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Abstract

Conventional acoustic positioning systems are typically confined to regions where direct-
path measurements are available. However, in long-range underwater environments,
acoustic rays undergo multiple reflections at the sea surface and seafloor, complicating the
modeling of sound speed and introducing uncertainty due to seafloor bathymetric errors.
To address these challenges, a high-precision positioning technology suitable for long-range
deep-sea scenarios is proposed. This technology constructs an effective sound speed model
based on ray-tracing principles to accommodate multipath propagation. To mitigate model
errors caused by inaccurate seafloor bathymetry, a sound speed compensation mechanism
is introduced to enhance the precision of reflected-path measurements. The experimental
results demonstrate that, with an array baseline of 8 km, the proposed method reduces
the maximum ranging error over a 50 km horizontal distance from 137.9 m to 15.5 m. The
root-mean-square positioning error is decreased from 157.9 m to 31.0 m, representing an
improvement in positioning precision of 80.4%. These results confirm the feasibility of
high-precision long-range acoustic positioning.

Keywords: long-range acoustic positioning; effective sound speed; acoustic ray reflection;
bathymetric error compensation

1. Introduction
Autonomous underwater vehicles (AUVs) play a vital role in marine scientific explo-

ration, resource development, and environmental monitoring [1]. To perform long-duration
underwater missions effectively, robust autonomous navigation and positioning capabili-
ties are essential. Acoustic positioning systems, which are unaffected by water depth and
capable of continuous operation under all weather conditions, provide AUVs with reliable
long-term navigation support [2–5]. However, the operational range of existing acoustic
positioning systems is largely confined to regions where direct-path acoustic transmission
is available [6–8]. This limitation significantly constrains the coverage and operational
flexibility of AUVs, making it difficult to meet the growing demands of large-scale ocean
observation and offshore operations [9–12]. Therefore, overcoming the reliance on direct-
path propagation and extending positioning capabilities into long-range reflected-path
regions has become a critical bottleneck that must be addressed in the advancement of
underwater navigation technologies.
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Acoustic positioning systems typically determine the target’s position by measuring
acoustic travel times to multiple seafloor transponders, converting them to distances
using a sound speed model, and solving geometric intersection equations [13–16]. The
current deep-sea positioning systems can achieve a measurement precision better than
10 m using a 10 kHz signal at a depth of 3000 m and a range of 11 km [17,18]. Zhang et
al. considered the effects of Earth’s curvature and Doppler shifts, achieving a root-mean-
square positioning error of 14 m within the longest distance of 20 km using a low-frequency
3 kHz signal [19]. However, as the range increases beyond 20 km, the direct path usually
disappears due to geometric shadowing. Acoustic signals inevitably undergo multiple
reflections at the sea surface and seafloor. This gives rise to a complex multipath structure,
significantly increasing the difficulty of sound speed modeling [20,21]. In this context,
the sensitivity of reflected paths to environmental disturbances is considerably enhanced.
Sound speed profile (SSP) changes, sea surface fluctuations, and bathymetric errors can all
cause propagation path deviation, thereby interfering with ray tracing results and leading
to sound speed estimation deviation [22]. Consequently, in long-range scenarios dominated
by multipath propagation, traditional acoustic positioning technologies based on the direct-
path assumption are ineffective because they cannot accurately describe the reflected paths
and their error propagation mechanisms, which greatly increases positioning error.

Traditional sound speed estimation technologies mainly include weighted average
sound speed (WASS), equivalent sound speed profile (ESSP), and effective sound speed
(ESS) [23–25]. WASS calculates a weighted average of sound speed values within the
profile, offering the advantage of high computational efficiency. However, it fails to
account for the effects of ray bending and reflections in underwater environments. ESSP
simplifies ray tracing by assuming a constant-gradient SSP, but it is typically applied
only in short-range multibeam sonar systems within tens of meters [26]. As a sound
speed correction method based on the principle of ray tracing, ESS offers a good balance
between modeling precision and computational efficiency, and it has been widely applied
in acoustic positioning systems [27]. Recently, researchers have successively proposed
several strategies to optimize the effective sound speed table (ESST), including genetic
algorithms, particle swarm optimization, and B-spline surface fitting methods [28–30].
These have shown excellent performance in direct-path regions. However, in long-range
acoustic propagation, the sound field is no longer dominated by a stable and predictable
direct path. Instead, it is formed by the superposition of numerous reflected paths, resulting
in a highly complex relationship between travel time and sound speed, which has not been
adequately investigated or addressed by existing sound speed estimation methods.

Under long-range conditions, acoustic propagation paths exhibit stronger sensitiv-
ity to environmental perturbations. In practical applications, SSP datasets are collected
using conductivity temperature depth (CTD) or sound velocity profilers (SVPs), which
provide relatively accurate measurements. The influence of sea surface disturbances is
also controllable [31]. However, bathymetric error is a major uncontrollable error source in
measurement systems due to their hidden nature and the limitations of database resolution
and precision [32,33]. The commonly used seafloor bathymetry databases include Earth
Topography (ETOPO), Technical University of Denmark (DTU), and General Bathymetric
Chart of the Oceans (GEBCO) [34]. Previous studies have shown that, in typical deep-sea
areas such as the South China Sea, the bathymetry values recorded in these databases have
measurement errors within 88 m compared to actual ship-based multibeam data [35,36].
Specifically, in this sea area, the standard deviation of seafloor bathymetry is 30 m, with
87.2% of the data having errors less than 50 m, and errors are larger in areas like seamounts
and trenches. Liu et al. proposed a seafloor topography distortion correction method based
on SVP inversion to improve measurement precision [37]. Chao et al. proposed a correction
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method for bathymetric error caused by the effect of seafloor topography slope at the
footprint scale. It was used to correct data collected in the South China Sea and verified by
the bathymetric data captured by a ship-borne multibeam echo sounder [38]. Nevertheless,
in scenarios involving long-range reflected paths at low grazing angles, unknown seafloor
topographic deviations no longer manifest as simple vertical offsets. They alter the overall
geometry of the acoustic ray paths, introducing complex and nonlinear systematic errors.
This error propagation mechanism can cause significant and unpredictable deviations
in ranging results, posing a major obstacle to long-range positioning. In most practical
applications, it is unrealistic to obtain large-scale high-resolution bathymetric maps through
comprehensive inversion over vast ocean areas. The more fundamental challenge lies in
accurately modeling and correcting the ranging model bias caused by bathymetric errors
using only limited external calibration data.

To solve the problems of estimating sound speed in reflected paths and how errors in
seafloor topography affect measurement precision, this paper suggests a new technology
for precise acoustic positioning over long ranges. Based on the principle of ray tracing, it
extends the ESS concept to longer ranges and constructs a basic sound speed model for
long-range multipath propagation. Simultaneously, starting from the geometric changes
regarding propagation paths, the technology establishes an analytical relationship between
bathymetric error and the influence on the sound speed model. A compensation strategy is
proposed to improve the precision of sound speed estimation and distance measurement
for reflected paths. This paper validates the technology’s feasibility through deep-sea
experiments, expands the effective range, and compensates for model deviation caused
by bathymetric error. These results provide a new approach for achieving high-precision
long-range positioning in deep-sea environments.

The remainder of this paper is organized as follows: Section 2 describes the basic
principles of acoustic positioning and ESS. Section 3 details the proposed method, which
includes long-range multipath sound speed modeling and positioning correction based
on compensation for bathymetric error. Section 4 describes the simulation experiments,
analyzing the construction of the multipath sound speed model, the impact of bathymetric
errors, and the effectiveness of the proposed method. Section 5 presents the deep-sea
experimental results. The conclusion is provided in Section 6.

2. Basic Principles
2.1. Principle of Acoustic Positioning

The spherical intersection model is commonly used in acoustic positioning, where
distance measurements are used to construct intersection equations for solving the tar-
get position in the array coordinate system. The fundamental observation equation is
provided by

di = ∥X − Xi∥ , i = 1, . . . , N (1)

where i is the number of seafloor beacons. Let the spatial coordinates of the seafloor beacon
i and the target be denoted as Xi = [xi, yi, zi]

T and X = [x, y, z]T.
The positioning model is illustrated in Figure 1. When three beacons are available,

the target position can be uniquely determined. If more than three beacons are deployed,
the position can be estimated using the least squares method. The positioning equation
corresponding to the i th observation is formulated as

fi =
√
(x − xi)2 + (y − yi)2 + (z − zi)2 − di = 0 (2)
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Figure 1. Schematic of the positioning model.

Assuming an initial estimate of the target position denoted as X0, the final position
is obtained using a nonlinear iterative method. The iterative update equation can be
written as

X = X0 + ∆X (3)

∆X = (AT A)
−1

AT F (4)

where

A =

(
∂( f1, f2, . . . , fN)

∂(x, y, z)

)
X0

F =
(
[ f1, f2, . . . , fN ]

T
)

X0

It can be seen that the positioning error ∆X is primarily determined by matrices A and
F, where A is governed by the geometric configuration between the target and the beacons,
and F represents the ranging errors.

The precision of positioning largely depends on distance measurements, which in turn
rely fundamentally on accurate estimations of both travel time and sound speed. The travel
time is recorded through a time-synchronization mechanism between the target and the
beacons. Due to multipath propagation in underwater environments, a single beacon may
receive multiple arrival time signals corresponding to different propagation paths. Then,
the set of propagation times for the M acoustic rays received by beacon i is provided by

Ti = {ti1, ti2, . . . , tiM} (5)

In long-range positioning scenarios, the direct path disappears, and reflected paths
dominate. The resulting propagation paths are complex and non-unique, leading to in-
creased distance measurement uncertainty. The distance measurement error can be ex-
pressed as

fi(x, y) = cij · ∆tij + ∆cij · tij (6)

where cij, ∆tij, and ∆cij represent the sound speed, time measurement error, and sound
speed estimation error, respectively, for the j-th propagation path between the target and
beacon i.

When the system has good time synchronization precision and employs precise time-
delay detection methods, the time measurement error can be controlled within a relatively
small range. As a result, the sound speed estimation error becomes the main factor affecting
the system’s precision, and its impact is linearly amplified with increasing travel time. In
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classical positioning methods, the sound speed is typically treated as a constant (usually
1500 m/s), which inevitably introduces significant errors. Therefore, accurate sound speed
estimation is one of the key challenges in long-range positioning.

2.2. Principle of ESS

ESS is defined as the ratio of the slant range between the source and the receiver to the
travel time, and is expressed as

c =
d
t
=

√
χ2 + (zs − zr)2

t
(7)

where χ is the horizontal distance, zs is the source depth, and zr is the receiver depth.
The depths are typically measured in situ using pressure sensors or other measurement
instruments and are treated as known parameters.

Sound speed estimation methods primarily rely on ray tracing theory, in which acous-
tic ray propagation at any depth follows Snell’s law, provided by

cos θ(z)
c(z)

= ρ (8)

where c(z) and θ(z), respectively, represent the sound speed and grazing angle at depth z,
and ρ is the ray parameter provided by Snell’s law.

Figure 2 is a schematic diagram of ray tracing. The differential element of horizontal
propagation distance can be obtained by extracting an infinitesimally small segment of the
acoustic ray at point A:

dχ =
dz

tan θ
(9)

Figure 2. Schematic diagram of ray tracing.

By integrating along the ray path, the total horizontal distance can be expressed as

χ =

zr∫
zs

ρc(z)√
1 − ρ2c(z)2

dz (10)

The travel time can be obtained as follows:

t =
zr∫

zs

1

c(z)
√

1 − ρ2c(z)2
dz (11)
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The SSP is divided into I layers along the depth direction, and the gradient in each
layer is assumed to be constant, expressed as

gi =
c(zi+1)− c(zi)

zi+1 − zi
(12)

The propagation time and horizontal distance are deduced by the following:

χ =
I−1

∑
i=0

1
giρ

|sin θ(zi)− sin θ(zi+1)| (13)

t =
I−1

∑
i=0

∣∣∣∣ 1
gi

ln
[

tan
(

θ(zi+1)

2
+

π

4

)
/tan

(
θ(zi)

2
+

π

4

) ]∣∣∣∣ (14)

Therefore, the ESS can be expressed as

c =

√
(

I−1
∑

i=0

1
giρ

|sin θ(zi)− sin θ(zi+1)|)
2

+ (zs − zr)2

I−1
∑

i=0

∣∣∣ 1
gi

ln
[
tan
(

θ(zi+1)
2 + π

4

)
/tan

(
θ(zi)

2 + π
4

) ]∣∣∣ (15)

Unlike direct-path propagation, long-range acoustic rays undergo reflections at the sea
surface or seafloor before reaching the receiver. In such cases, sound speed calculation must
account for the change in the sign of the grazing angle during reflection. The boundary
condition can be expressed as

θ(zi+1) = −θ(zi) (16)

The sound speed modeling and its application for reflected paths are more complex,
and the position of the boundary reflection points will be influenced by the seafloor
topography depth. Under conditions of accurate SSP measurement, if the actual seafloor
depth deviates, it will change the sound ray’s reflection points, ultimately leading to overall
changes in horizontal distance, travel time, and ESS. Therefore, it is necessary to construct
a sound speed model for reflected paths. Furthermore, the impact of bathymetric error on
sound speed and distance measurement needs to be considered, thus achieving long-range
high-precision ranging.

3. Proposed Method
Addressing the challenges brought by long-range deep-sea measurement, namely

sound ray reflection leading to complexity in sound speed estimation and the problem of
the bathymetric error increasing distance measurement uncertainty, this paper proposes a
high-precision reflected-path-based positioning technology. The entire workflow of this
method is illustrated in the flowchart in Figure 3. As shown, the method consists of
two main components: long-range reflected-path sound speed modeling and positioning
correction based on compensation of bathymetric error. The partitioned effective sound
speed table (PESST) is constructed based on the number of reflections along each prop-
agation path. Starting from the geometric variations of propagation paths, a response
expression is derived to quantify the impact of bathymetric error on the measurement.
Topography-Compensated PESST (TC-PESST) is developed, enabling sound speed com-
pensation for reflected paths and improving measurement precision under long-range
deep-sea conditions.
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Figure 3. Algorithm flowchart.

3.1. Long-Range Reflected-Path Sound Speed Modeling

The construction of a long-range sound speed model requires a regional strategy based
on propagation characteristics, such as the initial grazing angle, the number of surface
reflections, and the number of seafloor reflections. They determine the spatial distribution
of ray paths and their relative contributions to distance measurement. A propagation path
involving m surface reflections and n seafloor reflections is assigned to the propagation
region ℜm,n, defined as

Rm,n =
{

φ ∈ R+
∣∣ m surface reflections, n seafloor reflections

}
(17)

For each propagation region, an independent mapping function between travel time
and ESS can be constructed, expressed as

cm,n(t) =
dm,n(t)

t
(18)

dm,n(t) =

√√√√( L

∑
i

χi

)2

+ (zs − zr)
2 (19)

where L = m + n + 1 is the number of path segments, and χi is the horizontal distance of
the ith segment.

The seafloor topography information required for modeling is obtained from a bathy-
metric database, which provides topography profile data along the line connecting the
initial estimated target position and the beacon. By combining Equations (15) and (18), the
travel time and corresponding ESS for various paths at different distances can be derived.
Subsequently, these values are fitted through polynomial interpolation to generate a table
that can be looked up in real time. The sound speed functions for each propagation region
collectively form the complete PESST, and its structure is defined as follows:

CPESST(t) =
{

cm,n(t)
∣∣∣ (m, n) ∈ N2, t ∈ Tm,n

}
(20)

where Tm,n represents the travel time range corresponding to the first-arriving ray path
under the current transmission distance condition. When such ray paths disappear due to
energy loss or other reasons, their corresponding ESS terminates, and the system enters
the next propagation region. PESST completes region matching and sound speed esti-



J. Mar. Sci. Eng. 2025, 13, 1898 8 of 26

mation through discretely stored data, achieving basic modeling of long-range multipath
sound speed.

3.2. Positioning Correction Based on Compensation of Bathymetric Error

Disturbances in ocean boundary conditions affect the precision of sound speed estima-
tion for reflected paths. To account for this, the sound speed model can be corrected as

C(t) = CPESST(t) + ∆c(t) (21)

where ∆c(t) represents the sound speed deviation at the travel time t.
By combining Equations (13) and (21), the starting and ending points of the reflected

path segments typically correspond to the source depth, the receiver depth, or the sea
surface or seafloor reflection points. Therefore, the bathymetric error has become a primary
source of sound speed estimation error, and its error transfer equation can be written as

∆c(t) =
∂c(t)
∂H

· ∆H = K(t) · ∆H (22)

where H is the seafloor depth, ∆H is the bathymetric error, and K(t) represents the sensi-
tivity coefficient of sound speed to the bathymetric error.

To derive the sensitivity coefficient K(t), we must first quantify how a bathymetric
error, ∆H, impacts the fundamental ray parameters of horizontal distance, χ, and travel
time, t. For a path with n seafloor reflections, these effects can be expressed through
integration over the error segment. Under the condition of a fixed initial grazing angle, the
effects of the bathymetric error on horizontal distance and travel time can be expressed as

∆χ=2n
H+∆H∫

H

ρc(z)√
1 − ρ2c(z)2

dz (23)

∆t = 2n
H+∆H∫

H

1

c(z)
√

1 − ρ2c(z)2
dz (24)

Since ∆H ≪ H, the sound speed varies little within the range [H, H + ∆H] and can be
approximated as a constant c(H). This reasonable approximation allows us to simplify the
integrals into the following linear relationships:

∆χ ≈ K1∆H , K1 =
2nρc(H)√
1 − ρ2c2(H)

(25)

∆t ≈ K2∆H , K2 =
2n

c(H)
√

1 − ρ2c2(H)
(26)

With the deviations in horizontal distance and travel time established, their combined
effect on the ESS can now be determined. By taking the total derivative of the ESS definition,
the sound speed deviation, ∆c, can be expressed as follows:

∆c =
∂c
∂d

∆d +
∂c
∂t

∆t =
∆d
t

− d∆t
t2 (27)

where the slant range deviation, ∆d, is primarily driven by the change in horizontal distance,
∆χ:

∆d =
∂d
∂χ

∆χ =
χ√

χ2 + (zs − zr)
2
· ∆χ (28)
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By substituting the expressions for ∆t and ∆χ into Equations (27) and (28), respectively,
the full relationship between the sound speed deviation and the bathymetric error can be
established as

∆c(t) =

 χ

t
√

χ2 + (zs − zr)
2

K1 −

√
χ2 + (zs − zr)

2

t2 K2

 · ∆H (29)

Therefore, K(t) can be further derived as

K(t) =

 χ

t
√

χ2 + (zs − zr)
2

K1 −

√
χ2 + (zs − zr)

2

t2 K2

 (30)

The variable K(t) characterizes how the bathymetric error propagates through hori-
zontal distance and travel time error to affect sound speed estimation. Under fixed travel
time conditions, the sound speed estimation error exhibits a linear relationship with the
bathymetric error.

The bathymetric error is the deviation between the actual seafloor depth and the
seafloor depth obtained from the database. Its acquisition method can usually be either
directly measured using high-precision pressure sensors at reference points in the cur-
rent experimental area or indirectly calculated by sound speed inversion in multipath
overlapping areas. The final expression for the TC-PESST is

CTC−PESST(t) = CPESST(t) + K(t)∆H (31)

While retaining the multipath structure characteristics, this correction model effectively
incorporates the dynamic modulation mechanism of the bathymetric error on sound speed
estimation, optimizes the reflected path sound speed model, and improves long-range
distance measurement precision. To fully elaborate on the correction process, it is crucial
to define ∆H as an equivalent bathymetric error. This parameter is not intended to be a
precise geophysical measurement of the seafloor but rather a powerful data-driven lumped
parameter. Its purpose is to correct for the net discrepancy between the idealized PESST
model and the complex reality of acoustic propagation. The inversion of ∆H is thus a
calibration procedure. At a reference point where the ground-truth distance is known,
the true ESS can be determined. The difference between this true sound speed and the
one predicted by the initial PESST model constitutes the total model error. Leveraging the
topography sensitivity coefficient K(t) derived in Equation (30), it can then analytically
solve for the single scalar value of ∆H that accounts for this observed error. This calibrated
∆H is then applied to the entire TC-PESST model, as shown in Equation (31), effectively
aligning the model with the real-world conditions.

The final distance measurement process is as follows (Algorithm 1):

Algorithm 1 Proposed Method for Long-Range Positioning

Require:
SSP
Target depth (zs)
Beacon depth (zr)
The travel time between target and beacon i (ti)
Topography data from GEBCO
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Algorithm 1 Cont.

Ensure:
Final corrected target position (X)
return
(1) Perform ray tracing in a flat seafloor environment using zs, zr, and SSP.
(2) Obtain the initial distances between the target and each beacon to estimate an initial
position.
(3) Retrieve the topography profile between this position and each beacon from the
database.
(4) Under the current bathymetric conditions, obtain the PESST and derive the initial
sound speed model cTC−PESST(t).
(5) Use the reference point to obtain the equivalent bathymetric error value ∆H.
(6) Compensate for the sound speed deviation by ∆c = K(t)∆H.
(7) Obtain corrected TC-PESST.
(8) Compute final distance: di = CTC−PESST(ti) · ti.
(9) Obtain the corrected positioning result (X).

3.3. Computational Complexity and Real-Time Feasibility Analysis

A critical aspect for any AUV navigation algorithm is its feasibility for real-time
implementation on computationally constrained onboard systems. The proposed TC-PESST
method is designed with this consideration in mind by decoupling the computationally
intensive modeling from the real-time operational tasks. The process is divided into an
offline pre-computation stage and an online real-time operational stage.

1. Offline pre-computation: The offline stage, performed on a shore-based computer,
involves extensive ray tracing to generate the PESST and the topography sensitivity
coefficient table, K(t). Let I be the number of SSP layers, R the number of (surface,
bottom) reflection regions, and NR the number of discretized travel-time samples per
region. Constructing the PESST evaluates the ray geometry and fits the mapping
dm,n(t) for each region. This stage requires O(RNR I) arithmetic operations and stores
O(RNR) tabulated values.

2. Online real-time operation: The online stage, executed on the AUV’s onboard pro-
cessor, is highly efficient. For each acoustic ping, we (i) locate the active region,
(ii) perform one binary search over the NR entries followed by a local polynomial
interpolation, and (iii) solve a least-squares problem over N beacons. Steps (i)–(ii)
take O(log2NR) +O(1); step (iii) is O(N3) in the worst case but constant in practice
as N is small (≤4). Thus, the online stage has bounded time and memory and is
appropriate for real-time usage.

In summary, for high-precision positioning across such large operational scales, the
initial computational investment in offline ray tracing is both justified and unavoidable.
This preparatory phase, which generates essential a priori data, is precisely what guar-
antees the high efficiency of the AUV during real-time operations. To place the online
performance in context, the acoustic propagation time over a 50 km distance is on the order
of tens of seconds, whereas the computational latency of the online algorithm is in the
millisecond range. Therefore, the processing delay is negligible when compared to the
physical measurement period.

4. Simulation Analysis
To comprehensively and systematically evaluate the performance of the proposed

method, this section presents a series of simulation experiments. The basic simulation setup
is first introduced, followed by a conceptual explanation of the proposed long-range sound
speed modeling framework. The influence of the topography-induced error on ranging
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precision is then analyzed under representative bathymetric error scenarios. Finally, the
effectiveness of the method is quantitatively evaluated.

4.1. Simulation Setup

The simulation experiments presented in this section were designed to evaluate the
proposed method. Specifically, the acoustic ray tracing was performed using the BELLHOP
toolbox, and the subsequent long-range positioning algorithms were implemented in
MATLAB (Version R2022b). The experimentally measured SSP is shown in Figure 4. In
the simulation, the target is located at a depth of 10 m, and the beacons are positioned at a
depth of 3400 m. To simplify the model and highlight the influence of bathymetric errors, an
idealized flat seafloor is defined as the ground-truth topography, with a constant depth of
3500 m. The initial bathymetric database used in the method is generated by superimposing
a specific error model onto the true topography. The expression is provided by

H0(x) = Htrue(x) + ∆H(x) (32)

where x denotes the distance, H0 represents the initial bathymetric data, and ∆H denotes
the bathymetric error modeled by different error scenarios.

(a) (b)

(c) (d)

Figure 4. Spatial distribution of ESS in deep-sea environments. (a) Measured SVP. (b) Source
depth = 10 m. (c) Source depth = 1100 m. (d) Source depth = 3400 m.

GEBCO integrates measurement data of varying quality and resolution using spatial
interpolation, resulting in a gridded model with a resolution of 15′′, corresponding to a
horizontal precision of approximately 500 m. However, due to factors such as satellite
gravity inversion, sparse shipborne measurements, and interpolation across data gaps,
the dataset contains both systematic and random errors. To realistically represent these
errors in the simulation, three representative bathymetric error scenarios are constructed,
each reflecting a different type of error commonly observed in practice. It is important
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to note that these three simplified scenarios are not intended to represent all possible
seafloor terrains but rather to serve as a tool for a systematic and controlled analysis of the
method’s response to fundamental error archetypes (i.e., constant bias, linear trend, and
periodic undulations).

Scenario 1: The error model is defined as ∆H(x) = a, representing a constant bias
in the vertical reference plane. This scenario simulates cases where the dataset contains a
constant offset, such as when the original survey data are referenced to a local mean sea
level but the offset is not properly corrected during data integration.

Scenario 2: The error model is defined as ∆H(x) = ax, representing a linear error
trend. This scenario simulates the presence of systematic gradient errors caused by the
merging of datasets from different survey areas. For example, when adjacent regions are
surveyed in different years using different equipment, the fusion of these datasets into
a unified database may introduce large-scale approximately linear slope errors near the
stitching boundaries.

Scenario 3: The error model is defined as ∆H = a sin(2πx/b), representing a smooth
periodic error added over distance. This scenario simulates regional-scale undulations
introduced by grid model interpolation. For example, in areas where historical and low-
resolution bathymetric data are used, the resulting bathymetry model often represents a
smoothed approximation of the actual seafloor. This smoothing effect can obscure periodic
geomorphological features formed by ocean currents and sedimentary processes, such as
submarine sand slopes, dunes, or ridges.

These three error models reflect typical error characteristics that may exist in practical
bathymetric datasets used in ocean applications. Based on these models, the impact of
bathymetric error on the performance of long-range acoustic positioning can be systemati-
cally analyzed.

4.2. Performance Analysis
4.2.1. Construction of the Sound Speed Model

The simulation is configured for a flat seabed environment with a water depth of
3500 m. The SSP employed is based on in situ data measured in the South China Sea.
Figure 4a presents the measured SSP, which is characteristic of a deep-water channel, fea-
turing a sound channel axis at approximately 1100 m. The subsequent panels, Figure 4b–d,
illustrate the resulting spatial distribution of the ESS for sources placed at three distinct
depths: 10 m, 1100 m, and 3400 m. These figures reveal that the source depth critically
influences this distribution. For a near-surface source (10 m, Figure 4b), the acoustic rays
experience numerous surface and bottom reflections, causing the ESS to exhibit substantial
spatial variations and periodic fluctuations at extended ranges. In contrast, a source lo-
cated at the sound channel axis (1100 m, Figure 4c) yields highly stable propagation paths,
with acoustic energy largely trapped within the channel. This results in a more uniform
distribution and a lower gradient of the ESS at long distances. For a near-bottom source
(3400 m, Figure 4d), the ESS shows attenuated variations in the upper ocean layers but
a more intricate distribution in deeper water. Comprehensive analysis confirms that the
transmitting and receiving depths jointly determine the main propagation characteristics,
which in turn determine the spatial distribution of the ESS over long distances.

The algorithm proposed herein is subsequently demonstrated using a scenario with
a target at 10 m depth and a beacon at 3400 m depth. Figure 5 illustrates the variation
in acoustic propagation paths at horizontal distances of 10 km, 20 km, 40 km, 60 km,
and 80 km. It can be observed that, as the propagation distance increases, the direct path
gradually disappears, and the acoustic rays undergo multiple reflections between the sea
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surface and the seafloor. As a result, n-th order surface–bottom reflected paths become the
dominant propagation mode for long-range positioning.

Figure 5. Illustration of sound ray at different horizontal distances.

Using the PESST modeling framework described in Section 3.1, a sound speed model
is constructed assuming a flat seafloor, and the spatial distribution characteristics of the ESS
are analyzed. Figure 6 presents the PESST, which includes the direct path, surface–bottom
reflected path, and the surface–bottom–surface–bottom reflected path. These paths reach
maximum travel times of 11.3 s, 34.7 s, and 57.8 s, with corresponding horizontal distances
of 17 km, 51 km, and 85 km. The change in dominant propagation paths leads to abrupt
adjustments in the ESS near inter-region boundaries, exhibiting a typical discontinuity. The
aforementioned theory and simulation establish a physical basis for modeling long-range
multipath propagation, thereby supporting subsequent sound speed error correction and
long-range measurement model optimization.

Figure 6. PESST for source depth of 3400 m and receiver depth of 10 m.

4.2.2. Analysis of the Impact of the Bathymetric Error

Using a uniform flat seafloor at 3500 m as the reference ground truth, various types of
bathymetric errors are introduced into the observation region. A comparative analysis of the
effects of three typical bathymetric error models on long-range acoustic propagation paths
is shown in Figure 7. Although all acoustic rays are simulated with a fixed propagation
distance of 40 km, differences in the underlying bathymetry models lead to variations in
the reflection point locations, which in turn cause deviations in the integrated acoustic
travel time. It is important to note that the bathymetric errors discussed in this study do
not refer to depth errors at the measurement point but rather to depth deviations at the ray
reflection points. This distinction increases the complexity of bathymetric error estimation
and compensation.
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(a) (b) (c)

Figure 7. Effects of typical bathymetric error models on long-range acoustic paths over a distance of
40 km. (a) Constant bias. (b) Linear error. (c) Periodic error.

Within the analytical framework adopted in this study, all reference bathymetry
models are ultimately mapped into the relationship between travel time and sound speed.
The sound speed model thus forms the foundation for both distance and position estimation.
The measurement errors caused by different types of bathymetric errors are shown in
Figure 8, respectively.

(a) (b)

(c) (d)

Figure 8. Effect of typical bathymetric error models on long-range distance measurement. (a) Constant
bias. (b) Linear error. (c) Periodic error with a period of 10 km. (d) Periodic error with an amplitude
of 100 m.

Under different bathymetric error scenarios, the trends of sound speed estimation
error and ranging error are generally consistent. Within the same reflected-path region,
shorter horizontal distances tend to be more sensitive to topography perturbations, often
resulting in ranging errors of the same order of magnitude as the bathymetric deviation.
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For example, in the constant bias scenario in Figure 8a, when the bias reaches 100 m,
the ranging error exceeds 110 m at a horizontal distance of 18 km. In the linear error
scenario in Figure 8b, the bathymetric deviation increases with distance. However, even
at a horizontal distance of 50 km, the resulting ranging error remains smaller than that
observed at 18 km, indicating that long-range propagation exhibits greater tolerance to
topography-induced errors. The most complex behavior is observed in the sinusoidal error
scenario, as shown in Figure 8c,d. This case analyzes the impact of sinusoidal bathymetry
perturbations with varying amplitudes and frequencies on ranging precision. The depth
profiles at the seafloor reflection points reveal that the ranging error varies periodically,
consistent with the underlying bathymetric error. However, the amplitude of this error
oscillation decreases as the propagation distance increases.

On this basis, the resulting positioning errors are shown in Figure 9, with the array
configuration consistent with that used in the subsequent South China Sea experiment.
Compared to the ideal case considering only the geometric layout of the stations, the intro-
duction of topography effects causes a substantial increase in the overall positioning error.
More importantly, the spatial distribution of the error is fundamentally transformed: it no
longer follows the symmetric and smooth pattern dictated by the GDOP. Instead, it evolves
into a complex irregular structure with strong directional dependence. These findings high-
light the sensitivity of long-range acoustic positioning to seafloor topography sensitivity
and emphasize the necessity of incorporating bathymetric error compensation into the
positioning framework to ensure robust and reliable performance in practical applications.

(a) (b)

(c) (d)

Figure 9. Effect of typical bathymetric error models on long-range positioning. (a) Constant bias with
an amplitude of 100 m. (b) Linear error with a gradient of 10 m/km. (c) Periodic error with a period
of 10 km. (d) Periodic error with a period of 25 km.

In summary, regardless of the error scenario, the depth error at the seafloor reflection
point corresponding to a given propagation distance determines the magnitude of the sound
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speed estimation error and the resulting ranging error at that measurement point. Moreover,
the observed complex nonlinear mapping relationship is consistent with the topography
sensitivity coefficient introduced in Section 3.2, providing a theoretical foundation for
modeling and compensating for topography-induced errors.

4.2.3. Simulation-Based Validation of the Bathymetric Error Compensation Method

In practical data processing, accurately estimating and inverting large-scale bathymet-
ric errors poses a significant challenge. However, the resulting errors in sound speed esti-
mation and ranging represent a non-negligible source of uncertainty in acoustic positioning
systems. Sound speed model correction essentially serves as a compensation for propa-
gation errors caused by bathymetric deviations. In this study, a reference-station-based
compensation approach is adopted. The selection of reference stations can be interpreted
as an inversion of the bathymetric error at the seafloor reflection points corresponding to
specific propagation ranges. The locally inferred bathymetric deviation from the reference
station is then used as a proxy to approximate the regional distribution of topography-
induced errors. Although this inversion method may not fully capture the actual complexity
of seafloor bathymetric variations, it offers a practical means of enabling real-time correction
of the model within the target region.

The compensation strategy in the proposed method is divided into two approaches:

1. Short-range compensation (SRC): Given the higher sensitivity of short distances to
bathymetric errors, the SRC approach uses the ground-truth value at 18 km, located
in the overlapping region of the direct and reflected paths, to calibrate the ranging
across the entire area.

2. Multi-range compensation (MRC): As indicated by the previous analysis of bathy-
metric error effects, more reference points are required in complex regions to ensure
compensation precision. Therefore, the MRC approach employs multiple reference
values spaced at 10 km intervals within the region to perform ranging correction.

As shown in Figure 10, the ranging compensation results under different bathymetric
error models are presented. In Figure 10a, where the bathymetric error is constant, the
single-point compensation approach is sufficient to achieve high-precision ranging across
the entire region. In contrast, under linearly varying bathymetric error conditions in
Figure 10b, single-point correction inevitably introduces new slope errors at other locations,
leading to incomplete compensation. This issue can be mitigated by increasing the number
of reference points. For periodic bathymetric errors, the compensation performance under
different oscillation wavelengths is shown in Figure 10c,d. In such cases, the spatially
oscillating deviations cannot be effectively corrected by a single reference point and may
even amplify the ranging error. Increasing the number of reference points improves the
compensation performance under these conditions.

To quantitatively evaluate the positioning performance in the simulation, the root
mean square error (RMSE) and error suppression ratio (ESR) are used as the primary
metrics. The RMSE is defined as

RMSE =

√√√√ 1
N

N

∑
k=1

(
X̂k − Xk

)2 (33)

where N is the total number of samples, X̂k is the estimated value, and Xk is the true
reference value.

The ESR is defined as

ESR =
Ebefore − Eafter

Ebefore
× 100% (34)
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where Ebefore and Eafter denote the error levels before and after suppression, respectively.

(a) (b)

(c) (d)

Figure 10. Results of ranging compensation under typical bathymetric error models. (a) Constant
bias with an amplitude of 100 m. (b) Linear error with a gradient of 10 m/km. (c) Periodic error with
a period of 10 km. (d) Periodic error with a period of 25 km.

In order to study the effect of reference point density on algorithm performance,
Figure 11 shows the changes in these two metrics under different oscillation periods
and reference point densities within the reflected-path region. The results indicate that
deploying a denser network of reference points in complex environments can effectively
reduce the impact of environmental uncertainties and improve the precision of long-range
ranging and positioning.

Figure 11. Compensation result statistics.
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To rigorously evaluate the algorithm’s robustness against realistic temporal variations
in the ocean environment, we expanded our simulation study. We utilized 12 historical
experimentally measured SSPs obtained from a public database for the same sea region
as our experiment, with each profile corresponding to a different month of the year, as
shown in Figure 12a. The proposed compensation method was then systematically tested
against different SSP conditions, assuming a consistent underlying bathymetric error
model, as shown in Figure 12b. The final ranging RMSE was consistently maintained
below 10 m. Concurrently, the ESR remained stable and consistently above 80%. This
consistent performance, despite significant month-to-month variations in the sound speed
structure, confirms the robustness of our proposed compensation algorithm. It validates
the method’s effectiveness for practical applications in dynamic deep-sea environments
where environmental conditions fluctuate over time.

(a) (b)

Figure 12. Algorithm robustness simulation. (a) The 12 SSPs used for validation. (b) The correspond-
ing performance metrics under the different SSPs.

5. Experimental Validation
5.1. Overview of Experimental Conditions

In April 2023, a long-range deep-sea measurement experiment was conducted in the
South China Sea. The experimental setup is shown in Figure 1. A low-frequency acoustic
source was rigidly mounted on the side of the ship at a depth of 10 m in Figure 13a. The
sound source level (SSL) utilized in the experiment was maintained at approximately
168 dB. A schematic and a photograph of the seafloor beacon system are shown in
Figure 13b. The system consists of a heavy weight, a calibration beacon, an underwa-
ter sound recorder (USR), and several floats. By utilizing sea surface circling track and
crossing track positioning, the absolute position of the beacon can be determined. The
depth of the USR is calculated to be 3380 m. Synchronization among the beacons and
the target was achieved via a post-processing methodology, enabled by high-stability ru-
bidium atomic clocks integrated within each USR. Prior to deployment, the clocks were
synchronized, and the USRs were programmed with a common start time. The signal
transmission time was logged at the start of the experiment. Upon instrument recovery, the
signal’s time of arrival (TOA) was determined from the acoustic waveform, allowing the
propagation time to be calculated as the difference between the TOA and the transmission
time. The accuracy of this method is underpinned by the clock’s exceptional stability, and
pre-deployment testing confirmed a time drift of less than 40 µs over a 10 h period, ensuring
the integrity of the propagation time measurements.
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The experimentally measured SSP is shown in Figure 4. The relative position between
the target trajectory and the beacon is shown in Figure 14, with the maximum distance
reaching up to 50 km. The seafloor profile along the line connecting the target endpoint
and the beacon is shown in Figure 15, where the depth ranges from approximately 3400 m
to 3700 m. The figure indicates that the experimental area lies at the boundary between
a seamount and a trench. Such complex topography may lead to measurement errors
in the database and negatively affect long-range measurement precision. This complex
and realistic environment serves as an ideal testbed for evaluating the proposed method’s
generalization capability beyond the simplified scenarios analyzed in the simulation. Fur-
thermore, the deployment of beacons in this area adhered to standard operational practices,
which typically avoid the most extreme topographical features to ensure stability and reli-
able acoustic paths, making our validation representative of practical application scenarios.

(a) (b)

Figure 13. Experimental setup and instrumentation. (a) Acoustic source. (b) Seafloor beacon system.

Figure 14. Schematic diagram of experimental scenario.
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Figure 15. The seafloor profile along the connecting line.

5.2. Experimental Results

During the experiment, a synchronizer periodically triggered the acoustic source. The
source emitted hyperbolic frequency modulation (HFM) signals with a center frequency
of 350 Hz, a bandwidth of 150 Hz, a pulse duration of 10 s, and a transmission interval of
300 s. A total of 88 datasets were recorded during the experiment.

Taking the received signal at Beacon 1 as an example, the measured channel structure is
shown in Figure 16. It can be observed that, at the same distance, the measured travel time
is not necessarily unique, which is one of the characteristic features of long-range multipath
propagation in the deep sea. Notably, around 17 km, the travel time corresponding to
the direct path vanishes, while the measured travel times of the reflected paths remain
continuous. The red dots indicate the earliest arrival time in each dataset.

Figure 16. Measured channel structure at Beacon 1.

The distance between the ship’s position, as measured by the Global Navigation
Satellite System (GNSS), and the calibrated position of the USR is used as the ground truth
to quantitatively evaluate the precision of the long-range distance measurement technology.

For each beacon, the earliest arrival time in each data frame is selected and used for
distance estimation via the PESST model. The resulting ranging error as a function of
horizontal distance is shown in Figure 17a. As observed from the figure, in the direct-
path-dominated region (17 km), the ranging error remains small, with fluctuations within
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10 m. However, in the reflected-path-dominated region (17–50 km), a significant jump in
error occurs relative to the previous propagation region. The error increases substantially,
exhibiting fluctuations on the order of hundreds of meters, with a maximum error reaching
137.9 m. Notably, the error trend is highly consistent with the bathymetric error model
analysis. This highlights the necessity of compensating for topography-induced sound
speed deviations to further improve measurement precision in the reflected-path region.

The acquisition of seafloor bathymetric error in this study is based on two approaches:

1. SRC: As shown in the channel structure figure, the reflected path persists and remains
continuous even within the direct-path region. Taking Beacon 1 as an example,
the ranging results in the multipath overlapping region are shown in Figure 17b.
Within the range of 15–17 km, the direct-path ranging error is within 5 m, while
the reflected-path ranging error exceeds 100 m. However, the reflected-path results
remain consistent with those in regions where only reflected paths are present. This
indicates that the high-precision ranging results from the direct path can be used to
calculate the error between the true sound speed and the PESST-estimated sound
speed within the 15–17 km region, thereby enabling inversion of the bathymetric error
in this area. Finally, applying the TC-PESST method to long-range high-precision
ranging allows for the construction of a more consistent and stable sound speed model
within the multipath overlapping region.

2. MRC: The topography profile shows that most seafloor reflection points are located
within the 12–33 km range from each beacon, which coincides with the boundary re-
gion between a seamount and a trench. Bathymetric errors in this region are relatively
large, making the placement of reference points necessary. To verify the precision of
the data used in this study, GPS ground-truth positions of a target trajectory point
located 34 km from the array center are used as a reference. These positions are
employed to invert and compensate for bathymetric errors, enabling high-precision
long-range measurements.

(a) (b)

Figure 17. PESST-based distance measurement results. (a) Results for each of the four beacons.
(b) Detailed results for Beacon 1.

The compensated sound speed model is illustrated in Figure 18. By incorporating both
short-range and long-range compensation points, the true sound speed values inferred
from the true distances are brought into agreement with the TC-PESST estimates. As a
result, the maximum sound speed error is reduced from 9.4 m/s to 0.5 m/s, indicating a
significant improvement in ranging precision. Crucially, this MRC strategy functions as a
piecewise local calibrator, allowing the system to adapt to the complex and arbitrary error
profile of the experimental area without assuming a global error model.
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Figure 18. Comparison of sound speed models.

As shown in Figure 19, the proposed TC-PESST method effectively eliminates the
step-like errors between different propagation paths in the ranging results. Within a
distance of 50 km, the maximum ranging error is reduced from 137.9 m to 15.5 m, providing
high-precision distance measurements for long-range positioning.

(a) (b)

(c) (d)

Figure 19. Comparison of ranging results. (a) Beacon 1. (b) Beacon 2. (c) Beacon 3. (d) Beacon 4.

The corresponding positioning results are presented in Figure 20. The TC-PESST
method demonstrates higher positioning precision, resulting in a more concentrated scatter
distribution of relative positioning errors. Figure 21 presents the statistical analysis of the
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positioning results, showing that the RMSE decreases from 157.9 m to 133.7 m and 31.0 m,
corresponding to improvements in positioning precision of 15.3% and 80.4%, respectively.

(a) (b)

Figure 20. Positioning results. (a) Comparison of estimated and ground-truth target trajectories.
(b) Scatter plot of target relative positioning errors.

Figure 21. Histogram of positioning error statistics.

6. Conclusions
This study proposes a long-range deep-sea positioning technology that integrates

multipath sound speed modeling with bathymetric error compensation. The method
extends the range of applicable ray tracing and analyzes the distribution characteristics
of ESS along multipath trajectories. A topography-compensated sound speed correction
method is developed to quantify the impact of seafloor bathymetric errors on sound speed
estimation and ranging precision. A topography sensitivity coefficient is derived and
incorporated into the ranging model to ensure high positioning precision and reliability
in complex underwater environments. The experimental results show that the proposed
long-range positioning technology extends the effective measurement range from 17 km
(direct-path region) to 50 km (reflected-path region). The maximum ranging error is reduced
from 137.9 m to 15.5 m, and the RMSE decreases from 157.9 m to 31.0 m, representing an
improvement in positioning precision of 80.4%. These results demonstrate the feasibility of
achieving high-precision long-range positioning in deep-sea environments.

Future work could pursue more dynamic and adaptive models to further improve
accuracy and robustness, as suggested by the recent trends in navigation and geomatics.
One promising direction is the use of stochastic filtering techniques, such as a Kalman filter,
where the equivalent bathymetric error could be estimated as a state variable in real time.
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Another powerful avenue is the application of machine learning. A trained neural network,
for instance, could learn the complex nonlinear relationships between various acoustic
measurements and the optimal ranging correction, potentially leading to a more adaptive
and accurate positioning system for complex time-varying ocean environments.
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CTD Conductivity Temperature Depth
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ESR Error Suppression Ratio
ESS Effective Sound Speed
ESSP Equivalent Sound Speed Profile
ESST Effective Sound Speed Table
ETOPO Earth Topography
GEBCO General Bathymetric Chart of the Oceans
GNSS Global Navigation Satellite System
HFM Hyperbolic Frequency Modulation
MRC Multi-Range Compensation
PESST Partitioned Effective Sound Speed Table
RMSE Root Mean Square Error
SRC Short-Range Compensation
SSL Sound Source Level
SSP Sound Speed Profile
SVP Sound Velocity Profiler
TC-PESST Topography-Compensated Partitioned Effective Sound Speed Table
TOA Time of Arrival
USR Underwater Sound Recorder
WASS Weighted Average Sound Speed
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