximize the expected value of
the long-term cumulative discounted reward. Its objective function is:

J(θ) = Eτ∼πθ

[
∑∞

t=0 γtrt

]
(3)

where st is the environmental state at time t , at is the action executed by the intelligent
agent, rt is the immediate reward, and γ is the discount factor.

According to the policy gradient theorem, the gradient of the objective function is
expressed as:

∇θ J(θ) = Eτ∼πθ

[
∑∞

t=0 ∇θ log πθ(at

∣∣∣st) · Aπθ (st, at)
]

(4)

where Aπ(st, at) is the advantage function, which is used to guide the policy gradient
update direction.
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To address the problem of low sample efficiency of traditional policy gradient algo-
rithms, PPO introduces the importance sampling technique, allowing the use of samples
generated by the old policy to optimize the new policy. At this time, the objective function
is converted to:

J(θ) = Eτ∼πθold

[
πθ(at

∣∣st)/πθold
(at

∣∣st) · Aπθold (st, at)
]

(5)

To prevent the performance degradation caused by an overly large policy update step,
PPO adopts a clipping mechanism and modifies the objective function to:

Jclip(θ) = E[min(rt (θ) · Ât, clip(rt (θ), 1 − ε, 1 + ε) · Ât)] (6)

where rt(θ) = πθ(at|st)/πold(at|st) represents the policy probability ratio, Ât is the esti-
mated value of the advantage function, clip(·) is the clipping function, which limits the
probability ratio within the interval [1 − ε, 1 + ε], and ε is a hyperparameter. The two
clipping situations are shown in Figure 4.

 

Figure 4. Two clipping situations of the PPO algorithm: (a) advantage-positive clipping; (b) advantage-
negative clipping.

To further enhance the exploration capability of the algorithm, this paper introduces a
policy entropy improvement mechanism into PPO, which broadens the policy search space
to increase the probability of discovering potential return policies. The improved objective
function is:

L(θ) = Jclip(θ)− c1LVF(θ) + c2S[πθ ] (7)

where S[πθ ] represents the policy entropy, c1 is the weight coefficient of the value func-
tion loss, c2 is the entropy coefficient, and LVF(θ) is the value function loss, with the
mathematical expression:

LVF(θ) = E
[(

Vθ(st)− R̂t
)2
]

(8)

where R̂t is the generalized advantage estimate.
Finally, the algorithm achieves a balance by simultaneously optimizing the policy

objective and the value function loss. Its complete optimization objective is:

L(θ) = E
[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε

))
−c1(Vθ(st)− R̂t)

2
+ c2S[πθ ]

]
(9)

3.2. State Space Design

State space design is a core component of collision avoidance decision-making for
USVs, and its representational capability directly impacts the algorithm’s decision-making
performance. This paper divides the state space into two parts: a high-dimensional state
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space and a low-dimensional state space, aiming to achieve precise characterization of
environmental information.

The high-dimensional state space is designed to characterize the spatial distribution
and dynamic variations in obstacles surrounding the USV, thereby providing foundational
environmental perception support for subsequent collision avoidance decision-making
processes. To mitigate the limitations of USV-borne sensors, which are prone to occlusion in
complex maritime environments, this study leverages the high-altitude visual perception
capability of UAV and primarily constructs the high-dimensional state space using UAV-
acquired image data. The design of this state space is predicated on the following core
premise: the UAV can maintain stable tracking of the USV with minimal tracking errors
while simultaneously capturing environmental information centered on the USV [33–35].
To fulfill this premise, the nonlinear model predictive control (NMPC) approach proposed
in Reference [10] is adopted herein to ensure reliable and stable tracking of the USV by
the UAV.

In terms of specific implementation, the onboard camera mounted on the UAV collects
real-time overhead environmental images centered on the USV, with a coverage area of
400 m × 400 m. The resolution of these images is optimally designed to clearly distinguish
the contour features and position information of both static obstacles and dynamic targets
in the water area [36]. It is worth noting that relying solely on a single-frame image fails
to capture the movement trends of obstacles, which is likely to cause the decision-making
system to misjudge dynamic risks. To address this issue, this paper introduces a sliding
time window mechanism. By extracting a sequence of three consecutive frames of time-
series images, a high-dimensional state space is constructed. The high-dimensional state
space is defined as Shigh:

Shigh = [It−2, It−1, It] (10)

where It, It−1, and It−2 respectively represent the image information collected at time t,
time t − 1, and time t − 2.

The low-dimensional state space is primarily used to supplement the USV’s own
state information, including its position (xs, ys), heading angle ψs, and target location
(xtarget, ytarget). Since such information is not suitable for representation in image form, the
low-dimensional state space is constructed based on data collected by the USV’s onboard
sensors. The low-dimensional state space is defined as Slow:

Slow = [xs, ys, ψs, xtarget, ytarget] (11)

3.3. Actor Space Design

The design of the action space takes full account of the physical characteristics of the
USV’s actual control system, selecting a continuous set of rudder angles δ ∈ [−20◦, 20◦] as
the algorithm’s action space A. At each decision step, the algorithm outputs a scalar action,
representing the desired rudder angle at the current timestep. According to Equation (2),
changes in the rudder angle directly affect the USV’s angular turning rate, enabling it
to adjust its heading for effective obstacle avoidance or autonomous navigation toward
the target.

3.4. Neural Network Architecture

The neural network architecture is designed with multi-level feature fusion as its core,
enabling precise characterization and efficient decision-making in complex aquatic envi-
ronments through the collaborative processing of high-dimensional and low-dimensional
state information. The detailed architecture is shown in Figure 5.
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Figure 5. The Neural network structure.

For the high-dimensional state space derived from image data, feature extraction is
performed using a three-layer convolutional neural network. The first convolutional layer
utilizes 16 filters of size 3 × 3 with a stride of 2, followed by a ReLU activation function
and a 2 × 2 max-pooling operation, to capture initial local features representing obstacle
distribution and motion trends. The second layer employs 32 filters of size 3 × 3 with
a stride of 2, further enhancing feature abstraction while reducing dimensionality via
an additional max-pooling layer. The third layer consists of 64 filters of size 3 × 3 with
a stride of 1, producing a high-dimensional feature map that is subsequently flattened
into a one-dimensional feature vector, thereby preserving information on both the static
distribution and dynamic movement patterns of obstacles.

For the low-dimensional state space, a two-layer fully connected network is used. The
first layer maps the raw low-dimensional vector into a 64-dimensional feature space, and
the second layer compresses it into a 32-dimensional vector, improving nonlinear feature
expression and producing the final low-dimensional feature vector.

The high-dimensional and low-dimensional feature vectors are concatenated to form a
fused feature vector, which is then fed into both the Actor network and the Critic network.
The Actor network consists of three fully connected layers: the first two use ReLU activation,
while the final layer applies a Tanh activation function to output a continuous rudder
angle, directly guiding the USV’s steering actions. The Critic network also has three fully
connected layers, used to evaluate the current policy and provide guidance for policy
updates. Detailed network parameter configurations are listed in Table 1.

Table 1. The deep neural network parameters.

Network Layer Layer Parameters Activation Function Output Dimension

Input layer - - 320 × 320 × 3
Conv1 16 kernels, 3 × 3, (stride = 2) ReLU 159 × 159 × 16

Pooling1 2 × 2, stride = 2 - 79 × 79 × 16
Conv2 32 kernels, 3 × 3, (stride = 2) ReLU 39 × 39 × 32

Pooling2 2 × 2, stride = 2 - 19 × 19 × 32
Conv3 64 kernels, 3 × 3, (stride = 2) ReLU 17 × 17 × 64

FC1 64 ReLU 5 → 16
FC2 32 ReLU 64 → 32

Actor/Critic FC3 128 ReLU 18,528 → 128
Actor/Critic FC4 64 ReLU 128 → 64

Actor-Output 1 Tanh 64 → 1
Critic-Output 1 Linear 64 → 1
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3.5. The Novel Reward Mechanisms

The design of the reward function directly dictates the convergence efficiency and
decision-making performance of the agent’s policy. In this paper, on the basis of setting
the collision penalty and the terminal reward Rcore as the main rewards, a process reward
RDWA based on the trajectory evaluation function of the DWA is introduced to furnish
denser feedback signals for the USV [32]. Meanwhile, to incentivize collision-avoidance
behaviors that conform to COLREGs, a dedicated COLREGs reward RCOLREGs is devised
as an additional auxiliary mechanism, guiding the USV to realize safe and compliant
autonomous collision avoidance in complex environments. The structure of the reward is
as follows:

3.5.1. Process Rewards

The process reward RDWA generates dense feedback signals by quantifying the navi-
gation status in real time. This reward is designed based on the content of Section 3.1, and
consists of three components: heading angle reward, obstacle distance reward, and goal
proximity reward. The specific design is as follows:

(1). Heading Angle Reward: By quantifying the deviation between the USV’s current
heading and the target direction, a continuous directional guidance signal is provided. A
positive reward is given when the USV’s heading approaches the target direction, while
negative rewards are applied to suppress inefficient paths if significant detours occur. Rhead

is defined as follows:

Rhead = −λ1 ·
∣∣ψs − ψg

∣∣
π

(12)

where λ1 is the weight of the heading reward, ψs is the current heading angle, and ψg

represents the bearing angle of the target position relative to the USV.
(2). Obstacle Distance Reward: Based on the layered logic of the risk zones (dangerous

zone, warning zone, and safe zone) defined in the ship domain model in Section 2.2, a
dynamic reward mechanism is designed. When an obstacle vessel is in the danger or
warning zone, a distance-based linear penalty is applied, with a higher weight assigned
to the danger zone. No penalty is imposed when the obstacle is in the safe zone, thereby
reinforcing distinct reward and penalty guidance across different zones. Robs is defined
as follows:

Robs =


−λ2 · (1 − d

ds
), if d ≤ ds

−λ3 · (1 − d−ds
dw−ds

), if ds < d < dw

0, if d ≥ dw

(13)

where λ2 and λ3 are the reward weights for the dangerous zone and the warning zone,
respectively, and d is the distance between the USV and the obstacle.

(3). Target Proximity Reward: Evaluate the change in Euclidean distance between
the USV and the target point. If the distance to the target at the current moment is closer
than that at the previous moment, a positive reward is given to incentivize continuous
approach to the target, if operations such as obstacle avoidance cause the distance to
increase, negative rewards are used to constrain excessive detour behaviors. Rdist is defined
as follows:

Rdist = λ4 · (dpre − dcur) (14)

where λ4 is the weight of the target proximity reward, dcur denotes the distance from the
USV to the target position at the current moment, and dpre represents the distance from the
USV to the target position at the previous moment.

Remark 1. The determination of reward function weights combines task priority analysis with
experimental tuning. Firstly, according to the relative significance of each navigation objective,
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the initial value ranges of the coefficients are defined to ensure that the rewards for core tasks play
a dominant role in the learning signal. Subsequently, via a series of controlled experiments, the
optimal configuration of the reward coefficients is ascertained to optimize path efficiency. Ultimately,
this approach guarantees that the reward function can effectively guide the USV to make safe and
efficient obstacle-avoidance decisions.

3.5.2. Collision and Arrival Reward

Collision rewards enhance navigation safety through negative reward to prevent
collisions, while arrival rewards provide positive incentives upon achieving the target
to clarify navigation objectives. Together, they form the fundamental framework of the
reward function, ensuring the safety and task orientation of obstacle avoidance behaviors.
Rcore is defined as follows:

Rcore =


karr, if

(
PUSV) = (Pgoal

)
−kcol, if collision
0, otherwise

(15)

where karr represents the arrival reward value, kcol denotes the arrival reward value, PUSV

signifies the position of the USV, and Pgoal indicates the target position.

3.5.3. COLREGs Reward

The COLREGs reward RCOLREGs, based on COLREGs Articles 13–17, guides the USV
to execute collision-avoidance actions in compliance with regulations during interactive
decision-making. A negative reward is given if the USV’s collision-avoidance violates
COLREGs rules. RCOLREGs is defined as follows:

RCOLREGs =

{
−kCOLREGs, if violates COLREGs
0, else

(16)

where kCOLREGs denotes the reward value complying with COLREGs rules.
The overall reward structure is as follows:{

Rtotal = RDWA + Rcore + RCOLREGs

RDWA = Rhead + Robs + Rdist
(17)

Remark 2. Considering conventional reward mechanisms, the USV usually obtains explicit
reward signals only when a collision occurs or it successfully reaches the target, while effective
guidance is lacking during intermediate navigation phases. This frequently leads to aimless random
exploration, considerably prolonging the training cycle. In this paper, a process reward based
on the DWA algorithm is introduced, which provides continuous and real-time feedback in three
dimensions—heading angle deviation, obstacle distance, and target proximity—thus offering full-
course navigation guidance for the USV. This approach effectively reduces ineffective exploration
and speeds up policy convergence. Furthermore, by integrating reward terms corresponding to
COLREGs rules with the process reward, a dual-constraint mechanism that balances navigation
efficiency and regulatory compliance is established, ultimately yielding a collision avoidance strategy
that is both efficient and compliant with COLREGs rules.
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3.6. The Algorithm Flow of DPPO

The algorithmic flow of DPPO is illustrated in Figure 6 and primarily consists of
three stages.

Figure 6. The Algorithm flow of DPPO.

In the initial phase, the parameters of the policy network and value network are
initialized, hyperparameters such as the discount factor and clipping coefficient are set,
and an experience buffer D is established to store transitions (st, at, rt, st+1).

During the second stage, the actor network generates an action at based on the current
state st. This action is executed to produce a predicted trajectory. The reward rt is then
calculated using the reward function designed based on the DWA trajectory evaluation.
The next state st+1 is obtained, and the transition (st, at, rt, st+1) is stored in the experience
buffer D.

In the third stage, sample data from the experience pool D, and combine it with the
output of the value network to compute the advantage function At and the target return
using GAE. Record the probability of action at under the old policy πold. Based on the PPO
clipping mechanism, calculate and clip the probability ratio of at under the new and old
policies to obtain the policy loss Jclip, while also computing the value loss LVF. Introduce
the policy entropy S[πθ ] and combine it with Jclip and LVF through weighted summation
to form the total loss. Employ gradient descent to update the network parameters, and
iterate over multiple rounds until the policy converges.

4. Experimental Validation
4.1. Simulation Environment and Parameter Configuration

The experiment is based on the ROS Noetic simulation platform, constructing a USV
collision avoidance scenario in GAZEBO. The training environment is deployed on a
computer equipped with an Intel Core i7-13700K CPU, NVIDIA RTX 4070 Ti GPU, and
32 GB of RAM, running the Ubuntu 20.04 LTS operating system. The software dependencies
include Python 3.8 and the PyTorch 1.12.1 framework. The model training parameters are
shown in Table 2. The model parameters of the UAV and USV are shown in Table 3.
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Table 2. Hyperparameters of algorithm training.

Hyper-Parameters Symbol Value

Actor Network Learning Rate lrActor 0.0002
Critic Network Learning Rate lrCritic 0.0003

Discount Rate γ 0.97
GAE parameter λ 0.95

Clip ratio ε 0.20
Soft update τ 0.002

The entropy coefficient α 0.01

Table 3. Model parameters of the UAV and USV.

UAV-Parameters USV-Parameters

Parameters Value Parameters Value

ma 2 kg length 1.5 m
kd 0.1 kg/s width 0.6 m
Iax 0.1 Ts 1.5 s
Iay 0.1 K 0.2 rad/(s rad)
Iaz 0.2 f ±0.1 rad/s2

4.2. Training Analysis of DPPO Algorithm

The collision avoidance performance of the model evolves significantly across different
training phases, as illustrated in Figure 7. During the initial stage (100 episodes), the
USV fails to develop an effective obstacle avoidance strategy, exhibiting aimless random
movements (Figure 7a). By the 1000th episode, the USV begins to coarsely identify the
target direction and navigate toward it exploratively (Figure 7b). At 4000 episodes, the
USV acquires the fundamental capability to complete obstacle avoidance tasks, although its
trajectory still displayed noticeable detours (Figure 7c). Upon reaching 6000 episodes, the
model’s performance improves markedly, enabling the USV to reach the target via smooth
and efficient trajectories while executing precise collision avoidance maneuvers for both
static and dynamic obstacles (Figure 7d).

To further quantify the training performance from a numerical perspective, a compara-
tive analysis was conducted. In DRL, the agent’s primary objective is to maximize long-term
cumulative rewards through continuous policy optimization; thus, the cumulative reward
serves as a key metric for evaluating model convergence [37].

Based on this, comparative experiments were performed on the DPPO, PPO, and
DQN algorithms within the training scenario. The cumulative reward curves for the
different algorithms are illustrated in Figure 8. The results indicate that the DPPO algorithm
converges at approximately 6200 episodes, which is 19.6% and 38.1% faster than the PPO
and DQN algorithms, respectively. Furthermore, the converged DPPO algorithm achieves
a higher final cumulative reward than PPO. These results robustly validate the superior
training performance of the DPPO algorithm.
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Figure 7. Collision avoidance test results at different stages of the DPPO algorithm training process:
(a) Test after 100 training episodes; (b) Test after 1000 training episodes; (c) Test after 4000 training
episodes; (d) Test after 6000 training episodes.

 
Figure 8. The comparison of the average reward convergence curves of the DPPO, PPO and
DQN algorithm.

4.3. Verification of UAV Tracking the USV

The effectiveness of the proposed DPPO collision avoidance algorithm hinges on the
UAV’s capability to stably track the USV. To verify the feasibility of this prerequisite, this
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section assesses the UAV’s tracking performance of the USV in a simulation environment.
In the experiment, the USV navigates along a preset trajectory from the initial position (200,
200) to the target position (700, 700). Meanwhile, the UAV, maintaining a constant altitude
of 60 meters, employs the NMPC method cited in Section 3.2 to track the USV. To simulate
uncertainties in real marine environments, the experiment introduces random wind field
disturbances with an average wind speed of 5 m/s and injects Gaussian white noise with a
standard deviation of 0.5 meters into the UAV’s GPS positioning data.

The tracking results are presented in Figure 9a. Throughout the entire navigation
process, the UAV exhibits excellent tracking stability. The tracking error—defined as the
horizontal Euclidean distance between the UAV and the USV—is plotted against time in
Figure 9b. Quantitative analysis reveals that under the influence of environmental dis-
turbances and sensor noise, the UAV achieves an average tracking error of 2.1 m and a
maximum tracking error of 4.3 m. Given that the visual perception range configured in
this study is 400 m × 400 m, the maximum tracking error accounts for merely approxi-
mately 1% of the perception area width. This level of deviation will not result in the USV
exiting the UAV’s perceptual field of view, thereby satisfying the requirements of the vision-
assisted collision avoidance algorithm for perception continuity and coverage. The afore-
mentioned results confirm that under typical environmental disturbance conditions, the
NMPC-based UAV tracking controller exhibits sufficient robustness and accuracy, which in
turn guarantees the core prerequisite for the implementation of the vision-assisted collision
avoidance method.

(a) (b) 

Figure 9. Simulation results of UAV tracking the USV: (a) Trajectories of the UAV and USV; (b) Tracking
error curve of the UAV.

Remark 3. Although the simulation experiments verify that the UAV can achieve stable tracking of
the USV with acceptable errors under 5 m/s wind speed and GPS noise interference, this conclusion
has significant limitations in real-world marine environments. Under actual sea conditions, par-
ticularly moderate to high sea states, the conditions for UAV takeoff, landing, and sustained flight
are often unmet. Consequently, the prerequisite of relying on UAVs for vision-assisted perception
ceases to hold, severely limiting the applicability of the proposed DPPO method under harsh weather
conditions. Future research needs to further explore alternative perception schemes for when UAVs
are unavailable, thereby enhancing the system’s robustness across all weather and sea conditions.

4.4. Collision Avoidance Simulation Verification

To evaluate the collision avoidance performance of the proposed DPPO algorithm, a
series of simulation environments are constructed, including three typical ship encounter
scenarios (head-on, overtaking, and crossing give-way), multi-ship collision avoidance
scenarios, as well as complex scenarios with visual obstructions. On this basis, the proposed
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algorithm is compared and analyzed against the VO method [16], the DWA [13], the DQN
algorithm [24], and the PPO algorithm [22].

To quantitatively evaluate the collision avoidance performance of different algorithms,
the path length Lpath, cumulative heading change Hsum, and the minimum distance be-
tween the own ship and obstacle ships Dmin are selected as evaluation metrics [31]. Here,
Lpath represents the cumulative sailing distance, measuring the global optimality of the
path. Hsum reflects the intensity of heading adjustments, indicating the algorithm’s ability
to control sailing stability. Dmin assesses collision avoidance safety. Generally, smaller
values of Lpath and Hsum indicate higher sailing efficiency and stability. It is noteworthy
that while a larger minimum distance between the own ship and obstacle ships theoretically
implies greater safety, excessive detours may lead to increased energy consumption costs.
Therefore, a reasonable safety threshold dsafe is established. When the minimum distance
falls below this threshold, the collision avoidance safety is deemed insufficient. Based on
Wang et al.’s method for calculating the minimum safe passing distance for USVs, com-
bined with the USV data analysis, the theoretical minimum collision avoidance distance is
approximately 30 m [38]. Considering that this model does not fully account for practical
sailing environmental factors such as wind and wave disturbances, a safety margin is
introduced to ensure sailing safety, resulting in a final safety threshold of dsafe = 50 m.

4.4.1. Collision Avoidance Experiments in Typical Encounter Scenarios

In the head-on encounter scenario, the initial navigation parameters for the target ship
(TS) and the own ship (OS), which constitute a standard head-on situation, are detailed
in Table 4. The collision avoidance process utilizing the DPPO algorithm is illustrated
in Figure 10a. After departure, the OS proceeded toward the target direction, initiated a
starboard avoidance maneuver at 17 s, and completed the primary avoidance operation
around the 44-s mark. Subsequently, the OS adjusted its course by applying a port rudder
and successfully reached the target position at 72 s.

Table 4. Initial navigation parameters of OS and TS in three typical collision avoidance scenarios.

Encounter Situations Ship Information Initial Orientation Velocity (m/s) Initial Position

Head-on
OS 0◦ 5.0 (200, 10)
TS 180◦ 1.3 (200, 250)

Overtaking OS 0◦ 5.0 (200, 10)
TS 0◦ 1.3 (200, 160)

Crossing give-way OS 0◦ 5.0 (200, 10)
TS −90◦ 1.8 (280, 220)

A comparative analysis of the collision avoidance paths generated by the DPPO
algorithm and other benchmark algorithms is presented in Figure 10b. The experimental
results indicate that while all algorithms successfully guided the OS to the target position,
their collision avoidance performance varied significantly. Specifically, the DWA and VO
algorithms adopted a port-side avoidance strategy, which contravenes the COLREGs rules.
The path generated by the DQN algorithm exhibited noticeable oscillations, and while the
PPO algorithm achieved collision avoidance, its path smoothness was inferior to that of the
DPPO algorithm.

To quantitatively assess the performance differences, detailed comparative metrics are
provided in Table 5. In terms of path length, the DPPO algorithm demonstrates superior
performance, with a length of only 376.83 m. This represents a 13.6% reduction compared
to the worst-performing VO algorithm (435.99 m) and a 4.5% optimization over the PPO
algorithm (394.71 m). Regarding course stability, the cumulative heading change for the
DPPO algorithm is merely 1.73 rad, which is 41.6% lower than that of the DQN algorithm
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(2.96 rad) and 24.1% lower than that of the PPO algorithm (2.28 rad). Additionally, the
DPPO algorithm consistently maintains a distance between the TS and OS that exceeds the
safety threshold. The closest point of approach is recorded at 56.63 m, which meets the
safety requirements for collision avoidance.

 
(a) (b) 

Figure 10. Collision avoidance experimental results in the head-on scenario: (a) Collision avoidance
process of the DPPO algorithm; (b) Comparison of obstacle avoidance paths of different algorithms.

Table 5. Performance evaluation of collision avoidance algorithms in head-on, overtaking, and
crossing give-way encounters.

Algorithm
Head-On Overtaking Crossing Give-Way

Lpath (m)/Hsum (rad)/Dmin (m) Lpath (m)/Hsum (rad)/Dmin (m) Lpath (m)/Hsum (rad)/Dmin (m)

VO 435.96/2.61/46.25 434.04/2.56/50.31 445.01/2.82/46.91
DWA 426.57/2.57/48.31 442.52/2.74/46.14 446.97/2.96/50.37
DQN 429.96/2.96/50.17 436.74/2.98/51.62 435.23/2.68/68.92
PPO 394.71/2.28/64.72 416.31/2.13/65.82 422.70/2.26/61.35

DPPO 376.83/1.83/54.38 385.47/1.86/61.78 391.39/2.03/56.63

The same methodology was applied to overtaking and crossing give-way encounter
scenarios. The collision avoidance results for the overtaking scenario are presented in
Figure 11, with corresponding performance metrics in Table 5, while those for the crossing
give-way scenario are shown in Figure 12 and Table 5. In both scenarios, the DPPO algo-
rithm exhibited performance consistent with the head-on case, achieving the shortest path
length and minimal heading changes, thereby significantly outperforming the comparative
algorithms. The comprehensive experimental results across these three typical scenarios
demonstrate a significant performance advantage of the proposed DPPO algorithm over
the existing baseline methods. Additionally, the rudder angle variations in the DPPO
algorithm in all three scenarios are shown in Figure 13, as well as the distance variation
curves between the TS and OS for each scenario in Figure 14.
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(a) (b) 

Figure 11. Collision avoidance experimental results in the overtaking scenario: (a) Collision avoidance
process of the DPPO algorithm; (b) Comparison of obstacle avoidance paths of different algorithms.

 
(a) (b) 

Figure 12. Collision avoidance experimental results in the crossing give-way scenario: (a) Colli-
sion avoidance process of the DPPO algorithm; (b) Comparison of obstacle avoidance paths of
different algorithms.

(a) (b) (c) 

Figure 13. Rudder angle outputs of the DPPO algorithm in different encounter scenarios: (a) Head-on;
(b) Overtaking; (c) Crossing give-way.
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(a) (b) (c) 

Figure 14. Distance variation curves between TS and OS in different encounter scenarios: (a) Head-on;
(b) Overtaking; (c) Crossing give-way.

4.4.2. Collision Avoidance Experiment in Multi-Ship Encounter Scenarios

To evaluate the collision avoidance performance of the DPPO algorithm in a multi-
vessel encounter scenario, a simulation environment involving six dynamic target ships
(TS1–TS6) is constructed. The initial navigation parameters for each vessel are provided in
Table 6. The own ship (OS) starts from position (100, 100) with the objective of reaching the
target point (700, 700) while safely avoiding all obstacles.

Table 6. Initial navigation parameters of dynamic obstacle ships in the multi-ship encounter scenario.

Ship Information Initial Orientation Velocity (m/s) Initial Position

TS1 −90◦ 3.5 (700, 100)
TS2 0◦ 1.5 (580, 220)
TS3 45◦ 2.0 (350, 350)
TS4 180◦ 7.5 (100, 500)
TS5 −120◦ 2.5 (500, 600)
TS6 −135◦ 1.5 (700, 750)

The collision avoidance process employing the DPPO algorithm is depicted in
Figure 15a. After departure, the OS successfully navigates around a static obstacle at
approximately 30 s. An overtaking situation with TS3 develops around the 40-s mark,
prompting the OS to execute a starboard turn to avoid TS3 before resuming its course
toward the target. At approximately 140 s, the OS encounters a head-on situation with
TS6 and again performs a successful collision avoidance maneuver, ultimately arriving
at the target position at 197 s. Throughout the entire process, no collisions occur, and all
avoidance maneuvers comply with COLREGs. The corresponding variations in rudder
angle control are shown in Figure 15c.

A comparison of the collision avoidance paths generated by different algorithms
in this multi-ship scenario is presented in Figure 15b, with corresponding performance
metrics summarized in Table 7. In terms of path length, the trajectory planned by the DPPO
algorithm is the shortest at 983.46 m, representing a reduction of 15.41% compared to the VO
algorithm (1192.62 m) and 6.22% compared to the PPO algorithm (1048.73 m). Regarding
cumulative heading change, the DPPO algorithm achieves a value of 3.53 rad, which is
lower than those of the DWA (4.17 rad), VO (3.76 rad), and DQN (4.11 rad) algorithms,
and 11.31% lower than that of the PPO algorithm (3.98 rad). Furthermore, the minimum
encounter distance between the OS and any TS remains above the safety threshold at all
times, satisfying navigational safety requirements. These experimental results demonstrate
that the DPPO algorithm exhibits significant advantages in both global path optimality and
navigation stability.
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Figure 15. Experimental results of the multi-ship encounter scenario: (a) Collision avoidance process
of the DPPO algorithm; (b) Comparison of obstacle avoidance paths of different algorithms on the
XY plane; (c) Rudder angle output by the DPPO algorithm.

Table 7. Performance evaluation of collision avoidance algorithms in the multi-ship encounter
scenario.

Algorithm Lpath (m) Hsum (rad) Dmin (m)

VO 1192.62 3.76 47.96
DWA 1104.76 4.17 53.46
DQN 1123.19 4.11 55.24
PPO 1048.73 3.98 51.49

DPPO 983.46 3.53 53.38

4.4.3. Collision Avoidance Experiment in Occluded Scenarios

To validate the collision avoidance performance of the DPPO algorithm in occluded
scenarios, a simulation environment incorporating both static and dynamic obstacles is
constructed, as illustrated in Figure 16. The initial navigation parameters for the dynamic
obstacle ships (TS7-TS10) are provided in Table 8. Notably, due to the inherent limitations
of lidar, TS7 and TS8—positioned diagonally behind the static obstacle OBS2—cannot be
effectively detected at the outset. This configuration simulates the perceptual blind spots
induced by obstacle occlusion, a common challenge in real-world waterways.

Table 8. Initial navigation parameters of dynamic obstacle ships in occluded scenario.

Ship Information Initial Orientation Velocity (m/s) Initial Position

TS7 180◦ 2.5 (450, 370)
TS8 180◦ 1.0 (600, 460)
TS9 −90◦ 1.3 (540, 540)
TS10 45◦ 1.5 (200, 260)
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(a) (b) 

 
(c) (d) 

Figure 16. Experimental results of the occluded scenarios: (a) Collision avoidance process of the
DPPO algorithm; (b) Comparison of obstacle avoidance paths of different algorithms on the XY plane;
(c) Rudder angle output by the DPPO algorithm under the UAV perception scheme; (d) Rudder angle
output by the DPPO algorithm under the lidar perception scheme.

For the occluded scenario, a dual comparative experiment is conducted. Firstly, the col-
lision avoidance performance of lidar perception is compared against UAV vision-assisted
perception, both implemented with the DPPO algorithm. Secondly, the performance
of the DPPO algorithm was evaluated against other benchmark algorithms within the
same scenario.

An analysis of the different perception schemes reveals distinct navigation strategies,
as illustrated in Figure 16a. While both lidar and UAV-assisted perception successfully
guided the USV to the target without collision, their approaches differed significantly. In
the initial phase, the lidar-based system, unable to detect the occluded dynamic obstacles
TS7 and TS8, executed a right-turn maneuver to avoid the static obstacle OBS2. This action
inadvertently led to subsequent encounter situations with TS7 and TS8, thereby increasing
the overall collision risk. In contrast, the UAV-assisted system, leveraging its elevated field
of view, opted for a left-turn path to bypass OBS2. Although this strategy resulted in a
locally longer path for static obstacle avoidance, it proactively prevented potential conflicts
with the occluded dynamic obstacles from a global navigation perspective, significantly
mitigating collision risks. This outcome verifies the superiority of the UAV-assisted percep-
tion scheme in occluded environments. The corresponding rudder angle variations for the
two perception schemes are detailed in Figures 16c and 16d, respectively.

A comparative analysis of the collision avoidance paths generated by different algo-
rithms is presented in Figure 16b, with the corresponding performance metrics listed in
Table 9. The DPPO algorithm achieved a path length of 911.46 meters and a cumulative
heading change of 3.46 rad, outperforming all other algorithms in both metrics. Further-
more, the minimum distances between the USV and obstacles were consistently maintained
above the safety threshold. These results demonstrate that the DPPO algorithm sustains
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superior navigation efficiency and control stability in occluded environments compared to
the other algorithms evaluated.

Table 9. Performance evaluation of collision avoidance algorithms in occluded scenario.

Algorithm Lpath (m) Hsum (rad) Dmin (m)

VO 1062.13 4.21 48.74
DWA 1150.25 4.07 51.46
DQN 1044.14 3.91 54.82
PPO 1029.37 3.82 53.71

DPPO 911.46 3.46 55.38

4.4.4. Performance Analysis Under Environmental Disturbances

To validate the robustness of the proposed DPPO algorithm in complex marine envi-
ronments, three distinct levels of wind and wave interference—simulating mild, moderate,
and severe sea states—were introduced, with the experimental setup built upon the oc-
cluded scenario described in Section 4.4.3. The specific parameter configurations for these
disturbances are presented in Table 10.

Table 10. Wind and wave disturbance parameter settings.

Disturbance Level Wind Speed (m/s) Wind Direction (◦) Significant Wave Height (m) Wave Period (s)

Mild 5.0 45 0.3 4.0
Moderate 10.0 45 1.2 6.0

Severe 15.0 45 2.5 8.0

In the experiments, the collision avoidance performance of the DPPO algorithm is
compared with that of VO, DWA, DQN, and PPO algorithms under different interference
levels. The evaluation metrics include path length Lpath, cumulative heading change Hsum,
and the closest point of approach Dmin. Additionally, to provide a more comprehensive as-
sessment of robustness, a success rate metric Srate is introduced, representing the proportion
of collision-free trials that successfully reach the target out of 100 total runs.

The performance metrics of various algorithms under different interference levels
are presented in Table 11. The results show that under mild interference, all algorithms
perform well in task completion, with the DPPO algorithm maintaining advantages across
all metrics. As the interference intensity increases, the DPPO algorithm exhibits the smallest
reduction in success rate: it achieves a success rate of 94% under moderate interference
and still retains a success rate of 86% even under severe interference. Particularly in highly
disturbed environments, its performance is significantly superior to that of the PPO (72%)
and DQN (58%) algorithms. Under severe interference, the VO and DWA algorithms—due
to their strong reliance on fixed models and inability to adapt to dynamic disturbances—
experience a sharp drop in success rates, falling to 44% and 38%, respectively. Additionally,
their navigation paths become notably erratic, which leads to significant increases in both
path length and cumulative heading changes. Furthermore, under all interference levels,
the DPPO algorithm maintains a minimum encounter distance that exceeds the safety
threshold, demonstrating excellent safety redundancy. These experimental results confirm
that the proposed DPPO algorithm possesses strong robustness and adaptability when
confronted with external disturbances such as wind and waves, enabling it to operate
effectively even under higher sea states.
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Table 11. Performance comparison of algorithms under different disturbance levels.

Algorithm Disturbance Level Lpath (m) Hsum (rad) Dmin (m) Srate

VO
Mild 1065.27 4.25 48.74 94

Moderate 1103.51 4.76 46.58 56
Severe 1147.29 5.34 43.21 38

DWA
Mild 1152.61 4.10 51.46 92

Moderate 1189.74 4.88 48.92 62
Severe 1235.88 5.67 45.13 44

DQN
Mild 1046.33 3.94 54.82 96

Moderate 1082.14 4.53 51.26 76
Severe 1125.47 5.12 48.35 58

PPO
Mild 1031.45 3.85 53.70 100

Moderate 1058.92 4.21 51.84 84
Severe 1093.56 4.65 52.77 72

DPPO
Mild 915.32 3.48 55.41 100

Moderate 938.67 3.72 53.92 94
Severe 972.15 4.05 53.63 86

5. Conclusions
This paper proposes a collision avoidance method for USVs assisted by UAV vision. By

leveraging high-altitude visual information from the UAV to construct a high-dimensional
state space, the method effectively mitigates the perceptual limitations of conventional
lidar in occluded environments. Furthermore, a multi-objective reward mechanism is
designed by incorporating the trajectory evaluation concept of the DWA, which not only
alleviates the sparse-reward problem in reinforcement learning but also guides the USV
to achieve a balance among safety, path smoothness, and navigation efficiency during
obstacle avoidance. Simulation results demonstrate that the proposed method outperforms
several benchmark algorithms across various test scenarios in terms of key metrics such
as path length and cumulative heading changes. This research not only proposes a novel
approach for intelligent collision avoidance in air–sea cooperative unmanned systems but
also provides valuable insights into the application of reinforcement learning in complex
dynamic environments through its multi-objective reward design. The proposed method
exhibits substantial theoretical significance and holds promising potential for broader
practical adoption.

However, the current research primarily addresses collision avoidance decision-
making for a single USV and does not investigate cooperative collision avoidance
in multi-vessel interaction scenarios. Future work will focus on developing a dis-
tributed cooperative decision-making framework to extend the proposed method to multi-
USV applications. Additionally, we will further investigate multi-modal perception fu-
sion technology by integrating UAV vision with lidar and other multi-source informa-
tion, thereby enhancing the system’s robustness and reliability in complex real-world
maritime environments.
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