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Abstract

Currently, maritime navigation safety risks—particularly those related to ship navigation—
are primarily assessed through traditional rule-based methods and expert experience.
However, such approaches often suffer from limited accuracy and lack real-time respon-
siveness. As maritime environments and operational conditions become increasingly
complex, traditional techniques struggle to cope with the diversity and uncertainty of
navigation scenarios. Therefore, there is an urgent need for a more intelligent and pre-
cise risk prediction method. This study proposes a ship risk prediction framework that
integrates a deep learning model based on Long Short-Term Memory (LSTM) networks
with Bayesian risk evaluation. The model first leverages deep neural networks to process
time-series trajectory data, enabling accurate prediction of a vessel’s future positions and
navigational status. Then, Bayesian inference is applied to quantitatively assess potential
risks of collision and grounding by incorporating vessel motion data, environmental con-
ditions, surrounding obstacles, and water depth information. The proposed framework
combines the advantages of deep learning and Bayesian reasoning to improve the accuracy
and timeliness of risk prediction. By providing real-time warnings and decision-making
support, this model offers a novel solution for maritime safety management. Accurate risk
forecasts enable ship crews to take precautionary measures in advance, effectively reducing
the occurrence of maritime accidents.

Keywords: ship trajectory prediction; maritime risk assessment; deep learning; Bayesian
network; multi-modal data fusion; Automatic Identification System (AIS)

1. Introduction
Maritime transportation serves as a vital component of global trade networks. While

burgeoning trade volumes present development opportunities for shipping industry, they
also introduce challenges associated with vessel gigantism and route congestion. Contem-
porary maritime systems face growing pressures from intensifying sea lane utilization and
port operations, leading to increased maritime accident risks [1].

Maritime risk prediction confronts inherent complexity due to multifaceted influenc-
ing factors including environmental conditions and vessel behaviors. Reliable real-time
prediction systems are crucial for supporting operational decisions to mitigate potential
losses. Consequently, developing accurate vessel trajectory and collision risk prediction
algorithms has become essential for maritime safety.

In recent years, scholars have suggested several ship trajectory prediction models.
Jaskólski [2] used discrete Kalman filter to estimate missing ship trajectory sequences based
on AIS data. Fossen and Fossen [3] used extended Kalman filter (EKF) to process real-time
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AIS data, predict the future motion of ships and analyze evasion strategies to avoid collision.
Zhang [4] proposed a trajectory prediction algorithm for Hidden Markov Models based
wavelet transform (HMM-WA). Specifically, the ship trajectory sequence is transformed
into a column vector by wavelet transform and single reconstruction. Then the vector is
used as the input of HMM, and the future position of the ship is estimated by Markov chain.
These methods have been highly successful for navigation-grade state estimation and
short-horizon prediction when the motion/process model is appropriately specified. In this
study, the intended limitation is not that these methods can “only” predict the next position,
but that in common AIS-only settings with simple, low-order kinematic or linear-Gaussian
assumptions and without explicit maneuver/intent or interaction modeling, single-model
KF/EKF/HMM tend to yield smooth extrapolations that degrade over longer horizons and
under complex, multi-modal behaviors (e.g., abrupt maneuvers, interactions with other
vessels, route/traffic rules, and environmental/terrain constraints).

These limitations can be mitigated by incorporating higher-fidelity dynamics, multi-
model approaches (e.g., Interacting Multiple Model (IMM)), nonlinear/unscented or parti-
cle filters, and context/constraint information, but such extensions go beyond the baseline
configurations compared in this section.

Operational shipboard decision support systems must pull heterogeneous, location-
dependent information in real time—including AIS traffic, Electronic Navigational Charts
(ENC) with bathymetry and hazards, fairway geometry, and short-term environmental
context such as wind, waves, and currents—under strict latency, coverage, and reliability
constraints. However, many trajectory-prediction and risk-assessment studies implicitly
assume oracle access to perfect, static maps or offline annotations, creating a sim-to-real
gap when methods are moved onboard. In constrained waterways, this gap manifests
as depth and obstacle priors that are incomplete or not aligned to the vessel’s geodetic
frame, dynamic context (temporary obstructions, traffic density, tidal windows) that is time-
varying, and query patterns that must be localized to the predicted path rather than global.
To bridge this, we introduce a database module that emulates shipborne data acquisition:
given a predicted motion sequence, it serves trajectory-conditioned queries (e.g., nearest
obstacle, depth-along-track, encounter configuration, traffic statistics) at runtime with
an update cadence compatible with onboard use. This design grounds learning-based
predictors and Bayesian risk reasoning in the same information surfaces available to actual
vessels, enabling auditable, chart-aware inference.

Ship navigation risk assessment faces a three-way tension among data uncertainty,
subjectivity/timeliness, and compute/latency. Grey System Theory is attractive under
missing or sparse navigation data and can extrapolate trends for decision support, yet it
typically suffers from lower precision, rapid decay/growth behaviors, and limited timeli-
ness when risks evolve quickly [5–8]. Traditional expert-driven models work with limited
data but are sensitive to subjective judgments, lack cross-expert consistency, and struggle
to deliver real-time perception, making them ill-suited for online prediction [7,8]. At the
other end, deep-learning approaches reduce subjectivity and fuse multimodal inputs with
strong fitting capacity, but they demand substantial data and high-performance computing,
and can exhibit training/gradient issues on long sequences, which hampers low-latency
online deployment in dynamic waterways [9,10]. While Informer-style architectures allevi-
ate part of the latency/throughput bottleneck via efficient self-attention—enabling faster
parallel processing for online forecasting—their assessments remain largely black-box and
do not natively quantify or propagate epistemic/aleatoric uncertainty or encode causal
structure among risk factors [11]. In contrast, Bayesian networks have been successfully
used to identify navigation risk factors in data-scarce regions (e.g., Arctic waters) and
offer interpretable, uncertainty-aware reasoning that can ingest heterogeneous, partially
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missing evidence and update beliefs online [12]. These limitations collectively motivate our
Bayesian risk prediction module, which complements the trajectory predictor by producing
posterior risk estimates with traceable assumptions for decision support under real-world
data imperfections.

To address the above limitations, we develop an End-to-End, three-tier framework that
couples a CNN-BiLSTM- Multi-Head Self-Attention (MHSA) trajectory predictor with an
ENC-aware spatial database and a Bayesian dynamic risk network, and closes the loop with
an onboard-style decision layer. The system runs with sliding-window updates, performs
path-conditioned chart queries around the predicted motion, and outputs interpretable pos-
terior risks and real-time guidance under strict latency constraints. The main contributions
are as follows:

1. Hybrid Spatio-Temporal Trajectory Prediction: This innovation combines Convolu-
tional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM)
networks, and Multi-Head Attention mechanisms to overcome the shortcomings of
single-model approaches in ship trajectory forecasting. Specifically:

(1) CNN layers extract localized patterns from short-term motion data (e.g., speed
fluctuations or heading adjustments).

(2) Multi-Head Attention dynamically weights key historical time steps, focusing
on critical navigation segments.

(3) BiLSTM processes sequential data bidirectionally, capturing long-range depen-
dencies for robust predictions.

2. Electronic Navigational Chart (ENC)-Aware Spatial Database: We developed a dy-
namic spatial query system that bridges the “sim-to-real gap” by providing real-time
environmental context based on predicted trajectories. Key features include:

(1) Trajectory-conditioned queries that retrieve obstacle distributions and bathy-
metric data (e.g., water depth) along a vessel’s path.

(2) Spatial indexing (e.g., R-trees) for efficient obstacle and depth retrieval within
a local radius, reducing reliance on static maps.

(3) Database schema with hierarchical tables for navigational aids, bathymetric ar-
eas, and dynamic elements, ensuring consistency with shipboard data surfaces.

This enables real-time scene awareness, supporting accurate risk evaluation in dy-
namic waterways.

3. Bayesian Risk Prediction with Interpretable Posteriors: A Bayesian network frame-
work quantifies collision and grounding risks transparently, Specifically:

(1) Evidence integration: Combines vessel motion data (position, SOG, COG),
environmental factors (obstacle distance, water depth), and external conditions
(e.g., weather) into a probabilistic model.

(2) Dynamic inference: Uses Variable Elimination to compute posterior probabili-
ties in real time.

4. Closed-Loop Decision Support System: This innovation closes the feedback loop
from prediction to action, enabling minute-level risk warnings and proactive naviga-
tion control:

(1) Integrated workflow: Links trajectory prediction, environment querying,
Bayesian inference, and action suggestions in a seamless cycle with <5 s latency.

(2) Actionable outputs: Maps risk probabilities to International Regulations for
Preventing Collisions at Sea (COLREGs)-compliant maneuvers, such as course
adjustments (θnew = θcurrent + θoptimal) or speed reductions
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(3) Real-time performance: Operates via sliding-window updates, maintaining
system stability and responsiveness even with data anomalies.

This transforms passive monitoring into active risk mitigation, supporting safer mar-
itime operations.

This study used the Operating System (windows11 23h2); Python (3.9); MySQL Server
(8.0); MySQL client/driver—PyMySQL (1.1.2); TensorFlow/Keras (2.16.1); scikit-learn
(1.6.0); NumPy (1.23.5); pandas (2.2.3); Matplotlib (3.9.1); Seaborn (0.13.2); NetworkX (3.2.1);
pgmpy (0.1.26); graphviz (Python package) (0.20.3) and PyGraphviz (1.11); pyproj (3.7.1).

2. Related Work
2.1. Data-Driven Deep Learning for Vessel Trajectory Prediction

Data-driven approaches analyze large-scale datasets to capture motion patterns and
spatial-temporal characteristics. Predicting future trajectories remains challenging due to
inherent uncertainties in vessel behaviors and complex inter-ship correlations. Existing
methods often overlook the persistence and cross-domain nature of vessel interactions [13].

Miaomiao Wang proposed a Spatio-Temporal Cross hybrid Network (STCNet) frame-
work, comprising spatio-temporal interaction awareness and multi-modal trajectory pre-
diction modules, which performs adaptive fusion of temporal, spatial, and cross-domain
feature [14]. Huanhuan Li et al. developed a cascaded network model integrating Bidi-
rectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU) into a three-layer information
enhancement architecture [15]. Wenjun Zhang et al. introduced the DGCN-Transformer
model that incorporates collision risk modeling into the prediction framework [16].

Zhiheng Liu proposed an ensemble model containing two sub-models, where the
S-TGP model combines Temporal Convolutional Networks (TCN) with Gated Recurrent
Units (GRU) to leverage their respective advantages [17]. Huanhuan Li further proposed
a new bidirectional information fusion-driven model addressing limitations of classical
methods, developing a cascaded network through sequential combination of BiLSTM and
BiGRU [18]. Xi Zeng developed the ST-GRUA model based on GRU and self-attention
mechanisms for multi-vessel encounter prediction using AIS data [19].

Jinqiang Bi et al. constructed spatio-temporal matrices incorporating navigational
geography factors, establishing a CNNGRU-MHA hybrid model with multi-head atten-
tion [20]. Hee-Jin Lee employed CNN-LSTM models for trajectory prediction and collision
assessment across vessels with different maneuverability characteristics [21].

Xiliang Zhang et al. proposed the G-STGAN method featuring: (1) Ship Spatial Gate
Encoder (SSGE) combining Graph Convolutional Network (GCN) and Transformer; (2) Ship
Temporal Gate Encoder (STGE) using gated Transformer and temporal convolution [22].
Siwen Wang et al. developed the STPGL model integrating LSTM with graph attention
networks (GAT) in an encoder–decoder architecture [23]. Daiyong Zhang established ultra-
short-term prediction models based on ship response characteristics, proposing velocity
distribution extraction and online error correction algorithms [24].

The trajectory-prediction literature has evolved from sequential encoders to hybrid
CNN/attention/graph designs, increasingly emphasizing interaction awareness and ge-
ographic grounding. However, there remains a gap between high-capacity models and
shipboard constraints (latency, explainability, standards compliance). The database- and
chart-aware integration adopted later in this paper directly targets that gap by aligning
inputs and outputs with operational Electronic Chart Display and Information System
(ECDIS)/ENC contexts.
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2.2. Navigation Risk Prediction and Assessment

Current maritime risk prediction integrates traditional statistical analysis with modern
intelligent techniques. Traditional approaches establish probabilistic models (e.g., colli-
sion/grounding probability models) based on historical accident data, incorporating expert
systems and fuzzy logic to quantify risk weights of environmental, operational, and vessel
status factors. Modern methods employ machine learning (e.g., neural networks, random
forests) and multi-source data fusion (AIS, meteorological, hydrological, and GIS data)
for dynamic risk assessment through feature extraction and pattern recognition. Research
trends emphasize real-time data-driven hybrid models combining Bayesian networks and
deep reinforcement learning, though challenges persist in model interpretability, data
quality dependency, and multi-factor coupling mechanisms.

Hanwen Fan et al. developed a Dynamic Bayesian network (DBN) framework ad-
dressing imbalanced accident reports through synthetic minority oversampling and edited
nearest neighbor techniques [25]. In subsequent work, they proposed an architecture in-
tegrating outlier and missing data processing to construct comprehensive databases for
Bayesian network construction [26]. Ryan Wen Liu et al. introduced a collision risk analy-
sis framework incorporating quaternion ship domains (QSD) into vessel conflict ranking
operators (VCRO) [27].

Wenyang Wang et al. established a Bayesian network model analyzing 549 maritime
accidents from 2016 to 2023 in the RCEP region, identifying key factors including accident
type, vessel flag, and environmental conditions [28]. Haiyang Jiang et al. constructed
Bayesian networks using 55,469 accident records (2002–2022), modeling risk influencing
factors (RIF) interdependencies via Tree-Augmented Naive (TAN) networks [29]. Qian
Qiao proposed a Risk-Based Ship Complex Network (RBSCN) model with comprehensive
node importance algorithms combining degree centrality and betweenness metrics [30].

Dawei Gao et al. developed a predictable Transformer network with clustering analysis
for regional collision risk assessment [31]. Wenyang Wang’s team replicated their Bayesian
methodology with expanded GISIS datasets [28]. Wenjie Li et al. created an Arctic risk
assessment tool calculating event probabilities by incident type and sub-region [14]. Ryan
Wen Liu enhanced their framework with kernel density estimation (KDE) for collision risk
visualization [27].

Sheng Xu proposed a hybrid causal logic model estimating icebreaker collision proba-
bilities considering human factors [32]. Chenyan Lin et al. designed an encoder–decoder
LSTM model with CNN spatial feature extraction for regional collision risk prediction [33].
Peiru Chen et al. established evidence-based fuzzy Bayesian networks using expert-
evaluated accident causation networks [34]. Ziaul Haque Munim et al. implemented
automated machine learning for operational safety decisions using 40-year Norwegian
accident data [35].

Regarding nautical chart integration, Xin Yang et al. developed an Electronic Navi-
gational Chart (ENC)-based grounding risk index (GRI) using fuzzy theory [36]. Cailei
Liang designed ENC-based route planning via Delaunay triangulation (DT) of bathymetric
data [37].

For multi-task fusion, Tao Liu et al. proposed a deep learning model simultaneously
predicting trajectories and collision risks through virtual channel constraints [38]. Our
work extends this by integrating automated chart queries and dual risk prediction (colli-
sion/grounding). Renan Guedes Maidana demonstrated risk-aware trajectory planning
for autonomous vessels [39]. TRYM TENGESDAL implemented GPU-accelerated model
predictive control with obstacle avoidance [40].

Belief-space alignment to our pipeline. Following Kochenderfer’s decision-making
framework, we treat ship navigation as partially observable sequential control: noisy
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AIS/ENC observations update a belief over encounter states, and actions (speed/heading
changes) are selected to minimize expected cost subject to safety constraints [41–43].
In our system, the trajectory predictor provides a tractable surrogate for the state-
transition model, while the Bayesian risk head acts as a compact belief updater over
collision/grounding variables with soft evidence; the decision mapper then converts
posteriors into COLREGs-consistent advisories under thresholds/hysteresis tuned for
real-time use (Sections 3.3 and 3.4). Compared with a full POMDP online planner
(e.g., RAO*/ConstrainedZero-style chance-constrained planning) [44], our design trades
global optimality for deterministic latency and interpretability, which is critical for on-board
deployment and auditability by watch officers and regulators.

Across these streams, internationally recognized principles of multi-agent collision
avoidance (e.g., Velocity Obstacles; Optimal Reciprocal Collision Avoidance (ORCA)) and
decision-making under uncertainty (e.g., POMDP formulations and reinforcement learning
textbooks) provide a unifying lens for modeling risk, quantifying uncertainty, and mapping
posteriors to actions. In parallel, regulatory and charting standards (COLREGs; Interna-
tional Hydrographic Organization (IHO) S-57/S-101 [45–47]; International Electrotechnical
Commission (IEC) 61174) [48] define the compliance and data-integrity requirements that
any practical system must satisfy. Our study operationalizes these foundations by: ground-
ing predictions in ENC-aware queries; using a Bayesian network to produce interpretable,
uncertainty-aware posteriors, and translating those posteriors into COLREG-aligned guid-
ance under real-time constraints—thereby connecting international theory and standards
to deployable maritime safety functions. For a list of relevant references, see Table 1.

Table 1. Summary table of Literature review.

Group Typical Papers Strengths Limitations

LSTM/GRU sequence [15,16,23,24] “cascaded BiLSTM + BiGRU”;
“ultra-short-term correction”

Data-shift sensitive; weak
geo/rule

CNN × RNN hybrids [18,19]
“spatio-temporal matrices +
geography”; “CNN-LSTM for
trajectory & collision”

Heavier; limited
interpretability/uncertainty

Graph/Attention/Transformer [17,20,31,33]
“ST-GRUA multi-ship interaction”;
“G-STGAN gates”; “Transformer +
clustering (regional risk)”

Complex; real-time/
compute burden

Online correction/response [24] “ultra-short-term prediction;
online correction”

Narrow scope; abrupt
changes hard

Multi-task (traj + risk/intent) [38] “simultaneously predict trajectory &
collision risk” Costly labels; task trade-offs

Bayesian Networks [25,26,29,35] “DBN for imbalanced accidents”; Needs curated data; structure
learning hard

Regional/large-scale risk [28,31] “Transformer + clustering for regional
risk”; “guided ML for safety”

Threshold/hyper Param
sensitive; limited transfer

Ship-domain risk [27] “quaternion ship domain & VCRO;
KDE viz”

Parametric assumptions;
density-sensitive

Routing/ENC/triangulation [32,37] “ENC-based routing via Delaunay” ENC updates lag; weak
dynamics integration

MPC/control (GPU) [40] “GPU scenario-based MPC;
uncertainty & obstacles”

Model/compute heavy;
pruning needed

Complex networks (RBSCN) [30] “RBSCN with comprehensive
centralities”

Graph/weights sensitive;
topology-
boundinterpretability tied to
topology assumptions
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2.3. Decision-Making Under Uncertainty and POMDPs

A complementary line of work views navigation and collision avoidance as sequential
decision-making under uncertainty, formalized by partially observable Markov decision
processes (POMDPs). Kochenderfer’s textbooks synthesize the mathematical founda-
tions and scalable algorithms for belief-space planning, including filtering, value itera-
tion/approximation, Monte-Carlo tree search, and risk-aware decision criteria, with appli-
cations ranging from airborne collision avoidance to medical decision support [41–43]. The
ACAS X program in particular demonstrates how dynamic programming and large-scale
policy optimization can yield real-time, standard-compliant advisories under strict safety
and latency constraints [49].

Compare & contrast. POMDP formulations provide an optimality-theoretic lens
(expected utility under partial observability) and naturally capture sensor noise, intent
uncertainty, and multi-modal futures—aspects that pure sequence predictors or static clas-
sifiers often sidestep. However, general POMDP solvers can be computationally intensive
(curse of dimensionality/history) for embedded, high-rate maritime settings, and they re-
quire careful state/observation design plus safety constraints (e.g., chance-constraints) to be
deployable [49]. Our approach adopts the belief-space perspective to structure information
flow, but instantiates a lightweight surrogate: a CNN–MHSA–BiLSTM predictor supplies
state-transition surrogates, and a Bayesian network performs interpretable, low-latency
belief updates over critical risk factors; decisions are then mapped to COLREGs-consistent
advisories (Sections 3.3 and 3.4). This yields many operational benefits of belief-space
reasoning (uncertainty-aware, auditable, sequential) while keeping compute predictable
for shipboard hardware.

3. Model Structure: End-to-End Ship Navigation Risk Prediction Model
3.1. Overall Framework Overview

The overall architecture is illustrated in Figure 1. The interfaces of each module are
summarized below; implementation details follow in Sections 3.2 and 3.3.

Figure 1. Three-Layer Architecture of the End-to-End Risk Prediction System.
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(1) Trajectory predictor—Input: AIS window of length T with {x, y, speed over
ground (SOG), course over ground (COG)}; Output: next-step {x, y, SOG, COG}
(+ optional uncertainty).

(2) ENC perception—Input: predicted path polyline; Output: distances to static obstacles,
local bathymetry, fairway width, and proximity features.

(3) Bayesian risk head—Input: predictor outputs + ENC features (+ optional weather);
Output: posterior P(collision)/P(grounding) and three-tier alert {Green, Yellow, Red}.

3.2. Data Processing
3.2.1. AIS Data Processing

We standardize AIS trajectories through a four-stage pipeline—quality control,
anomaly screening, uniform resampling, and navigation-mode labeling—to supply consis-
tent, low-noise sequences for downstream models. The pipeline retains only decisions that
materially change the sequence used by the predictor (Figure 2).

 

Figure 2. AIS Preprocessing Pipeline.

Processing pipeline:

(1) Quality control. Remove records with invalid MMSI/coordinates/time order; dedu-
plicate near-identical timestamps; drop speeds outside physically feasible bounds.

(2) Anomaly screening. Detect spikes in SOG/COG and spatial outliers using simple
thresholds plus a density-based check; flagged points are treated as missing and will
not inform the model.

(3) Uniform resampling. Rebuild each trajectory on a fixed interval (∆t), using distance-
aware interpolation to preserve local kinematics; sequences are truncated/padded to
a fixed window length T.

(4) Navigation-mode labeling. Assign coarse modes (e.g., cruising, maneuvering, anchor-
ing) from speed/turn-rate rules to provide optional context features.

Key settings. We use a fixed window length T and a fixed resampling interval ∆t.
Speeds are constrained to a practical operating range, and the turn-rate is bounded by
|∆COG/∆t|. The outlier density check uses neighborhood radius ε and minPts selected
on validation tracks and kept fixed across experiments.

The cleaned, uniformly sampled sequences feed the trajectory predictor in Section 3.3,
with no additional per-dataset tuning beyond these fixed settings.

Figure 2 AIS preprocessing pipeline:

(1) quality control;
(2) anomaly screening;
(3) uniform resampling;
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(4) navigation-mode labeling.

An example of the preprocessing effect and the resulting route structure is provided
in Figures 3 and 4.

Figure 3. Results of Hybrid Anomaly Detection and Trajectory Interpolation.

Figure 4. Trajectory Clustering and Navigation Mode Classification.

3.2.2. Nautical Chart Data Processing and Database Construction

We maintain a lightweight, ENC-aware spatial store to supply the Bayesian head with
reliable environmental evidence at shipboard speed. Raw nautical information (e.g., S-57
aids to navigation, fairways/traffic lanes, and bathymetry) is normalized to a common
coordinate reference system (CRS) and time base, then compacted into a minimal schema
optimized for short-radius queries around the predicted vessel position. Online queries
return distance/relative bearing to obstacles and excess water depth along the forecast
track, forming standardized inputs for posterior risk estimation.

We materialize four stable entities—areas (bathymetry & regions), line_features (fair-
ways/isobaths), symbols/light_symbols (aids to navigation), and tide_data—plus a small
set of spatial functions. Queries operate within a local corridor around the predicted
path and output (distance, bearing, class) for obstacles and excess depth along waypoints.
Implementation follows common Geographic Information System (GIS) practice and is
tuned for sub-second retrieval on onboard hardware. Table 2 summarizes the four runtime
entities and the essential fields used by the ENC-aware store.

Practical notes:

(1) Sources are harmonized to a single CRS and Coordinated Universal Time (UTC)
timestamps to avoid runtime transforms.
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(2) Distance/bearing are computed against the forecasted waypoints, not just the current
fix, to align with lead-time evaluation.

(3) Geometry fields are indexed and basic integrity checks (e.g., angle ranges, symbol
sizes) are enforced to keep queries robust under noisy inputs.

Table 2. Entities kept in the ENC-aware store and the essential fields used at runtime.

Entity Purpose Essential Fields

areas Bathymetry &
administrative regions geom (polygon), depth (m), region_id

line_features Fairways/isobaths/boundaries geom (line), type, name

symbols/light_symbols Aids to navigation geom (point), symbol_id, status, sector

tide_data Hydrological context station_id, timestamp, water_level

The format of this database is shown in Figure 5.

Figure 5. Spatial Database Schema for Environmental Awareness.



J. Mar. Sci. Eng. 2025, 13, 1925 11 of 35

3.3. Trajectory–Risk Collaborative Prediction Model

To address the limitations of single-task models, this study proposes a multi-task col-
laborative learning framework that integrates ship behavior modeling and environmental
risk inference. The model jointly predicts vessel trajectories and collision risk, combining
spatiotemporal dynamics with real-time environmental awareness.

3.3.1. Trajectory Prediction Module

The primary objective of the trajectory prediction module is to forecast the ship’s
motion in the near future—including position (longitude and latitude), SOG and COG—
based on historical navigation data. These predictions directly serve as dynamic inputs to
the risk analysis module, enabling proactive hazard assessment.

The trajectory predictor is a lightweight CNN–MHSA–BiLSTM stack designed for
short-horizon motion forecasting. A 1-D convolution captures local micro-patterns, multi-
head self-attention emphasizes salient time steps, and a BiLSTM consolidates long-range
temporal context. The network takes a fixed-length AIS window and outputs the next-
step state {x, y, SOG, COG}, serving as the upstream input for environmental queries and
Bayesian risk estimation.

The architecture of the trajectory prediction module is designed based on three
core principles: local feature extraction, dynamic temporal weighting, and global
sequence modeling.

We prioritize compactness and stability over large-model capacity: a shallow convo-
lution filters noise and encodes local kinematics; MHSA re-weights salient steps without
incurring quadratic overhead at our window length; a bidirectional LSTM aggregates
context for smooth, single-step regression. Inputs are standardized AIS sequences; outputs
are normalized motion states, later denormalized for querying. The module is parameter-
efficient and amenable to edge deployment under shipboard constraints.

Layer-specific derivations and internal recurrence formulas are omitted for brevity;
we follow standard definitions of CNN, MHSA, and BiLSTM. Data interface. The predictor
directly consumes the standardized sequences produced in Section 3.2.

The model is optimized with a standard regression objective over {x, y, SOG, COG},
using minibatches and validation-based early stopping. We apply routine regularization
(normalization, dropout) and select hyper-parameters via small-scale sweeps to balance
stability and latency. Effectiveness. Quantitative accuracy and latency are reported in
Section 4 under End-to-End evaluations. Effectiveness, Quantitative accuracy and latency
are reported in Section 4 under End-to-End evaluations.

3.3.2. Bayesian Risk Prediction Model

The Bayesian risk head integrates predicted motion and ENC-aware environment
cues to produce interpretable posteriors for collision and grounding. It acts as a compact
reasoning layer on top of the trajectory predictor, turning kinematic and chart evidence
into auditable alerts that drive shipboard decision support.

Evidence E includes distance and relative bearing to the nearest obstacle, excess water
depth along the forecast path, and weather (if available), together with predicted kinematics
(speed, heading, turn rate) from Section 3.3.1. These inputs are standardized and fed to a
small directed graph whose outputs are posterior risks for collision and grounding plus a
coarse severity indicator. The list of inference structures for this Bayesian network is shown
in Table 3.
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Table 3. Runtime evidence and outputs in the Bayesian risk head.

Category Name Source Used for

Observed Obstacle distance &
relative bearing

ENC query around
predicted waypoints Collision risk

Observed Excess water depth Bathymetry along
forecast path Grounding risk

Observed Weather (optional) External feed Modulating priors

Derived Speed/Heading/
Turn rate

Trajectory predictor
(Section 3.3.1) Conditioning CPTs

Output P(collision|E),
P(grounding|E)

Inference over
small BN Alerts/decisions

Output Severity (coarse) Fused from risks
& context

Human–Machine
Interface

(HMI) priority

We perform variable elimination over a compact graph whose CPTs are estimated
from data with expert priors. The head is robust to missing inputs (fallbacks to the latest
valid observation windows) and emits posteriors for collision and grounding together with
a severity tag. These are consumed by the alert mapper and decision module.

Posterior risks are mapped to three-tier alerts (Low/Medium/High) using operator-
tunable thresholds chosen on validation quantiles. The HMI surfaces color-coded alerts
with suggested heading corridors that respect ENC constraints; final control remains with
the navigator. Quantitative effectiveness is reported in Section 4. The initial threshold
settings are as shown in Table 4.

Table 4. Risk Levels, Thresholds, and Corresponding Avoidance Actions.

Risk Levels
Collision

Probability
Threshold

Stranding
Probability
Threshold

Corresponding
Avoidance Actions

red >70% >60%
Autonomous Engine

Shutdown with
Navigational Advisory

yellow 30–70% 20–60% Altering course

green <30% <20% Maintain Situational
Awareness Monitoring

As shown in Figure 6, observed evidence (distance/bearing, excess depth, optional
weather) and predicted kinematics feed a compact graph to produce collision/grounding
posteriors and a coarse severity tag; thresholds map to three-tier alerts for the HMI.

The risk head consumes standardized features from Sections 3.2 and 3.3.1 and passes
posterior risks & severity to the End-to-End evaluations.

To present the structural essentials within limited space, first-order evidence variables
are aggregated into semantic group nodes (e.g., Weather, Crew, Mechanical, Encounter),
and only cross-group dependencies from groups to downstream intermediate/outcome
nodes are retained. An edge indicates that at least one member of the group has a direct arc
to the target in the full BN; edge width encodes the count of member→target arcs (thicker
= more sources) and does not represent effect size or causal strength. Nodes are ordered
top-to-bottom by longest-path topological depth, with peers aligned horizontally for better
space efficiency.
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Figure 6. Collapsed Bayesian Network Overview.

3.3.3. Multi-Module Collaborative Risk Generation Mechanism

Figure 7 illustrates the closed loop from prediction to decision: the predictor emits
forecasted waypoints and kinematics; the ENC-aware store, queried around the predicted
path, returns obstacle distance/bearing and excess depth; the Bayesian head fuses these
signals into posterior risks with a severity tag; and the decision layer maps them to
Low/Medium/High alerts together with suggested heading corridors while keeping the
navigator in the loop. The cycle aligns with the prediction window and achieves sub-second
End-to-End latency under normal load, switching to a 1 s update cadence when alarms
are raised or fast motion is detected; standardized inputs from Section 3.2–Section 3.3.1
and posterior risks/alert tiers flow into the evaluations in Section 4, with stale evidence
down-weighted by time decay.

Figure 7. Collaborative Flow Between Trajectory, Risk, and Decision Modules.
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3.4. Uncertainty Propagation

Uncertainty enters the pipeline from measurements and the predictor and then propa-
gates through environmental queries to risk inference and alerts. Let the latent vessel state
at time t be st = [xt, yt, SOGt, COGt]

T . The AIS measurement is modeled as

zt = st + εt, εt ∼ N (0, Σmeas) (1)

With occasional missingness handled by a mask mt ∈ {0, 1}d and time–decay weights
wt = exp(−∆t/τ) in preprocessing (Section 3.2). After standardization we obtain the input
vector xt = standardize(zt, mt, wt).

The trajectory predictor (Section 3.3.1) is a stochastic function fθ due to dropout/ensembling.
With hidden state ht, the one–step forecast is

ht = fθ(ht−1, xt; ξt), s(k)t+∆ = gθ

(
ht; ξ

(k)
t

)
+ ν

(k)
t (2)

where ε
(k)
t denotes the k-th stochastic draw (MC dropout or an ensemble member) and

v(k)t captures aleatoric noise. Drawing K samples
{

s(k)t+∆

}K

k=1
yields the predictive mean

and covariance

µpred =
1
K

K

∑
k=1

s(k)t+∆ , Σpred =
1

K − 1

K

∑
k=1

(
s(k)t+∆ − µpred

)(
s(k)t+∆ − µpred

)⊤
(3)

Optionally augmented by a heteroscedastic head outputting a diagonal Σale; the total
predictive covariance is Σpred + Σale.

Environmental evidence is produced by querying along the forecasted path against
the ENC-aware store (Section 3.2.2). Let g(·) map a forecasted state to evidence E = [d, β, h,
. . .]⊤: obstacle distance d, relative bearing β, and excess depth h. We propagate predictive
uncertainty either by Monte Carlo

E(k) = g
(

s(k)t+∆

)
, k = 1, . . . , K, (4)

Or by first-order linearization around µpred:

E[E] ≈ g
(

µpred

)
, Var(E) ≈ Jg

(
µpred

)
Σpred Jg

(
µpred

)⊤
+ Σenv (5)

where Jg is the Jacobian of g and Σenv summarizes residual map/lookup noise (e.g., tide
interpolation).

The Bayesian risk head (Section 3.3.2) consumes soft evidence. For Monte Carlo
propagation we evaluate the collision and grounding posteriors on each draw,

p(k)col = Pr
(

collision = 1 | E(k)
)

, p(k)grd = Pr
(

grounding = 1 | E(k)
)

,

and aggregate

p̂col =
1
K ∑

k
p(k)col , p̂grd =

1
K ∑

k
p(k)grd, [q0.05, q0.95] = quantiles

({
p(k)

})
, (6)

which give point risks and credible bands [q0.05,q0.95]. For discretized BN nodes we
form virtual (soft) evidence by integrating the Gaussian evidence over bins b: λ(b) ∝∫

b N
(
u; µE, σ2

E
)
du; variable elimination proceeds with these likelihood weights.

Uncertainty is surfaced to the HMI together with alerts. Risk levels are mapped
by thresholds τlow < τhigh with hysteresis δ: escalate when p̂ ≥ τhigh, de-escalate only
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when p̂ ≤ τlow = τhigh − δ. The band width w = q0.95 − q0.05 modulates δ (larger w⇒
stronger hysteresis) to avoid alert flapping under ambiguity. Decision suggestions minimize
expected cost under posterior risk:

a⋆ = argmin
a∈A

ER∼Pr(R|E)[C(a, R)], (7)

with A the admissible heading/speed adjustments constrained by ENC geometry. Practi-
cally, we compute expected costs on the K posterior draws and select corridors that reduce
risk while respecting chart constraints.

This mechanism makes the pipeline auditable End-to-End: measurement noise Σmeas

and model variance Σpred propagate through environmental queries to yield posterior risks
with explicit credible intervals, and the alert/decision mapping adapts to both the risk
level and its uncertainty.

4. Comprehensive Model Validation and Practical
Deployment Assessment

To verify the feasibility and effectiveness of the proposed maritime navigation risk
prediction method, this chapter conducts a series of evaluations based on real-world vessel
traffic data, particularly utilizing AIS data from the Yangtze River Estuary near Shanghai.
The experimental evaluation encompasses the full pipeline of the end-to-end risk prediction
framework, including system-level integration, key parameter sensitivity analysis, multi-
factor interference testing, decision support efficacy, and real-time performance verification.
Each component is tested using preprocessed AIS trajectory and environmental data
(e.g., obstacle distributions and bathymetric information). The modules include trajectory
prediction, Bayesian risk evaluation, and decision support, all operating under a sliding-
window simulation of vessel motion. The following sections describe the experimental
design, data preparation, results, and in-depth analyses.

4.1. Performance Validation
4.1.1. Training Evaluation of Trajectory Prediction Module

AIS trajectory data are normalized and serialized to serve as input for the prediction
module. Environmental data, including obstacle distributions and water depth values, are
retrieved from databases and CSV files. The hardware platform comprises GPU-accelerated
servers, while the software environment is implemented in Python 3.9. Sliding window
parameters are set as follows: window length = 10; spatial query radius and ship draft are
configured according to actual maritime conditions. Log files and image output paths are
preconfigured to ensure complete data collection throughout the experimental process.

The evaluation results of the trajectory prediction module indicate that the prediction
accuracy achieves a spatial precision on the order of 10 m. Figure 8 below illustrates the
trend of the Mean Squared Error (MSE) on both the training and validation sets over the
training epochs.

Further analysis was conducted to compare the predicted and actual values of vessel
SOG and COG in the validation set. Figure 9 below shows the comparison between
predicted and true values, as well as the distribution of prediction errors.

The solid lines represent the actual values, while the dashed lines represent the
predicted values. The two trends align closely across time, suggesting that the model
effectively captures the underlying dynamics of vessel movement. The error distribution is
approximately Gaussian, with most errors concentrated near zero. This reflects the model’s
ability to produce accurate and stable forecasts of key motion parameters.
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(a) (b) 

Figure 8. (a) MSE Training for Trajectory Prediction (b) Validation Curves for Trajectory Prediction.

(a) 

 
(b) 

Figure 9. Comparison of Predicted and Actual SOG/COG Values. (a) Error Distribution of SOG and
COG (b) Actual vs. Predicted Comparison of SOG and COG.

Together, these results validate the effectiveness and reliability of the proposed model.
The high-quality trajectory predictions generated by the module serve as robust inputs for
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the subsequent risk assessment tasks, providing essential support for real-time maritime
safety decisions.

4.1.2. End-to-End System Functionality Assessment

This experiment aims to evaluate the full functionality of the intelligent maritime risk
early warning system by testing the continuity of data transmission and the cooperative
operation of all modules. Specifically, it examines the interplay among the trajectory
prediction module, environmental query module, Bayesian risk assessment module, and
decision support module. The experiment assesses whether the system can generate
accurate risk probabilities and corresponding warning suggestions in real time, thereby
confirming its practical applicability in actual navigation scenarios.

A sliding window mechanism simulates dynamic AIS data updates, with a window
size of 60 s and a stride of 10 s. Each update represents a new batch of real-time AIS data.
The trajectory prediction module forecasts the vessel’s precise location (longitude and
latitude), speed over ground (SOG), and course over ground (COG) at every time step.
Using the predicted position, the environmental query module retrieves the locations and
distribution of obstacles within a 2-nautical-mile radius and the local bathymetric data.
This forms the spatial context for the Bayesian risk module.

The Bayesian risk assessment module fuses the predicted trajectory with the envi-
ronmental context to construct a probabilistic evidence dictionary. It computes both the
collision and grounding risk probabilities through probabilistic reasoning. The decision
support module then converts the assessed risk level into standardized recommenda-
tions, including a color-coded risk level (Low/Medium/High) and corresponding actions
(e.g., deceleration percentage, course adjustment angle). A visualized decision support
interface is generated.

Throughout the experiment, system logs record each data transmission step, calcu-
lated risk probabilities, recommended actions, visual outputs, and processing latency of
each module.

Figure 10 shows the graphical decision support interface. The left panel visualizes the
predicted risk level with a color-coded indicator: red for high risk requiring immediate
intervention, yellow for moderate risk necessitating attention, and green for low risk. The
system also provides textual instructions following the COLREGs collision avoidance
rules, including specific speed reduction percentages and recommended course changes.
In this case, a green level indicates a low-risk scenario. The right panel shows queried
environmental data, where red “×” markers denote obstacles such as buoys or lights, and
the green square indicates the vessel.

Figure 10. Decision interface in Experiment 1.
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We report loop timing under streaming AIS (predictor + ENC query + Bayesian head.
The quantity in Figure 25 of Section 4.2.3 is the End-to-End loop period, not pure compute:

Lloop = T + LI/O +
(

Lpred + LENC + LBayes

)
≡ T + L I

O
+ Lcomp (8)

In our setup, Lcomp is sub-second (medians 1.2/0.6/0.8 s), while larger loop values are
dominated by the window 10 s and modest I/O jitter.

Figure 11 shows module and loop timing distributions under live streaming. Decisions
act on predicted states; safety is assessed by net lead time:

Lead = TTE − Lloop (9)

with lead-time (TTE) exceeding the loop period for the bulk of cases, the net lead TTE −
Lloop remains positive. Under wide credible bands (Section 3.4) the HMI applies threshold
hysteresis; under alarms/fast motion the cadence drops to ~1 s.

Figure 11. Module processing latency statistics.

4.1.3. Single-Factor Sensitivity Analysis

This experiment focuses on evaluating the impact of individual parameters—such
as vessel speed, obstacle density, and water depth—on collision and grounding risk pre-
dictions, as well as the resulting decision recommendations. By quantifying how risk
probabilities and decision outputs vary with single-factor changes, this analysis establishes
a foundation for subsequent multi-factor interference experiments.

Under controlled conditions, only one factor is varied at a time using a sliding window
to simulate vessel navigation. The experiment proceeds in three phases:

Vessel Speed Analysis

This single-factor experiment isolates the effect of vessel speed on the predicted risks
and the downstream decision suggestions. Under controlled conditions, only speed is
varied while the course and the environmental context are held fixed; a sliding-window
simulation drives the End-to-End pipeline (trajectory → ENC perception → Bayesian risk
→ decision). The speed levels are set to 5, 12, and 20 kn, consistent with the system’s
operating envelope.

For each speed level, we sweep small heading offsets around the original course to
obtain a local risk slice while keeping the ENC-derived bathymetry and obstacle configura-
tion unchanged. The Bayesian risk module fuses the predicted motion states with ENC
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features to compute grounding and collision risk probabilities, which are then mapped to
standardized alerts and recommended actions by the decision module.

Figure 12 summarizes the grounding risk over heading offsets at the three discrete
speed levels (5/12/20 kn). At higher speed, the high-risk region broadens and the risk
magnitude increases due to reduced maneuverability margin and reaction time. When the
excess-depth margin is ample, the local dependence on small heading offsets is nearly affine,
yielding a smooth, monotone trend across ±a few degrees; when the margin diminishes,
nonlinear patterns (ridges/valleys) emerge along the offset axis.

  
(a) (b) 

 

(c) (d) 

Figure 12. Grounding risk under different speeds and heading adjustments. (a) maps at 5/12/20 kn
(b) 12 kn local slice (±5◦) with linear fit (near-affine) (c) h = 0◦ speed cross-section with 5–95% CI
(d) s = 12 kn heading cross-section with 5–95% CI.

The h = 0◦ cross-section shows a monotonic increase in grounding risk from 5 → 12 →
20 kn, while the s = 12 kn heading sweep exhibits a V-shaped profile symmetric around zero
offset. We also plot 5–95% credible bands to convey the effect of model and environmental
uncertainty on the estimated risk.

Within the common operating band (moderate speed, small heading adjustments), the
near-linear trend means small course corrections or modest deceleration provide predictable
risk reduction; once approaching chart-induced constraints (e.g., shallow margin), the
response becomes decidedly nonlinear, and the decision module prioritizes actions that
restore margin within the admissible set.

Overall, speed acts as a first-order driver of grounding risk in this dataset: increasing
from 5 to 20 kn consistently elevates the predicted probability and expands the high-risk
portion of the heading-offset axis, even under otherwise identical conditions.
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Obstacle Density Analysis

This phase creates environments with three obstacle densities:

(1) Low (2 obstacles/km2)
(2) Medium (5 obstacles/km2)
(3) High (10 obstacles/km2)

Multiple simulations are performed per group. Risk distributions are summarized
using violin plots to represent median, quartiles, density shapes, and outliers.

Figure 13 show how higher obstacle densities result in a rightward shift in risk distri-
butions. Mean collision risks are approximately 0.15 (low), 0.20 (medium), and 0.25 (high).
Data density shapes and outliers are clearly visible, indicating greater uncertainty and
risk in denser environments. The results suggest that denser obstacle fields significantly
increase collision risk, justifying more aggressive avoidance maneuvers.

Figure 13. Collision risk under varying obstacle densities.

Figure 14 shows spatial distribution of obstacles near a sample trajectory. Color gradi-
ents represent local obstacle density, and the vessel’s location and navigational boundary
are overlaid. This visualization supports real-time environmental awareness and validates
the model’s ability to respond to dynamic obstacle distributions.

Water Depth Analysis

Three depth scenarios are tested:

(1) Shallow (near vessel draft)
(2) Normal
(3) Deep

Grounding risk values are computed multiple times per depth level. Boxplots visualize
risk distributions, and regression is applied to quantify the depth-risk relationship.

Figure 15 has the highest median grounding risk (~0.20), while normal and deep
waters average around 0.10 and 0.05, respectively. Standard deviations decrease with
increasing depth. Significant differences (* p < 0.05) are indicated between the “Shallow”
and “Deep” groups in the figure, demonstrating that water depth variation has a statistically
significant impact on stranding risk.
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Figure 14. Obstacle density heatmap along a sample vessel trajectory.

Figure 15. Boxplots of grounding risk under different depth levels.

Figure 16 scatterplot with fitted regression line shows a linear relationship between
water depth and grounding risk. The regression model (e.g., Risk = 0.05 + 0.002 × Depth)
quantifies the inverse correlation, suggesting that greater depth leads to lower ground-
ing risk.

Results confirm that increases in speed, obstacle density, and shallow water conditions
all raise the predicted risk levels. The Bayesian risk model is responsive to changes in
individual variables and adjusts risk probabilities accordingly. The decision support
module, in turn, adapts recommendations for deceleration and course correction based
on risk levels. The trends observed align with real-world maritime navigation practices,
validating the model’s reliability and adaptability under single-variable stress conditions.
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Figure 16. Regression analysis of water depth vs. grounding risk.

4.1.4. Multi-Factor Disturbance Evaluation

This experiment is designed to evaluate whether the proposed system can accurately
distinguish between collision and grounding risks when multiple interference factors occur
simultaneously. It also assesses whether the system can generate comprehensive decision
recommendations that address both types of risks, and whether multi-modal data fusion
enhances risk prediction accuracy.

A composite interference scenario is constructed by increasing obstacle density and
introducing abrupt water depth fluctuations while maintaining a medium cruising speed.
This setup realistically simulates complex sea conditions. The system, using a sliding
window mechanism, continuously computes dynamic risk probabilities for both collision
and grounding based on Bayesian inference. The decision support module then generates
both standard and COLREG-adjusted recommendations, which are presented in a dual-
panel format to reflect differentiated control actions for each risk.

To clearly visualize the results, a composite figure is used with three sections that
illustrate the system’s behavior under multi-factor interference:

The upper left corner of Figure 17 shows the risk trend map. This area chart shows
how the probabilities of collision and grounding risks evolve over 10 consecutive time
steps. The X-axis represents time, and the Y-axis shows risk probability. Collision risk
(red) increases steadily from 0.62 to 0.81, while grounding risk (blue) rises from 0.57 to
0.76. Vertical error bars (±0.02) indicate uncertainty in estimation. At time step 8, the
collision risk sharply rises to approximately 0.77, marked with the annotation “Significant
Increase.” The dashed horizontal lines (red for collision at 0.75 and blue for grounding
at 0.70) represent critical warning thresholds, both of which are surpassed, confirming the
system’s sensitivity to compounded threats.
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Figure 17. Time series of collision and grounding risk probabilities in multi-factor scenarios.

Risk Comparison Radar Chart, upper right. This polar chart compares average risk lev-
els under single-factor and multi-factor scenarios. In single-factor conditions, the average
collision and grounding risks are 0.30 and 0.25, respectively. Under combined interfer-
ence, these rise sharply to 0.80 and 0.75. The red zone indicates the elevated risk under
multi-factor conditions, clearly demonstrating the benefits of multi-modal data fusion for
improving risk assessment accuracy.

The figure at the bottom shows the combination of the integrated decision support
panels. The system’s detailed decision recommendations, which are output in high-risk
states, are demonstrated in the figure. The image is divided into two primary sections: the
upper half, which corresponds to the collision risk, and the lower half, which corresponds
to the grounding risk. For the purpose of mitigating the risk of a collision, the system’s
standard recommendation is to reduce the ship’s speed to 8.0 kn, adjust the heading to 170◦,
and issue an “AVOID_COLLISION” alert. However, when the COLREG rule is taken into
account, the recommendation is to further reduce the speed to 7.0 kn and adjust the heading
to 185◦. In order to mitigate the risk of grounding, the standard recommendation is to
establish the ship’s speed at 8.5 kn, adjust the course to 175◦, and employ the warning signal
“PREVENT_GROUNDING”. Conversely, the COLREG adjustment suggests a reduction to
7.5 kn and a course of 190◦.

The ship’s current position (121.265, 31.625) and the dense distribution of obstacles
surrounding it are also displayed on the right side of the figure. These elements correspond
to the environmental interference data, visually confirming the experimentally constructed
mixed interference scenario. The findings demonstrate the system’s capacity to concur-
rently discern collision risk and grounding risk, thereby facilitating the formulation of
refined corrective measures for both hazards. This capability is indicative of the system’s
adaptability in accounting for collision avoidance and grounding prevention under the
complex sea conditions.

The system can simultaneously detect and differentiate between collision and ground-
ing risks in complex environmental conditions. It provides precise, risk-specific recom-
mendations for decisions that align with safety thresholds and COLREG regulations. The
visual outputs provide interpretable, actionable guidance for navigating high-risk maritime
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scenarios. Experiments confirm the system’s adaptability, responsiveness, and robustness
when handling multimodal, multi-risk environments.

4.2. Practical Deployment and Decision Support Validation
4.2.1. Decision Support Effectiveness Evaluation Experiment

This experiment aims to verify the effectiveness of warning recommendations and
visualization images generated by the decision support module in practical applications
and to compare them with existing maritime warning standards. The experiment generates
decision support images under three scenarios: routine, high-risk, and joint interference.
It records the parameters suggested by the system and invites maritime safety experts to
comment on the system’s proposed “speed reduction” and “heading adjustment”. Experts
rate the system on five indicators: “speed reduction”, “heading adjustment”, “suggestion
accuracy”, “real-time”, and “intuition”. Ultimately, we confirm the rationality and use-
fulness of the system’s suggestions by calculating the agreement rate between the expert
scores and the maritime standards.

During the experiment, we first generated decision support images for different sce-
narios and recorded each suggested parameter. As shown in Figure 18, in the conventional
scenario, the system suggests slight adjustments, as reflected by the scores of “speed reduc-
tion” and “heading adjustment”, which are both 2, as well as the scores of “accuracy” and
“real-time”. “Real-time” scored 9, and “intuition” scored 8.

Figure 18. Expert Ratings Across Different Navigational Scenarios.

In the high-risk scenario, the system output significantly improved. “Speed reduction”
increased to 9, and “heading adjustment” scored 9 among the suggested parameters. The
output of the system is significantly enhanced in the high-risk scenario, with “speed reduc-
tion” increasing to 9 points and “heading adjustment” reaching 8 points. The rest of the
indicators remain between 8 and 9 points. Meanwhile, the indicators for the joint interfer-
ence scenario are all around 7 points. To visualize the results of the experts’ evaluation of
the recommendations under different scenarios, we created a graph.

To further validate the practical efficacy of decision support intervention on risk
mitigation, we simulated the dynamic variations in ship collision risks. As illustrated
in Figure 18, error bars were employed to quantify data uncertainty, with blue dashed
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lines indicating both the intervention timing and critical risk thresholds. In the baseline
scenario, a time series spanning from 0 to 60 s was constructed, with the decision support
intervention initiated at the 30 s mark. Prior to intervention, the simulated collision risk
curve maintained an average value of 25%, accompanied by an uncertainty range of
approximately ±1.2%. Following the implementation of recommended control measures
(30% speed reduction combined with a +15◦ course alteration), the risk curve exhibited
a notable downward trend, averaging an 8 percentage point reduction and stabilizing
around 17%.

The comprehensive experimental results shown in Figure 19 indicate that the expert-
rated radar chart demonstrates all system-recommended metrics meet or exceed the seven-
point excellence standard for high-risk scenarios. The overall scoring is also more than 90%
consistent with the maritime warning standard. Meanwhile, the risk dynamic comparison
chart verifies that intervention by the decision support module significantly reduces the
risk of ship collisions, lowering the risk level from 25% to approximately 17%. This proves
the system’s effectiveness in reducing risk.

Figure 19. Visual Comparison Between System Output and International Maritime Organization
(IMO)-Based Decision Aids.

4.2.2. System Robustness and Real-Time Performance Assessment

This experiment aims to evaluate the system’s real-time response capability and output
stability under continuous operation. The goal is to ensure that each module’s processing
delay meets the actual requirements for ship risk warnings and to verify the system’s
robustness in the face of abnormal data, such as noise or missing data. The experiment will
run continuously for one hour. During the sliding window period, the processing delay of
the four modules (trajectory prediction, environment query, risk assessment, and decision
support) will be recorded, and the mean and standard deviation of the risk output will
be calculated.

As shown in Figure 20, we recorded the processing delay of each module every 10 s
for one hour. The experimental results demonstrate that the average processing delay
for each module remains between one and two seconds. Meanwhile, the overall system
response delay (the sum of each module’s delay) consistently remains below five seconds,
fully meeting real-time maritime warning requirements. The graph shows the “Trajectory
Prediction,” “Environment Query,” “Risk Evaluation,” and “Risk Evaluation” processes.
The overall response curve shows a smooth trend, further proving the system’s efficient
performance under long-term operation.
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Figure 20. Real time delay.

To verify the stability of the system output, we simulated the risk output data. As
Figure 21 shows, under normal operating conditions, the system’s risk output averages
about 15%, and the standard deviation of the fluctuations averages about 0.8%, indicating
minimal fluctuation. Next, we intervened in the 30–40 min abnormal data segment in the
simulated abnormal data scenario. Although the risk output was somewhat affected by
increased localized fluctuations, the overall output increased slightly, and the standard
deviation remained within a manageable range within the sliding window. Figure 21
visualizes the change in uncertainty of the risk output during normal and abnormal periods
through the filled area and error bars. This indicates that the system can maintain high
output stability and anti-jamming ability under abnormal data environments.

Figure 21. Schematic representation of the stability of the model.

The robustness testing under abnormal data conditions (30–40 min segment in
Figure 21) demonstrates the system’s capability to handle real-world deployment chal-
lenges including sensor failures, communication interruptions, and environmental inter-
ference. This validation is crucial for shipboard deployment where data quality cannot be
guaranteed, confirming the framework’s suitability for practical maritime applications.
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4.2.3. Cross-Domain Generalizability and Baseline Comparison

To validate the effectiveness of the proposed method (hereinafter referred to as Ours,
Bayes+Seq), we conducted comparisons under the same data partitioning and prepro-
cessing pipeline against three representative SOTA baselines: Graph Attention + GRU
(GAT-GRU), Graph Convolution + Transformer (GCN-Trans), and Multi-Agent Reinforce-
ment Learning (MARL) for policy evaluation. All models were independently tuned on
the validation set, with consistent temperature scaling applied to reduce threshold shift.
Evaluation metrics covered both discrimination and calibration, as well as task-related and
engineering usability indicators: Area Under the Receiver Operating Characteristic Curve
(AUC-ROC, denoted as AUC), Area Under the Precision-Recall Curve (PR-AUC, denoted as
PR), Brier Score (Brier), Negative Log-Likelihood (NLL), Expected Calibration Error (ECE),
recall under the red-alert threshold of p ≥ 0.9 (Recall@Red), time-to-event for red alerts
(TTE), trajectory error (ADE/FDE/Point- mean absolute error (MAE), SOG/COG-MAE),
avoidance gain (DCPA/TCPA), as well as End-to-End latency, throughput (Hz), and GPU
memory usage. Corresponding results are shown in Figures 22–24.

 

(a) (b) 

Figure 22. (a) Reliability (with Wilson 95% Wilson 95% confidence intervals (CIs)) (b) Multi-metric
heatmap (single-disadvantage setting).

Figure 23. Lead Time (TTE) CDF.
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(a) (b) 

Figure 24. (a) DCPA/TCPA Improvement (skewed, occasional failures) (b) Trajectory metrics heatmap
(single-disadvantage setting).

From the perspective of discrimination and calibration, Figure 22a,b show that Ours
leads in both AUC and PR, with significantly lower Brier, NLL, and ECE scores. The
reliability curve aligns more closely with the ideal diagonal and exhibits a narrower Wilson
95% confidence interval, indicating that the probability outputs are both accurate and
stable. In high-precision alert scenarios, Ours achieves higher Recall@Red; the cumula-
tive distribution of TTE in Figure 23 is shifted rightward overall, indicating that under
the same high-precision conditions, Ours provides valid alerts earlier, thereby allowing
more response time for operators. Additionally, the simultaneous rise observed at the
right tail of the cumulative distribution function (CDF) is due to the upper bound and
quantization effects introduced by the evaluation window and sampling period, which is a
normal characteristic.

Task-related results are similarly consistent. Figure 24b shows that Ours achieves
lower errors in ADE/FDE/Point-MAE and SOG/COG-MAE; the box plot in Figure 24a
indicates that Ours attains higher median improvement in DCPA/TCPA with a shorter
heavy tail and a lower proportion of sporadic failures, demonstrating robust performance
gains. Furthermore, the posterior evidence weight in The previous experiment shows
that factors such as distance band, relative bearing, and speed contribute substantially
to the model posterior, which aligns with collision avoidance mechanisms and practical
experience, enhancing the interpretability of the method.

In terms of engineering usability, Figure 25a,b show that Ours has lower module and
End-to-End latency, as well as lower memory usage, making it suitable for deployment
on edge devices. The only observed drawback is in throughput: MARL, leveraging the
parallelism of policy evaluation, slightly outperforms Ours in Hz, whereas the Bayesian
sequential updates and uncertainty estimation in Ours introduce additional computational
overhead. This trade-off does not alter the overall conclusion and can be mitigated through
engineering strategies such as batch inference and operator fusion without sacrificing core
discrimination and calibration performance.
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Figure 25. (a) Decision Effectiveness (de-synchronized, colored noise) (b) End-to-End Latency (lower
is better).

In summary, in a systematic comparison with GAT-GRU, GCN-Trans, and MARL,
Ours achieves consistent and superior performance across most key dimensions including
discrimination, calibration, early alerting, trajectory accuracy, avoidance gain, latency,
and memory efficiency, with only a reasonable engineering trade-off in throughput. This
demonstrates that the proposed method offers comprehensive advantages in both safety
and deploy ability.

5. Discussion
5.1. Scalability and Future Technology Integration

Positioning relative to Kochenderfer-style POMDP planners. Our end-to-end frame-
work can be viewed as a structured approximation to a POMDP policy: it preserves the
belief-centric information flow and risk-aware decision semantics championed by Kochen-
derfer, but replaces a general online planner with (i) a learned short-horizon transition
surrogate and (ii) an interpretable Bayesian belief updater tailored to ENC/AIS features.
This hybridization (learning + graphical inference) yields predictable sub-second latency
and transparent posteriors for shipboard HMIs, at the cost of weaker optimality guarantees
than full belief-tree search. Future work could integrate chance-constraints and limited-
horizon belief-space rollout on top of our risk head to narrow this gap [49], while keeping
compute within maritime edge budgets.

Fleet-Wide Deployment Strategy: The framework supports systematic scaling from
individual vessels to fleet-wide implementation: (1) Standardized Implementation: Con-
sistent risk assessment protocols across vessel types and operators enable comparative
performance analysis and best practice sharing; (2) Centralized Monitoring: Fleet operators
can aggregate risk intelligence to identify high-risk routes, seasonal patterns, and system-
atic improvement opportunities; (3) Continuous Learning: Machine learning components
benefit from expanded deployment data, improving prediction accuracy through increased
training examples and edge case identification.

Emerging Technology Compatibility: The system architecture accommodates inte-
gration with developing maritime technologies: (1) Autonomous Systems Support: Risk
prediction capabilities provide essential input for autonomous navigation decision-making
algorithms and can serve as safety validation for unmanned vessel operations; (2) Shore-
Based Integration: Risk assessments can inform Vessel Traffic Services (VTS) operations
and port authority decision-making through data sharing protocols; (3) Advanced Sensor
Integration: Framework can incorporate additional sensor systems (marine radar, LiDAR,
weather stations) to enhance environmental awareness and prediction accuracy.
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Regulatory Evolution and Standards Development: As maritime regulations evolve
toward performance-based standards, the framework provides: (1) Objective Risk Met-
rics: Quantitative risk assessments support evidence-based regulatory compliance and
can inform development of performance-based navigation standards; (2) Continuous
Performance Monitoring: Real-time performance tracking enables adaptive safety man-
agement and regulatory reporting of navigation system effectiveness; (3) Industry Stan-
dards Contribution: Implementation experience contributes to development of indus-
try standards for intelligent navigation systems and human–machine interface design in
maritime applications.

5.2. Practical Implications

For shipboard use, we apply a light, parameter-level site tuning strictly within our
three components (Figure 26). (i) Trajectory predictor: set the online sampling to the local
AIS rate (≈1 Hz) and keep the current sequence length; use the one-step residual scale per
speed band (from our residual diagnostics) to gate downstream risk scoring. (ii) Bayesian
risk model: refit priors/feature weights with local CPA/TCPA, obstacle distance, depth
band, and metocean context, and keep the paper’s default alert levels—collision >70%
→ ±15◦ heading, grounding >60% → −30% speed. When a site prefers a cost-aware
choice, thresholds can be selected by minimizing expected cost vs. probability threshold
(Figure 26), and we apply simple hysteresis/dwell to stabilize alerts. (iii) ENC/environment
constraints: we retain depth-based risk bands and width margins to filter infeasible actions
and define a navigable corridor (Figure 27b).

Figure 26. Site tuning and shipboard flow.

 

 

(a) (b) 

Figure 27. (a) Expected cost vs. threshold (b) Depth/width constraints and corridor.
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Pilot acceptance: before enabling advisory actions, a 30–60 min pilot run must meet
the reported targets on lead time, false-alarm rate, and End-to-End latency (see accep-
tance table).

Our dataset and default parameters are tuned in the Yangtze Estuary (Shanghai); other
waterways and ship types are expected to work after the same light site tuning in Figure 26
(inputs/thresholds/margins may differ), while high-latitude/ice conditions and >1 Hz fast
ferries are out of scope unless higher-rate inputs are available; when metocean feeds drop,
the HMI is flagged and conservative defaults are used.

5.3. Engineering Expansion and Integration Path

As Maritime Autonomous Surface Ships (MASS) become more popular, predicting
risk in mixed traffic scenarios will be a key challenge. In the future, we must focus on inter-
action modeling methods for human–machine collaboration. This includes the dynamic
coupling mechanism between unmanned ship path planning and manned ship behavioral
patterns; the DCPA/TCPA-based conflict resolution strategy for heterogeneous ships; and
the compliance verification framework for autonomous collision avoidance decisions. To
adapt to the resource constraints of ship-embedded systems, model lightweighting and
edge computing deployment are imperative. Compressing the parameter scale of the
LSTM-CNN-Attention model using the knowledge distillation technique and designing an
FPGA gas pedal to optimize the parallel computing efficiency of Bayesian inference are
expected to achieve a 15 ms real-time response on the NVIDIA Jetson platform. This lays
the foundation for the practical deployment of ship-embedded systems.

5.4. Limitations/Threats to Validity

We summarize validity threats and mitigations and defer details to Table 5. Internal
threats include AIS noise/missing data and potential overfitting; we mitigate via time-
series/spatial outlier filtering, temporal splits, and leakage-free validation. Construct
validity concerns arise from risk proxies/thresholds; we audit thresholds against COLREG-
consistent rules and expert feedback. External validity is limited by geography and ship
types—our data and tuning focus on the Yangtze Estuary. Seasonal/tidal effects and rare
extreme events also add uncertainty. Finally, dependence on AIS/ENC coverage may
degrade performance; offline fallback and updates reduce but do not eliminate this risk.

Table 5. Validity threats and mitigations and defer details.

Category Threat Mitigation Evidence/Metric Residual Risk

Data quality AIS
noise/missing/outliers

Time-series & spatial
outlier filtering;

resam-
pling/interpolation

Clean set stable
under 20–30%
perturbation

Medium

Overfitting/
selection bias

Training set shift
vs. deployment

Temporal split, early
stopping, dropout;

leakage-free CV

Stable validation
MAE; no

leak detected
Low-Medium

Construct validity
Risk proxies/thresholds

may misrepresent
true risk

Ground rules from
COLREG & expert

input;
ablation checks

Threshold audits
documented Medium

Geographic
external validity

Model trained in
Yangtze Estuary

(Shanghai)

Transfer via
small-scale

calibration &
stress tests

External tests
pending Medium
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Table 5. Cont.

Category Threat Mitigation Evidence/Metric Residual Risk

Ship-type
external validity

Fast ferries, fishing
boats, large

tankers differ

Behavior clustering +
type-specific tuning

Observed variability
5–12% Medium

Temporal/seasonal
effects

Seasonality/tide/weather
under-modeled

Add seasonal/tidal
features; expand

data coverage
Planned extension Medium

Infrastructure
dependence

Sparse AIS or
outdated ENC

Local cache, offline
fallback,

update checks

Degradation under
poor coverage Medium

Rare events Few extreme near-miss/
grounding cases

Minority-aware
sampling +
rule priors

Tail risk uncertainty
acknowledged Medium

6. Conclusions and Outlook
6.1. Summary of Contributions

This study proposes an End-to-End navigation risk prediction framework for smart
ships. This framework realizes synergistic optimization of ship trajectory prediction and
dynamic risk assessment by deeply fusing deep time series modeling and Bayesian proba-
bilistic inference. The research’s innovations are reflected in three aspects: a multimodal
data fusion architecture, a hybrid modeling methodology, and a closed-loop decision
support mechanism. The three-stage, progressive “data sensing–intelligent computing–
decision output” architecture realizes real-time, synergistic processing of AIS trajectory data
and electronic nautical chart environmental information for the first time. This improves
trajectory prediction accuracy to a latitude/longitude MAE of ≤0.0015◦ through a sliding-
window mechanism and fast spatial database retrieval. The proposed LSTM-CNN-Multi
Head Attention composite neural network combined with the conditional probabilistic
reasoning of a Bayesian network achieves a collision risk prediction accuracy of 89.7%
using measured data from the Yangtze River estuary. The developed closed-loop feedback
system generates an optimization scheme that adjusts the speed by up to 30% and corrects
the heading by up to 15◦ when the collision probability exceeds 70%. Experiments show
that, on average, the risk level decreases by 8.2 percentage points after the decision-making
intervention and the response latency stabilizes within 4.5 s. This is consistent with the
IMO’s real-time requirements for navigational safety systems.

6.2. Outlook

Although the current framework has made significant progress, future research must
expand the capacity for multi-source, heterogeneous data fusion. Currently, environmental
sensing relies primarily on static electronic chart data. There is an urgent need to integrate
satellite remote sensing images and real-time dynamic information from shore-based
radar in order to construct a four-dimensional (space + time) risk assessment model.
For instance, incorporating wave spectrum analysis (e.g., Joint North Sea Wave Project
(JONSWAP) spectral parameter estimation) and meteorological frontal tracking technology
can greatly enhance prediction accuracy in severe sea conditions. Additionally, to address
the limitations of the “black box” nature of deep learning models, a feature attribution
tool based on Shapley Additive Planations (SHAP) HAP values combined with a visual,
conditional, probabilistic analysis of Bayesian networks is necessary to make the risk
inference process comply with the auditability requirements of the COLREG rules.
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This research provides a new technical paradigm for ship navigation safety, and its
results can be extended to port intelligent dispatching and maritime emergency response
fields. As maritime big data and artificial intelligence technology continue to advance,
minute-level risk warnings in port waters could be realized within the next three to five
years. This development will propel the shipping industry toward its “zero accident” goal.
Subsequent work will focus on building an intelligent maritime ecosystem that covers the
entire voyage and all elements. This ecosystem will provide core support for the digital
transformation of the global shipping industry.
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