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Abstract: The engine room is the core area of a ship, critical to its operation, safety, and efficiency.
Currently, many researchers merely address the ship engine room layout design (SERLD) problem
using optimization algorithms and independent layout strategies. However, the engine room environ-
ment is complex, involving two significantly different challenges: equipment layout and pipe layout.
Traditional methods fail to achieve optimal collaborative layout objectives. To address this research
gap, this paper proposes a collaborative layout method that combines improved reinforcement learn-
ing and heuristic algorithms. For equipment layout, the engine room space is first discretized into a
grid, and a Markov decision process (MDP) framework suitable for equipment layout is proposed,
including state space, action space, and reward mechanisms suitable for equipment layout. An im-
proved adaptive guided multi-agent Q-learning (AGMAQL) algorithm is employed to train the layout
model in a centralized manner, with enhancements made to the agent’s exploration state, exploration
action, and learning strategy. For pipe layout, this paper proposes an improved adaptive trajectory
artificial fish swarm algorithm (ATAFSA). This algorithm incorporates a hybrid encoding method,
adaptive strategy, scouting strategy, and parallel optimization strategy, resulting in enhanced stability,
accuracy, and problem adaptability. Subsequently, by comprehensively considering layout objectives
and engine room attributes, a collaborative layout method incorporating hierarchical and adaptive
weight strategies is proposed. This method optimizes in phases according to the layout objectives
and priorities of different stages, achieving multi-level optimal layouts and providing designers with
various reference schemes with different focuses. Finally, based on a typical real-world engine room
engineering case, various leading algorithms and strategies are tested and compared. The results
show that the proposed AGMAQL-ATAFSA (AGMAQL-ATA) exhibits robustness, efficiency, and
engineering practicality. Compared to previous research methods and algorithms, the final layout
quality improved overall: equipment layout effectiveness increased by over 4.0%, pipe optimization
efficiency improved by over 40.4%, and collaborative layout effectiveness enhanced by over 2.2%.

Keywords: collaborative layout optimization; ship engine room layout design; encoding technique;
automation design; muti-agent reinforcement learning; artificial fish swarm algorithm

1. Introduction

With the rapid development of the global shipping industry and the increasing im-
portance of energy efficiency optimization, ship performance optimization, and especially
engine room layout design has become crucial for enhancing operational efficiency and
safety. The engine room, located at the core of the ship, is a vital part of detailed ship design,
directly affecting the overall performance and maintenance convenience of the ship. SERLD
encompasses two core aspects: the equipment system and pipe system. The functional
attributes and layout priorities of the equipment system are complex and diverse, and its
layout is crucial for the ship’s stability and propulsion. The pipe system connects these
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pieces of equipment and transmits essential substances. Collaborative layout problems
become highly complex due to the interrelatedness and independence of these two aspects.
Traditional methods typically adopt an independent, step-by-step optimization approach.
While this simplifies the design process, it usually overlooks the intricate functional con-
nections between equipment and pipe, lacks flexibility, and struggles to adapt to complex
and variable practical application scenarios. Currently, research in the SERLD field pri-
marily includes pipe layout research, equipment layout research, and collaborative layout
research. The focus of this paper is to utilize reinforcement learning (RL) and optimization
algorithms for collaborative research. Unlike traditional optimization algorithms, RL is
a novel collaborative optimization technique and is central to this study. Therefore, this
section will focus on discussing it in detail. Next, we will provide a specific discussion on
the research progress in this field to highlight the contributions of this paper, divided into
four main aspects:

1.1. Related Research
1.1.1. Pipe Layout Research

Currently, the collaborative layout of the ship engine room still mainly relies on
manual efforts. Existing research mainly unilaterally focuses on either the ship pipe layout
problem (SPLP) or the ship equipment layout problem (SELP), including innovations in
encoding methods and optimization techniques. In terms of encoding methods, equipment
is typically based on a grid-based space, with center-point coordinates indicating position
and the maximum square bounding box representing volume [1]. Most scholars focus on
pipe layout exploration. For instance, Dong et al. [2] proposed a co-evolution algorithm with
fixed grid length encoding to arrange ship pipes. Bian et al. [3] improved the fixed-length
grid encoding method by handling grid points during the optimization process. However,
grid encoding methods are spatially constrained and require lengthy preprocessing times.
To address this, Lin et al. [4] proposed a more flexible high-dimensional vector encoding
method. Subsequently, Zhang et al. [5,6] refined the vector encoding method, significantly
improving the efficiency of pipe design. However, the continuous data from the vector method
sometimes results in unstable decimal deviations. This paper combines the advantages of grid
and vector encoding methods to create a stable and efficient encoding method.

In terms of optimization methods, many scholars have conducted in-depth research in
the fields of the SPLP and SELP. The SPLP field mainly focuses on innovative applications
of optimization algorithms and layout strategies. The earliest applications are deterministic
algorithms such as Dijkstra [7], maze algorithms [8], and A* [9]. However, these methods
have poor randomness, strong constraints, and long preprocessing times. Subsequently,
Dongetal. [10,11], Niu etal. [12], Lin et al. [13], and Zhang et al. [5], respectively, conducted
optimization studies on ship pipe layout based on heuristic genetic algorithms (GAs), ant
colony optimization (ACO), particle swarm optimization (PSO), and the AFSA. Recently,
Ha et al. [14] proposed a pipe layout method that combines optimization algorithms with
expert design experience, incorporating expert experience into the evaluation function.
Kim et al. [15] introduced a pipe layout method based on reinforcement learning technol-
ogy, which can dynamically recognize the path environment and find the optimal layout
adapting to the current situation. Dong et al. [16] proposed a ship pipe design framework
based on NSGA-III, significantly reducing algorithm complexity. In summary, the layout
methods in the studies above still have some deficiencies, such as a lack of intelligence,
problem adaptability, layout efficiency, and engineering practicality. Extensive surveys and
comparisons indicate that heuristic algorithms are very suitable for SPLP research, and
the AFSA, as a typical algorithm, has demonstrated strong optimization performance in
various path optimization fields [17-19]. Therefore, this paper further explores and refines
the current deficiencies in SPLP research based on the AFSA.
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1.1.2. Equipment Layout Research

Compared to the SPLP, research on the SELP is relatively scarce, mainly focusing on op-
timization algorithms and human-machine integration methods. In terms of optimization
algorithms, Luo et al. [20] proposed a ship cabin facility layout optimization design method
based on improved PSO, improving the efficiency and quality of maintainability layout de-
sign. Lee et al. [21] proposed an improved GA, providing a new solution for the multilayer
facility layout with internal structural walls and passages. Besbes et al. [22] introduced
a new method and mathematical equation based on GA and A*, considering transport
paths and effectively reducing the total material handling cost subjected to production-
derived constraints. Lee et al. [23] addressed the equipment layout optimization problem
for offshore platforms by proposing an efficient layout method that combines a modified
iterative deepening search and an improved greedy algorithm, effectively solving practical
issues. In terms of human-machine integration, Mallam et al. [24] explored an early design
integration method that incorporates human factors and ergonomics knowledge. Meng
et al. [25] proposed a human reliability analysis (HRA) method more suitable for cabin
equipment layout optimization and developed a cabin equipment layout optimization
solution platform based on the GA. Zhang et al. [26] proposed a human cognitive reliability—
cognitive reliability and error analysis method, combined with A* and a GA, to solve ship
cabin equipment layout optimization problems considering human factors, minimizing
human error probability.

1.1.3. Collaborative Layout Research

It is worth noting that the independent layout studies described in Sections 1.1.1
and 1.1.2 only achieve local optimization for SERLD. Their independent linear summation
does not represent the overall optimal collaborative result, primarily due to the following
two shortcomings: (1) Lack of consideration for overall layout factors, with equipment
layout having higher priority, which significantly affects the collaborative research on
subsequent pipe layout. (2) In practical design, this independent SERLD method requires
engineers to spend considerable time coordinating, and the results are not optimal. There-
fore, collaborative research on SERLD has gradually emerged in recent years. Jiang et al. [27]
were the first to study the collaborative layout of equipment and pipes, proposing an eval-
uation function based on PSO and ACO that considers only equipment relevance, pipe
length, and the number of bends. Haris et al. [28] researched the collaborative layout of
equipment and pipes for LNG tanks based on computational fluid dynamics (CFD), consid-
ering more collaborative factors. Furthermore, Gunawan et al. [29] conducted research on
the collaborative layout problem of engine rooms based on the GA, adding considerations
for the cost and length of pipe systems in bulk carriers of different sizes. Recently, Zhang
et al. [30] proposed a collaborative layout method based on reinforcement learning and the
A* algorithm, making SERLD more intelligent. In summary, current SERLD research mostly
remains at the two-dimensional level, lacking consideration of overall environmental fac-
tors and engineering practicality. It is worth noting that most existing studies consider
equipment functional attributes and priorities, combining expert experience to set layout
zones and sequences. This paper will continue to follow this approach.

To address the current issues, we recently proposed a novel SERLD method based
on heuristic algorithms [6], filling the gap in SERLD research and achieving collabora-
tive layout optimization across multiple levels in three-dimensional space, significantly
enhancing engineering practicality. However, our subsequent research found that while
heuristic algorithms are relatively stable for the SPLP, as layout scenarios become more
complex and the number of variables increases, they struggle to handle the SELP accurately
and stably, in terms of parallel problems or orientation problems, etc. Ultimately, this
leads to difficulties in convergence or falling into local optima. In practical engineering,
SERLD needs to consider more layout requirements and collaborative actions. Additionally,
previous research required substantial time to identify collaborative layout zones.
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1.1.4. Novel Intelligent Collaborative Technology

As indicated in Section 1.1.3, current collaborative methods or strategies are mostly
based on traditional optimization algorithms or engineering software. These methods have
numerous limitations and cannot meet the detailed layout requirements and handle large
variables. In recent years, artificial intelligence technologies, particularly deep learning (DL)
and RL, have developed rapidly. Increasingly, scholars are applying these technologies
to solve complex optimization problems, offering valuable solutions for various engi-
neering applications. Due to RL’s ability to train models quickly and adapt to changing
environments, it is particularly suitable for applications involving multiple variables and
continuous feedback loops, such as path planning or SELP-type combinatorial optimiza-
tion problems [31]. Moreover, researchers have verified that RL is more suitable than
optimization algorithms for combinatorial collaborative optimization problems [32], and
multi-agent reinforcement learning (MARL) can optimize more objectives, making it more
adaptable to SERLD issues. Currently, many researchers apply different MARL algorithms
in complex collaborative optimization problems, such as MAQ-learning (MAQL) [33], Wolf-
PHC [30], Qmix [34], and MADDPG [35], among others. In this study, the actions and state
spaces of the equipment are discrete, making the MAQL algorithm highly suitable for such
problems. Due to its ease of handling, efficiency, and stability, MAQL is widely applied in
many fields. Adeogun et al. [36] established an MAQL method based on limited sensing
information, transforming resource selection in 6G in-X Subnetworks into a multi-objective
optimization problem, effectively achieving dynamic resource allocation. Zhou et al. [37]
used the MAQL algorithm to address the recharging scheduling problem of electric auto-
mated guided vehicles in container terminals, minimizing operational delays by generating
reasonable recharging plans. Wang et al. [38] addressed the adaptive traffic signal control
problem in large-scale scenarios using an improved MAQL algorithm, contributing to the
transportation field. In summary, MAQL offers strong flexibility and adaptability, allowing
for the targeted training of layout models with various functionalities according to specific
needs. This paper will continue to explore applications based on MAQL to address the
collaborative optimization problems in SERLD.

In conclusion, this study, aiming at the issues revealed by current optimization algo-
rithms and layout strategies in SERLD research, explores a hybrid algorithm that combines
reinforcement learning and heuristic algorithms for collaborative layout. In response to
traditional independent layout strategies, this study further proposes a comprehensive
collaborative evaluation function and multiple collaborative layout strategies based on
the novel hybrid algorithm. This aims to achieve a more efficient, intelligent, and robust
collaborative layout method, solving more complex practical engineering problems.

1.2. Innovative Contributions and Engineering Significance

This study addresses the deficiencies in optimization algorithms and layout strategies
in previous SERLD collaborative research by integrating artificial intelligence technology
and heuristic algorithms for the first time. The aim is to explore an efficient and practi-
cal collaborative algorithm and layout strategy based on the different layout objectives
and engineering constraints of equipment and pipe systems, significantly enhancing the
automation and layout efficiency of SERLD. The feasibility and engineering value of the
proposed method is ultimately verified through practical engineering cases. In summary,
the main innovations of this paper are as follows: (1) Pipe layout aspect—A precise and
stable adaptive trajectory-based vector encoding method with hybrid concepts is proposed.
Based on this method, an improved AFSA (ATAFSA) with multiple optimization strategies
is further introduced. (2) Equipment layout aspect—An adaptive guided multi-agent
reinforcement learning (AGMAQL) algorithm is proposed, along with an MDP frame-
work suitable for equipment layout problems, including state space, action space, and
collaborative reward mechanisms, and so on. (3) Collaborative layout aspect—A layout
method with a hierarchical layout strategy and an adaptive collaborative weight strategy
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is proposed, based on the collaborative algorithm (AGMAQL-ATA). The collaborative
evaluation function is also refined.

The rest of this paper is organized as follows: Section 2 introduces the SERLD concept,
constraints, objectives, and parameterization methods. Section 3 introduces the collab-
orative layout method based on the improved AGMAQL-ATA. Section 4 validates and
discusses the effectiveness of the proposed layout algorithm and method through practical
engine room cases. Finally, Section 5 contains the conclusion of this study.

2. SERLP Formulation
2.1. Parametric Processing and Layout Concept

To effectively address the SERLD problem and ensure computational efficiency, the
layout must be conducted based on parametric modeling. Figure 1 outlines an overview of
the entire SERLD process, including environmental space parametric modeling, equipment
layout, and pipe layout. In the figure, E in Module B represents the abbreviation for equip-
ment, while S and E in Module C represent the start and end points of the pipes, respectively.
Module A in Figure 1 indicates that in the initial stage, the most fundamental and necessary
step is to parametrize the layout problem, with the maximum boundaries in space being
the deck and bulkheads. For the equipment layout problem, the primary goal is to obtain
the optimal scheme within the feasible layout zone by considering factors such as safety, rel-
evance, and engineering requirements. Each equipment entity is modeled using the typical
bounding box method, representing its volume with the minimum and maximum diagonal
coordinate points {(Xmin, Ymin, Zmin), Xmax, Ymax, Zmax)}, @ method that greatly facilitates
algorithmic computation [13]. The position of each piece of equipment is indicated by its
central coordinates (e.g., E3 in Module B). In this paper, each piece of equipment is treated
as an agent, and the optimal overall layout is achieved by continuously translating and
rotating within the feasible layout zone based on the AFSA and MAQL. Pipe layout is
based on equipment positions and impacts the ship’s operational efficiency, safety, and
convenience, among other factors. The pipe model, as shown in Module C, connects related
pieces of equipment and consists of start points and intermediate bend nodes. The goal of
pipe layout is to find the optimal path within the restricted space and constraints, primarily
including single-pipe and branch pipe problems. Additionally, the space includes both
prohibited and guiding energy zones that influence the layout of equipment and pipes.
Prohibitive energy zones include obstacles or hazardous zones while guiding energy zones
include the surrounding space of bulkheads, equipment, already laid pipes, and specially
designated zones, among others.

For the SERLD collaborative problem, as shown in Module D of the figure, there
are two levels of layout issues, such as the parallel layout and mixing pipe layout prob-
lems noted in the figure. During the collaborative layout process, changes in equipment
positions affect pipe paths, and these paths, in turn, impact the efficiency of equipment
operation. Therefore, it is necessary to effectively link and jointly optimize both aspects
under engineering specifications and layout requirements to achieve a truly collaborative
layout. Furthermore, this study simplifies the collaborative problem hierarchically, de-
signing reasonable layout strategies and evaluation methods for each level from multiple
perspectives. Ultimately, by adjusting weight parameters, multiple optimal collaborative
layout alternatives can be provided to designers.
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Figure 1. Parametric analysis and layout principles for the SERLD problem: Module A: initial
modeling diagram; Module B: SELP diagram; Module C: SPLP diagram; Module D: SERLD diagram.

2.2. Hybrid Encoding Expression

The reasonable encoding of equipment and pipe is fundamental to intelligent layout.
This study considers a suitable reinforcement learning environment by discretizing the
equipment layout zone into a grid, where the equipment explores by moving along the
grid. The grid division precision is based on the side length of the smallest volume of
equipment. Figure 2 is a standard two-dimensional example of a grid-based engine room
layout. The initial layout range must adhere to basic constraints [39], avoiding excessive
randomness. The figure illustrates various constraint requirements, including location
restrictions, distance limitations, and special layout requirements. Equipment in different
layout zones is distinguished by different colors in the figure. Figure 2b illustrates a
poorly designed layout case, where red markers indicate violations of layout requirements,
including interferences, failure to meet distance limitations, and non-compliance with
parallel layout specifications. As described in Section 1.1, the current literature on layout
methods takes into account the actual engine room environment and divides the initial
layout range for equipment. This paper first considers basic division principles such as
space utilization, engine room stability, and functional relevance. Based on key positions
like the central axis and passageways, the initial feasible layout zones are defined [6]. As
shown in Figure 2, the space is divided into two large feasible layout zones, followed by
the allocation of specific collaborative layout zones for each piece of equipment. As noted
in Section 1.1, expert experience is indispensable. To better align with practical engineering
layout standards, enhance human-machine interaction, and reduce problem complexity,
this study predefines the collaborative layout zone for each piece of equipment during the
initial layout phase, based on layout requirements and expert experience. Generally, these
zones constitute about 40% of the feasible layout zone to which they belong.

Pipes differ from equipment, as the interface positions are located on the equipment
surface, with the layout goal primarily focusing on finding the optimal path nodes between
two interfaces within a fixed space. Initially, researchers used a simple grid approach for
space discretization, but it was challenging to determine an appropriate resolution, and the
space shape constrained it. In recent years, efficient vector encoding methods have emerged,
based on continuous space processing. These methods optimize by controlling the trend of
vector bend nodes, offering strong flexibility and efficiency. The path expression based on
this encoding method is shown in Equation (1). However, relying solely on algorithmic
optimization of random vector points is inefficient for pipe routing. Figure 3 illustrates
the principles of the vector encoding method, where square shapes represent equipment,
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and points represent vector nodes. S and E denote the start and end points. Unnecessary
space disturbances can affect vector point trends, as shown in Figure 3a, where black vector
points outside the feasible zone hinder optimization, while the white points are the ideal
effective points. Recently, we proposed a Manhattan trajectory-based vector encoding
method (red points in Figure 3b), which maximizes the use of effective space [6]. However,
this trajectory can be obstructed by obstacles (such as the red circles in the figure), which
can impede the movement of vector points. Additionally, current vector encoding methods
still require manually specifying the number of bend nodes needed, lacking intelligence.

P=1[S,v,E|,v €R 1)

where P represents the pipe path, S and E represent the start and end points of the path,
and v represents the vector nodes, i.e., bend nodes of the path. The positions of these vector
nodes cannot exceed the layout zone R.

y Layout zone 1 Central axis Layout zone 2 y Layout zone 1 Central axis Layout zone 2
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Figure 2. A two-dimensional example of a grid-based engine room layout: (a) constraint illustration;
(b) poor layout.
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Figure 3. Schematic diagram of the vector encoding method: (a) distribution of different vector nodes;
(b) recent research.

Addressing the shortcomings of current pipe encoding methods, this study combines
the advantages of grid and vector methods to propose an adaptive trajectory vector en-
coding method. This method focuses on the fundamental constraints of pipe layout by
adaptively finding the optimal Manhattan trajectory to guide the vector points’ trend. The
initialized vector points avoid interference from obstacles and non-orthogonal guidance,
and this encoding method can autonomously determine the number of bend nodes, over-
coming the fundamental drawbacks of previous encoding methods. The specific principle is
shown in Figure 4. Figure 4a demonstrates the generation method of Manhattan trajectories
in different dimensional spaces. During the optimization process, the trajectory adaptively
adjusts according to the environment. As shown in Figure 4b, the first trajectory optimiza-
tion is first performed between the start point S and the end point E, generating an initial
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trajectory (grey trajectory). When encountering obstacle interference (red circles in the
figure), a new start point, S, is determined to generate the next orange trajectory (from S’
to E), while retaining the previous SS' trajectory. Further interference results in generating
a blue trajectory (from S” to E). This process is repeated until overall optimal adaptive
trajectories are found that are free from obstacle interference, known as the elite trajectory.
This example involved three optimizations using both 3D and 2D trajectory optimization
methods. Finally, as seen in Figure 4c, after removing the ineffective trajectories affected by
interference, three better trajectory types are obtained through integration. According to the
hierarchical division principles described in Section 3.1.1, the trajectories in this example are
divided into three levels. After evaluation and ranking, the grey trajectory with the fewest
bend nodes is deemed the best and set as level 1, while the yellow and blue trajectories
are set as level 2 and level 3, respectively. After identifying the optimal trajectory for each
level, initial vector points are allocated around the bend nodes along these trajectories. The
distribution space of the vector points is centered around the nodes, occupying about 10%
of the engine room space. The initial vector points must not be located within obstacles
or exceed the maximum range. Different levels are allocated different numbers of vector
nodes, and to ensure flexibility, some vector points are reserved for random optimization.
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Figure 4. Principle of the adaptive trajectory vector encoding method: (a) Manhattan trajectories
in three dimensions; (b) optimization level display; (c) optimal trajectory and distribution of vector
points; (d) example of mixing pipe layout.

Additionally, the pipe layout problem also includes scenarios involving branch pipe
and single-pipe mixed layouts. As shown in Figure 4d, a branch pipe consists of a gray
main pipe and yellow side pipes, where Main_E and Side_E represent the endpoints of the
main and side pipes, respectively. S1, E1, S2, and E2 denote the start and end points of other
single pipes. The layout process for the main and side pipes follows the same procedure as
for the layout of the single pipes, utilizing the adaptive trajectory encoding method. It is
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important to note that when laying out branch pipes, the position of the main pipe and the
arrangement order of the side pipes must be determined based on the interface distance
and pipe diameter [40]. First, the main pipe is laid out, and then the previously proven
effective orthogonal projection method is used to sequentially determine the starting points
of each side pipe from the main path [5]. When addressing multi-pipe layout problems,
it is necessary to predetermine the layout priorities. The laid-out pipes are considered
obstacle zones and are surrounded by a new energy zone. Pipes with lower priority, in
addition to considering the energy zones around the bulkheads and equipment, should
ideally be laid out parallel to the energy zones of higher-priority pipes to meet engineering
layout requirements [11] (red circles in the figure). The figure shows an optimal mixing
pipe layout scheme.

2.3. Optimization Objectives and Constraints

The objectives and constraints of the SERLD problem consist of two parts: pipes and
equipment. Achieving the optimal overall design result requires addressing objectives and
requirements at two levels. Before algorithm exploration, evaluation parameters need to
be initialized. A reasonable engine room layout evaluation function is key to achieving
objectives. Currently, there are established evaluation methods in the SERLD field [4,6,25],
as shown in Equation (2). To ensure the standardization of this study, adaptive adjustments
are made based on existing mature evaluation functions. These adjustments consider the
stability, functional relevance, safety, engineering practicality, convenience, and economy of
the engine room layout to achieve the collaborative goals of SERLD. The specific objectives
and constraints at each level are as follows:

minF(w_I) = I; x minF(e_l) + I x minF(p_I)

2
Lh+4hL=1 @

where F(w_I) represents the evaluation function for the overall collaborative layout, aim-
ing for a minimum value. It consists of the pipe evaluation function F(p_[) (detailed in
Section 2.3.1) and the equipment evaluation function F(e_l) (detailed in Section 2.3.2),
weighted accordingly. p_I denotes all pipe paths and e_I denotes the overall equipment
layout scheme. I; and I, are normalized weight coefficients.

2.3.1. Pipe Layout Evaluation

The optimization objectives for pipe layout are as follows:

Objective 1: Minimize the path length. This objective is achieved by calculating each
segment of the adjacent path, with the calculation equation as fj, = Zfil L(v;,vi41).

Objective 2: Minimize the number of bends. This objective is calculated using three
adjacent bend nodes, with the calculation equation as f, = Zf\il B(v;_1,vi,viy1).

Objective 3: Maximize the traversal through guiding energy zones. In complex mixing
pipe layouts, the energy zones can be flexibly adjusted based on engineering requirements.
This objective determines the upper limit of the layout. It is achieved by calculating the
positional relationship between the path and the energy zones, with the calculation equation
as fon = YN, P(v;,v;,1,e_list). The variable e_list represents the list of energy zones.

The constraints for pipe layout are as follows:

Constraint 1: Pipe paths must maintain orthogonal direction. This constraint is
achieved by calculating the orthogonality between two nodes, with the calculation equation
as for = le\i1 O(vj, vi-i—l)'

Constraint 2: Pipe paths must not cross obstacles or restricted zones. This constraint
is achieved by calculating the positional relationship between the path and the restricted
zones, with the calculation equation as f;, = Zf\i 1S(vi,viyq,r_list). The variable r_list
represents the list of restricted zones.

Constraint 3: The mixing pipe must be laid out in the specified order. Adjacent pipes
or adjacent bend nodes must adhere to the minimum distance requirement.
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Based on the above objectives and constraints, the evaluation function for pipe layout
can be derived as follows: The function F(p_l) and its weight proportions are consistent with
the literature. Here, p; to ps represent the weights of each evaluation sub-item, specifically
10:1:0.01:0.1:0.001.

minF(p_l) = py x minf,(p_l) + p2 x minfy, (p_l) 4+ p3 x minf,(p_l) + ps X minfp(p_I) — ps X maxfe,(p_) (3)

2.3.2. Equipment Layout Evaluation

The optimization objectives for equipment layout are as follows:

Objective 1: Ensure minimum imbalance in torque difference. The overall equipment
layout significantly impacts the safety of the engine room. The torques on either side of the
central axis need to maintain a certain balance. The calculation equation for this objective is
shown below, where G; represents the weight of equipment i, y; represents the longitudinal
coordinate of equipment i, and W represents the width of the engine room.

fra(e D) ZG —-W/2) (4)

Objective 2: Ensure functional relevance and safety. Equipment with close functional
relationships should be positioned at short distances to improve operational efficiency
and space utilization. Simultaneously, considering safety and engineering practicality,
equipment should be positioned near exits to allow for personnel to quickly evacuate in
case of an emergency. The calculation equation for this objective is shown below, where
D;; represents the relevant distance between equipment. If pipe connections exist, D;;
denotes the distance between the interfaces; otherwise, it denotes the distance between the
equipment’s center points. T;; represents the relevance coefficient, ranging from 0 to 1. S;
represents the distance from equipment 7 to the exit, and ¢ represents the safety coefficient,
ranging from 0.1 to 0.5. The setting principles for T and ¢ can be found in Reference [6].

fre(e 1) = ZZDUXTZ]-I—(pXS (5)
i=1j=

Objective 3: Ensure ease of pipe layout. To achieve a truly collaborative layout, the
layout of equipment should consider the locations of pipe interfaces. Fewer obstacles
between equipment connected by pipes is preferable, and the pipe interface points should
be as close or parallel as possible. Equation (5) also reflects this objective.

The constraints for equipment layout are as follows, with detailed calculations avail-
able in Reference [30]:

Constraint 1: Equipment must not interfere or overlap with each other (Equation (6)).
The square of the overlapping volume is used as a penalty value.

Pi(e_l) = {E;NEj|Vi,j € N,i # j} ©6)

Constraint 2: Equipment must maintain a specified minimum distance from each other
and bulkheads (Equation (7)). The square of the violated volume is used as a penalty value.

PZ(E—I) - {{|Eic - ch| > D} m{|Eic _HC| > D}Wi/j EN,i 75]',C = (x,y,z)} (7)

Constraint 3: Equipment with a similar volume or functional nature should be ar-
ranged in parallel (Equation (8)). If the positions are not parallel, the square of the minimum
deviation length is used as a penalty value. Similarly, if the orientations are not parallel, the
square of the deviation volume is used as a penalty value, excluding the z-axis direction.

Pg(e_l) — {Eix = ij U Eiy = E]'y UE;, = ]z|Vz = Vj,Vi,j €N,i 75]} (8)
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Based on the above objectives and constraints, the evaluation function for equipment
layout is derived as follows:

minF(e_I) = s; X minfy,(e_l) + s X minfy.(e_l) 4+ s3 x minfey(e_I) )

where the approach for F(e_I) is consistent with that in Reference [6], aiming for minimiza-
tion while maintaining an order of magnitude balance with F(p_I). The main difference
in this study is the adjustment of the pipe calculation part, eliminating unnecessary cal-
culations for pipes in the equipment layout layer and optimizing the relevance function
fre(e_l), making the problem simpler and more precise. Ultimately, based on the previously
proposed weight coefficient normalization principles, s is set to 0.02, s, to 0.78, and s3 to 0.2.
feo(e_l) represents the constraint term for equipment layout, integrating Equations (6)—(8).

3. Collaborative Layout Method Based on Improved AGMAQL-ATA

This section focuses on the core content of this study, including the logic of the
improved algorithm and the collaborative layout design method for the engine room. The
algorithm aspect mainly involves the coordinated improvement of MAQL and the AFSA,
which incorporates multiple layout strategies. The pipe layout is primarily centered on
the AFSA, implemented through an adaptive trajectory-based encoding method, adaptive
strategy, and parallel strategy. The equipment layout is primarily centered on MAQL,
implemented through grid encoding methods, hierarchical concepts, and expert knowledge,
and employs guided, adaptive, and greedy strategies. Subsequently, considering layout
attributes, optimization objectives, and specification requirements, an overall collaborative
layout procedure based on AGMAQL-ATA and collaborative optimization concepts is
proposed. The specific content is as follows:

3.1. Ship Pipe Layout Based on Improved ATAFSA
3.1.1. Principles of ATAFSA

The AFSA, a heuristic bionic algorithm, was proposed in 2003, mimicking the collective
behavior of fish to achieve optimization [41]. As shown in Figure 5, the AFSA has four
core behaviors: preying (selecting a better individual within the search vision to move
towards), swarming (comparing with the center evaluation value of nearby individuals to
decide whether to move), following (comparing with the best evaluation value of nearby
individuals to decide whether to move), and random behavior (randomly moving a step
when no better direction is found within the search vision). Each individual moves based
on the search vision (S_V) and search step length (S_5S), and the optimization process is
controlled and guided by the congestion factor (C_F) and the number of search attempts
(Try_num). S_S must be less than S_V. These core parameters are fundamental to the
algorithm’s calculations. Our previous research has demonstrated the effectiveness of
AFSA in pipe layout problems [5]. To overcome the issues of the AFSA’s tendency to
get trapped in local optima and its performance instability, this study continues to adopt
a parameter-adaptive strategy (as shown in Equation (10)) and a scouting optimization
strategy (as shown in Equations (11) and (12)).

T(f) = Tmin + 17T‘“it“t P
1+randnx (%) (10)
S_V(t+1)/S_S(t+1) =S_V(t)/S_S(t) x T(t)

where ty, t, and T, respectively, denote the initial, current, and maximum iteration numbers,
and « and B are coefficients controlling the descent rate. randn denotes a random number
used for fine-tuning the curve, while Tp,i, denotes the specified minimum lower limit. The
values of &, B, and randn in this study are consistent with those in the literature. The core
parameters S_V and S_S are adaptively adjusted during iterations using these equations.
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X=X (11)
i/next = Xi + Randn x S§_S x m

o N(Xlls)
Xi/next - . (12)

{ Xz'/next =Xi+ Randn x (bmax - bmin)
X

Follow
)

P
, Xbest

Figure 5. Schematic diagram of AFSA optimization.

Equation (11) represents the random mutation scouting operation. When trapped in a
local optimum, several individuals are selected around the optimal individual, and each
individual X; randomly performs the following two operations: (1) a large random update
of the position within the layout zone; (2) random movement towards any individual
X, in the space. Equation (12) represents the elimination mutation scouting operation,
which involves performing Gaussian mutations on all saved local optimal individuals
and replacing the same number of inferior ones. The selected individual X; undergoes
Gaussian mutation based on the standard deviation S. Randn represents a random coeffi-
cient, ranging from 0 to approximately 700 in this study. Randn x S_S is the random step
length, controlling the amplitude in X; changes. Consistent with previous research, the
initial search vision range is approximately 20% of the feasible zone, and the maximum
step length variation amplitude is about 10% [5]. bmax and byin represent the maximum
and minimum dimensions of the space, and m represents the mutation control coefficient.
This strategy is executed when no better path is found after four consecutive iterations.

Additionally, to accommodate the adaptive trajectory encoding method and enhance
optimization accuracy and stability, this study proposes a parallel optimization strategy.
Considering computational complexity and optimization stability, a maximum of four
layout levels are set. In the initial stage, all explored trajectory types are evaluated and
ranked from best to worst, selecting the three optimal trajectory types to correspond to
the optimal three layout levels. To balance layout flexibility, a random layout level of 4
is set, which does not rely on any trajectory for layout but randomly generates vector
point positions, with the number of bend nodes also randomly generated based on the
top three levels. As shown in Figure 6, there are four hierarchical division situations in
practical layout problems. The allocation principle for the initial vector population number
adjusts accordingly in different situations. Section 2.2 presents a standard situation: when
the number of trajectory types is three or more (Situation 4), the first to fourth levels
are allocated 40%, 30%, 20%, and 10% of the total population, respectively. When there
are fewer than three trajectory types (Situations 1 and 2), the number of random vectors
increases correspondingly.
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Initialize layout sequence
and algorithm parameters

Situation 1 [ Trajectory type 1 1 Random trajectory ]

Level 1 (40%) Level 4 (60%)

Situation 2 [ Trajectory type 1 I Trajectory type 2 I Random h-ajectory]

Level 1 (40%) Level 2 (30%) Level 4 (30%)

Situation 3 [ Trajectory type 1 I Trajectory type 2 I Trajectory type 3 I Random irajectory]

Level 1 (40%) Level 2 (30%) Level 3 (20%) Level 4 (10%)

Situation 4 [ Trajectory type 1 I Trajectory type 2 I Trajectory type 3 I Trajectory type 4 ] A [ Trajectory type n ]

Level 1 (40%) Level 2 (30%) Level 3 (20%) Level 4 (10%)

Figure 6. Principle of hierarchical division.

It is important to note that different trajectory types have different numbers of bend
nodes, making different path types incompatible during calculations. To avoid calculation
mismatches, the initial population is divided into four levels corresponding to the four
layout levels. Subsequently, all possible better paths are further explored based on the
optimal trajectories of different types. Figure 7 illustrates the parallel optimization process,
showing that the algorithm’s optimization operations are executed in parallel at the four
levels. During the global calculation iteration process, each level operates independently.
Ultimately, by evaluating and screening the optimal paths for each level, the optimal pipe
layout is output.

o ) : AFSA !
Initial population ! parallel optimization !
t s [ best pathl]\

e - )
b 1
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C | ) -

Adaptive trajectory _< ; :

optimization ;

-
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Best path
—_—
15
[
S

_5_, [ best path3]
B L :

Optimal layout
Figure 7. Parallel optimization process.

3.1.2. Pipe Layout Process

Based on the above improvement strategies, the pipe layout process of the ATAFSA is
shown in Figure 8. Note that when laying out multiple pipes, the order of layout can be
manually set or automatically determined by the system based on the equipment level or
pipe diameter. When arranging branch pipes, it is necessary to first find the optimal main
pipe path.
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Figure 8. ATAFSA layout flowchart.
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Environment

3.2. Ship Equipment Layout Based on Improved AGMAQL
3.2.1. Basic Principles of MAQL

The essence of reinforcement learning lies in learning automatic decision-making
through continuous trial-and-error training in the environment, thereby aligning decisions
with expectations and moving towards maximum reward feedback. Its main components
include agent, state, action, reward, and environment [42]. Q-learning (QL), proposed
by Watkins, is a model-free, value-function-based, off-policy reinforcement learning algo-
rithm [43]. Compared to other reinforcement learning algorithms, QL has fewer parameters,
a simple structure, and an easy training method, making it widely used. This method pri-
marily relies on state sequences in the MDP to self-adjust and select the optimal actions [44].
As shown in Figure 9a, during the learning process, the agent interacts with the environ-
ment to obtain the current state signal s; and selects an action a; based on this signal. The
state of the environment changes accordingly. The agent evaluates the reward r; received
in this state and decides whether to transition to a new state. QL continuously updates
through rewards and punishments to ultimately achieve the optimal Q(s, a) function, i.e.,
the Q-table (as shown in Table 1). By updating the Q-table, the expected total discounted
reward is maximized, resulting in the optimal action selection strategy. The update iteration
equation for QL is based on the concept of temporal difference (TD), as shown below.

Qi (st ar) < Qf (st ar) + “(r(st/atlst—i-l) + maXAQt(St+1/ﬂt+1) - Qt(st/at))
(13)

ar41€
a e (0,1)
7€ (0,1)

where Qf(sy, a;) represents the Q-value for taking action a; in state s;. r(s¢, 4, st.1) denotes
the immediate reward when the environment transitions from state s; to state s;,1 after
action a;. A represents the entire action space. « is the learning rate. -y is the discount factor,
indicating the degree of future influence. To balance QL’s exploration and exploitation
abilities, « is set to 0.05 and 1 is set to 0.9.

Environment

Reward 7, Al Sk R

t
i .2 n 0o n
{”r olf; 0, } ‘ {sm'sm'"'sm}
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Action a, o
Agentl o i Agentn

State s,

<>
s1_space s;_space S,_space
(b)

Figure 9. The schematic diagram of MAQL: (a) basic QL model; (b) MAQL model.

Table 1. The Q-table of QL.

Action
State
ay a, e an
51 Q(s1,a1) Q(s1,42) o Q(s1,an)

$2 Q(s2,a1) Q(s2,a2) - Q(s2,an)

o Qs a1) Q(sm, a2) - Q(Smran)
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For the collaborative layout problem in this study, a single-agent algorithm is ineffec-
tive. Instead, a multi-agent algorithm aims to combine multiple single agents to optimize a
common goal, addressing complex collaborative problems [45]. This approach is charac-
terized by cooperation, parallelism, and distribution, making it particularly suitable for
collaborative layout issues. MAQL, one of the most classic MARL algorithms, is widely
applied to discrete problems. In this study, MAQL employs a classical centralized training
method, with its model shown in Figure 9. At discrete time t, the states and actions of
all agents jointly form a combined state space S* = s! x s> x ... x s' and a combined
action space A" =al x a* x ... x a'. Each agent’s Q-table is shown in Table 2. Compared
to QL, MAQL enables communication and cooperation among agents. Each agent not
only understands its state but also accesses the overall states of all agents, allowing for an
evaluation based on the entire environment to select the optimal action.

Table 2. The Q-table of MAQL.

Action
State
aq ap as
St {sl.st, st} Qs m) Q(SY, az) Q(SY, a3)
SY4 < {sd,s3,- s} Q(SY,a1) Q(SY,a2) Q(SY,a3)
Sl {s,ln,szm,- cosid Q(S%n, 1) Q(Sin, a2) Q(S¥., a3)

3.2.2. Design of the MDP Framework
1. Design of the state space

The state space is defined as the set of information received by each agent i from the
environment at time step t. Representing the agent state using grid coordinates is a classical
method [30,46]. After dividing the layout zone into grids, each agent can move along the
grid. Equation (14) and Figure 10 illustrate the design principle of the state space. The state
space for each agent consists of discrete central coordinates (x;, i, zi) and orientation
O;. Each agent has its own feasible layout zone w; x I; x h;. Additionally, based on the
orthogonality requirements of the pipe path, each agent has four vertical orientations along
the bottom platform: 0°, 90°, 180°, and 270°. The orientation of the interface points affects
the start or end positions of the pipes. When the direction changes, the values of a, b, and ¢
will be exchanged, and their signs may change.

w.
y™N )
pl (a, b, ) 3\\
= n i
\ 1

N
(xic/ Yier Zic)

1 X

Figure 10. Schematic diagram of state space.

Se={sl,s? - -s"},n=1,23-i

i |G - [(Xe e, Ze) (Xe, Yo, Zc) €W (14)
t O: Orientation|’ | Orientation € (0°,90°,180°,270°)

2. Design of the action space
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. M, (—dx, +dx, —dy, +dy, —dz, +dz)
Ap— |Rp| = (0°,90°,180°, 270°) (15)
C; Xc, yCr Z¢,0c

The action space in this study is also discretized, divided into translation, rotation,
and constraint actions, as shown in Equation (15). Translation actions involve moving
the equipment position along the grid points of the x, y, and z axes to find better layout
schemes. Figure 11 shows four translation actions in the xy-plane. When an agent selects a
translation direction, it needs to predict all possible movement directions in that state and
filter the positions after translation using Equation (2) to determine the optimal direction. It
should be noted that there are multiple fixed structural platforms in the engine room, and
the z-coordinate of some equipment (such as equipment located on the bottom platform of
the engine room) cannot be changed [47]. Rotation actions involve changing the direction
of pipe interfaces to facilitate pipe layout, as shown in Figure 12. In practical engineering,
equipment usually rotates parallel to the xy-plane to avoid being upside down. When
an agent selects a rotation direction, it also needs to perform evaluation predictions to
determine the optimal direction. As shown in Figure 12b, after evaluation and filtering, the
agent selects the 90° orientation, significantly reducing bends and the length of the pipe.

o Oo[y+a) p2
y \
x7a,y) [ y) (x+a, y) (5.+Zﬁ pl
I~
[y x
X
X
(a) (b)
Figure 11. Schematic diagram of translation action: (a) 2D space; (b) 3D space.
y
z
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T 90 -a =3,
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(ta, -b}180°
X
X
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Figure 12. Schematic diagram of rotation action: (a) 2D space; (b) 3D space.

Constraint actions are primarily designed to flexibly meet the hard constraints of
equipment layout while considering engineering practicality. These actions include trans-
lation and rotation, primarily used to address situations where equipment is stuck in a
locally optimal state that does not meet basic constraints for an extended period and cannot
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transition. According to engineering specifications, certain equipment must meet special
layout requirements such as parallelism or symmetry and must strictly adhere to minimum
distance constraints. Relying solely on optimization algorithms and basic actions cannot
reliably handle certain special local optimal situations and layout requirements. In each
state, the agent must first determine whether it is in a special situation. If so, it selects a
constraint action to minimally adjust the equipment’s state to meet layout constraints and
escape the local optimum while ensuring minimal impact on the overall optimization goal.
Figure 13 illustrates four typical situations requiring constraint adjustments. Figure 13a,b
illustrates situations where the equipment fails to meet the minimum distance requirements.
Figure 13c,d illustrates situations where associated agents of the same volume require par-
allel layout. It can be observed that through constraint actions, equipment E1 is minimally
adjusted to meet the basic constraints and achieve the desired layout effectiveness.

E2
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. [P [E2 p 180° | pl/pn E1|+x TE1 PP
7 [7”( 1 p2 ) pardlel
i E1 23}
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Figure 13. Schematic diagram of constraint action: (a) distance constraint 1; (b) distance constraint 2;
(c) parallel constraint 1; (d) parallel constraint 2.

3. Design of the reward mechanism

In addition to designing the action and state spaces, MAQL requires a rational reward
mechanism to evaluate states, guiding the agents toward better state transitions. For
the multi-agent reinforcement learning layout problem, it is necessary to balance the
consideration of each equipment’s state to minimizing the evaluation function value. This
paper uses Equation (2) as the basis for setting up the reward mechanism, as shown
in Equation (16). This equation includes a penalty term, I_space, primarily to prevent
agents from exceeding the feasible layout zone, with a penalty value set at 100,000. If the
evaluation value Fy(w_]) of the joint state at each time step is smaller than the historical
optimal evaluation value Fpn(w_I), the reward r is 1, prompting a state transition and
updating Fpin(w_I). Otherwise, the reward r is 0, and the state remains unchanged.

minFy(w_Il) = minFy(w_l) + [_space
r — 1,e(Fmin(w—l)_Ff(w—l)) >1 (16)
O’e(Fmin(w—l)_Pf(w—l)) S 1

3.2.3. Principles of AGMAQL

1.  Guided reduction in state space

For MAQL, the design of the MDP framework is crucial, as it directly determines
the solvability of the problem. The MDP must be established within finite state and
action spaces, ensuring that the value function estimate converges to the optimum with
probability 1. As shown in Table 2, the collaborative problem in this paper considers a
vast number of joint states for each Q-table, and the action search range for the agents is
also quite limited. When MAQL cannot find a better position within the reachable search
zone, the state does not transition. This presents significant challenges for MAQL's training
process, making it difficult to traverse all states and actions, ultimately resulting in only
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locally optimal solutions. Although traditional MAQL can randomly initialize states within
the space, the limited search space and overly blind initialization positions cause MAQL
to repeatedly fall into local optima. Consequently, the cumulative reward curve fails to
converge, preventing the achievement of a consistently rising ideal result.

To address this issue, MAQL needs to be provided with effective assistance to guide
the agents in focusing on the most valuable directions for continuous training. In the
initial training phase, this study uses the AFSA, known for its strong global optimization
capabilities, as an aid to narrow the search space, thereby avoiding the exploration of
ineffective zones. Figure 14 simulates the learning and optimization process of an agent
within the layout zone in a two-dimensional space, where higher brightness indicates better
evaluation values. It can be seen that the entire communication optimization process is
illustrated by the yellow circles in Figure 14. Initially, due to the AFSA’s strong optimization
capability, MAQL quickly identifies the optimal zone. Later, as the AFSA’s fine optimization
capability is limited by its step size parameters (indicated by the blue circles in Figure 14),
the local optimization is primarily reliant on MAQL. It is important to note that during the
communication learning process, data processing is required to ensure that each operation
is based on grid points. For example, in Figure 15, the blue scheme represents the joint
position obtained by AFSA before correction, while the red state is the joint position after
grid processing based on the nearest distance principle.

100

50

Global optimum

-100  -50 0 50 100 150 200

Figure 14. AGMAQL optimization process.

Figure 15. Schematic diagram of grid data processing.

2. Adaptive changes in action space

As discussed in Section 3.2.2, MAQL struggles to escape local optima due to its
limited exploration space. Although guided reduction in state space ensures stable MAQL
convergence, it does not guarantee efficient attainment of the global optimal solution every
time. Figure 16 shows the state space of an agent in the later stages of optimization. The
gray point represents the agent’s state, and the red point represents the global optimal
target. Traditional single-step actions can only explore the green area, and since the
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states in the green area receive a reward of 0, the state does not transition. Therefore, the
searches conducted in this case are ineffective. To avoid this situation, this study designs a
variable-scale step length strategy. When the number of ineffective explorations reaches
a certain threshold, the step length adaptively increases according to Equation (17), thus
continuously expanding the search area (as shown in the figure, the area enclosed by the
blue points has already covered the red target point), exploring more states, and increasing
the probability of finding the optimal solution.

stepuew = stepin; +min(| (num_t —0) /5], stepm ), num_t > 6 x m_st (17)

where step;,; represents the standard step length, m_st represents the maximum number of
learning steps per episode, and 6 is the limiting coefficient, approximately 0.1 times m_st.
num_t indicates the number of ineffective explorations. When num_t exceeds 0 x m_st,
the variable-scale step length strategy is executed. ¢ is the scaling factor, approximately
0.05 times m_st, which controls the rate of step length change. step;, is the maximum step
length, set to three times step;,;. The values of § and J are based on grid precision and can
be adaptively adjusted to ensure algorithm performance.

Figure 16. Variable-scale step length strategy.

3. Balance between exploration and exploitation

In addition to effectively setting up the learning environment, ensuring a balance
between exploration and exploitation during action selection in the training process is
crucial. The aim is to explore all actions and select the most effective one, without being
too random to converge or too greedy to get stuck in local optima. To address this issue,
this paper introduces an adaptive e-greedy strategy, which includes an adaptive decay
strategy and a balancing strategy, as illustrated in Figure 17. The e-greedy strategy is a
commonly used exploration strategy for agents. As shown in Equation (18), the agent
selects a random action with probability € and the current optimal action with probability
1 — &. The proposed adaptive decay equation is shown in Equation (19), where ¢;¢, and €,
represent the maximum and minimum exploration rates, respectively. t and m_T represent
the current training episode and the maximum number of episodes, respectively. k and
n are decay constants. To bias the agent towards exploration and discovery in the early
learning stages and towards exploiting knowledge to select the current optimal action in
the later stages, k and 7 are set to 8 and 4, respectively.

Random a, ¢
argm;xQ(s,a), 1—¢ (18)
0<ex<l1

— _t_y"
€= €1 + (ehigh - Z':low) X 6’( o)) (19)



J. Mar. Sci. Eng. 2024, 12,1187

20 of 34

Through training, this study found that due to the very small value of ¢ in the later
stages, the agent can only choose from a limited action space in a short period within
a given state. When the number of ineffective explorations reaches the set limit, the
training for that episode ends prematurely, ultimately failing to obtain the optimal action
corresponding to the maximum Q value. As shown in Figure 17, after multiple greedy
selections, the algorithm only obtained information about two actions. At this point, the
training concluded, and the algorithm outputted the suboptimal action 41, ignoring the
optimal action a3. Therefore, based on the ¢-greedy strategy, this study introduces a search-
balancing strategy. If certain actions in a given state have not been explored after a certain
number of steps (5% of the maximum learning steps), these actions are sequentially selected
in the next training step of the current episode.

Q" (st ar) « Q' (st, ) + (r(strat/5t+l) + v max Q'(s+1,ar+1) +9* max Q' (se12, r42) — Qt(strat)> (20)
llH,leA ﬂt+26A

In addition to improving action selection strategies, this study adopts a double-step
TD strategy for better future prediction and control in the Q-table update process, based
on the multi-step TD update concept [48]. The basic version in Equation (13) is modified
to Equation (20). As shown in Figure 18, instead of using the predicted reward value r¢
from a one-step action (yellow box), the agent uses the predicted reward values r; and ;41
from two-step actions (red box) to update the Q-table. This strategy provides Q values that
are closer to the actual data, with less bias and more stable results, while ensuring time
efficiency.
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S a a a3
"= 3 = 2 3= <
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Random a =a; or a, ﬂ argmax(Q(s,a)=a,
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strategy ﬂ end
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Figure 17. Adaptive e-greedy strategy.
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Figure 18. Double-step temporal difference strategy.

3.2.4. Equipment Layout Process

Based on the above improvement strategies, the equipment layout process of AG-
MAQL is shown in Figure 19, mainly comprising three nested loops.
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Figure 19. AGMAQL layout flowchart.
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3.3. Bidirectional Collaborative Layout Process Based on AGMAQL-ATA

Based on the previously described equipment layout and pipe layout processes, this
section proposes the SERLD method based on the collaborative algorithm AGMAQL-
ATA, as shown in Figure 20. This method integrates hierarchical layout concepts, an
adaptive collaborative weight strategy, and a collaborative evaluation function, and is
mainly described as follows:

Divide layout zone
Hierarchical layout strategy

For level i

Update energy zone information
l No

Equipment layout
process (Section 3.2.4)

Pipe layout process
(Section 3.1.2)

Adaptive collaborative
weight strategy

Determine the layout
haracteristics and evaluation
function for level i

Save the optimal
F———scheme and evaluation
value E_val for level i

f

Update obstacle information

Tave all levels been
completed?

Output the optimal
t=t+1 overall collaborative
layout scheme

Figure 20. The bidirectional collaborative layout flowchart based on AGMAQL-ATA.

At the initial stage of layout, it is necessary to analyze the actual environment of the
engine room to be arranged and understand special zones and engineering requirements.
After identifying obstacle zones such as restricted zones, passages, and stairways, the
feasible layout zones are divided. Our previous research proposed a layout zone allocation
procedure considering special zones, torque balance, and functional relevance [6]. In this
study, as described in Section 2.2, after determining the feasible layout zone for each piece
of equipment, the specific collaborative layout zones are further identified.

In practical engineering, SERLD is influenced by platform structures and the functional
nature of the equipment, resulting in different layout priorities [25]. The more equipment
there is, the larger the joint state space and action space, leading to higher computational
complexity. Therefore, considering the nature of the equipment, engineering practicality,
algorithm efficiency, and adaptability, this study proposes a hierarchical layout strategy,
as shown in Figure 21, which is divided into three levels: fixed layer, collaborative layer,
and equipment layer. The research on SERLD needs to ensure torque balance [6]. Before
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calculating the layout of each level, the reasonableness of the torque must be judged
according to Equation (21), where both sides of the equation represent the torque of the
zone on either side of the axis. In this study, the torque error is set within 10%.

____________________________________________________________________________________________

Collaborative Equipment of high ‘

i 1
! 1
{ 1
| 1
! 1
{ 1
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Collaborative Equipment with close
layer 2 functional relationships.

Figure 21. Hierarchical layout strategy.

dl X Np = dz X Np (21)

Different levels have different layout approaches. Level 1 has the highest layout
priority, typically corresponding to the main engine or specially designated equipment.
This level is crucial for adjusting the overall torque balance of the layout. In the initial
layout stage, experts need to pre-arrange specific positions to ensure layout rationality
and engineering feasibility. Level 2 is the core of the collaborative layout, with layout
quality evaluated using Equation (2). This level contains most of the equipment, which
needs to be arranged in layers according to its importance. Testing has shown that the
layout works optimally when each layer contains fewer than eight pieces of equipment.
Level 3 mainly focuses on the remaining equipment without pipe interfaces and with
low functional relevance to other equipment, with layout quality evaluated using only
Equation (9). In summary, each level maintains interconnectivity, with the optimal lay-
out information from the previous level being incorporated into the calculations for the
next level.

In the SERLD problem, the design of the evaluation function directly determines the
effectiveness and quality of the collaborative layout. Equipment positioning has a greater
impact on SERLD, as pipe layout needs to be based on reasonable equipment positions.
Therefore, the evaluation weight of the equipment is higher. To address this, this paper
proposes an adaptive weight coefficient strategy to better coordinate the layouts of both
layers. As shown in Equation (22), I; and [, is the weight coefficient in the evaluation
Equation (2). Based on the priority of equipment layout, the maximum value of Iy (I;g) is
set to 0.8 and the minimum value (/j,,) to 0.6. t and m_T represent the current and maximum
number of iterations, respectively. n is the decay rate, set to 8. Using 100 iterations as an
example, the variation curve (red line) in /; over time is shown in the three stages (stages a, b,
and c in the figure) in Figure 22. Initially, corresponding to stage a (0-10 iterations), to ensure
that the equipment can be placed in a reasonable collaborative zone, [ is set relatively high.
Subsequently, corresponding to stage b (10-20 iterations), to ensure optimization speed, I
begins to increase rapidly, reaching the optimal collaborative proportion of 0.6:0.4 within
approximately 10% of the iteration cycle. Finally, corresponding to stage ¢ (20+ iterations),
in the mid to late stages, balanced collaborative optimization exploration is carried out
with a standard proportion.

I =l + (lhigh - 1zow) X (1 - (ﬁ)@ (22)
L=1-1
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Figure 22. Adaptive collaborative weight strategy.

The above collaborative layout approach aims to achieve joint optimization at both
the independent goal layer and the multi-objective layers. Ultimately, according to the
engineers’ requirements, multiple optimal layout schemes with different focuses can be
obtained by adjusting the weight coefficients.

4. Verification Analysis and Discussion Based on Practical Case
4.1. Case Information and Experimental Conditions

To verify the feasibility of the collaborative layout method proposed in this paper, this
experiment uses a complex and representative actual ship engine room from Reference [6] as
the test case. This study is validated in terms of encoding, algorithms, and layout strategies.
The experimental environment includes a Windows 11 operating system, Python 3.12
simulation tools, and a 12th Gen Intel(R) Core(TM) i7-12700H processor.

Figure 23 shows the original manually arranged engine room in this case, which
includes 21 pieces of equipment, such as a nuclear reactor. The model after envelope
processing is shown in Figure 24. As described in Section 2.2, this case can be divided into
two main feasible layout zones. The collaborative layout zone for each piece of equipment
is initially set by experts, with each piece roughly positioned at the center of its respective
zone. According to the hierarchical layout strategy, Figure 24 shows the information for
different layout levels. Level 2 is divided into two layers due to the limitation on the
amount of equipment. There are 15 pipes in total, with interface coordinates based on
the relative positions of the equipment center-points. E denotes equipment numbers, and
S-pipe and B-pipe represent single and branch pipes, respectively. According to Section 3.3,
the central positions of level 1 equipment E1 and E2 are set at (33.5, 53, 16) and (15, 6,
30.5), respectively. It should be noted that level 1 is set considering the torque balance
of all equipment. However, to ensure the rationality of torque distribution during the
evaluation of the level 2-1 layout, level 1 is temporarily excluded from torque calculations.
Additionally, the relevance coefficients between all equipment can be found in the original
literature. Equipment E3, E4, and E21, which are on the bottom platform of the engine
room along with the nuclear reactor E1, cannot have their z-coordinates changed, and the
height of other equipment cannot be lower than that of the platform.
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Figure 23. Actual layout of the original engine room [6].
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Figure 24. Layout hierarchy and parameterized information: (a) level 2-1; (b) level 2-2; (c) level 1;
(d) level 3.

4.2. Experimental Setup

To reasonably verify the feasibility of the novel SERLD method proposed in this study,

comparative validation is conducted from two main perspectives: layout algorithms and
layout strategies. The layout algorithms include the ATAFSA and AGMAQL, while the
layout strategies include hierarchical strategy and adaptive collaborative weight strategy.

4.2.1. Experimental Comparison of Layout Algorithms

In terms of layout algorithms, the validation of AGMAQL used for equipment layout

and the ATAFSA used for pipe layout is conducted separately. The specific experimental
setup is as follows:

1.

For the equipment layout algorithm AGMAQL, this experiment approaches the com-
parison from the perspectives of reinforcement learning and optimization algorithms:
On one hand, AGMAQL is compared with the HMSAFSA from previous SERLD
research [6] to verify its applicability relative to optimization algorithms. Previous
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research focused on finding the optimal layout through equipment translation ac-
tions and demonstrated the optimization performance of the HMSAFSA through
comparisons with various optimization algorithms. On the other hand, AGMAQL
is compared with the basic MAQL algorithm and Wolf-PHC [30] to verify its ef-
fectiveness relative to other MARL algorithms. Wolf-PHC is a leading algorithm
in the field of facility layout. For this algorithm, each agent also maintains an in-
dependent Q-table and can adjust learning parameters and strategies based on its
performance. Finally, AGMAQL is compared with manual layout schemes to validate
its engineering practicality.

2. For the pipe layout ATAFSA, this experiment primarily focuses on the underlying
encoding and algorithm improvements, comparing it with the leading research. The
comparison includes the following two aspects: On one hand, the ATAFSA is com-
pared with the leading vector encoding method [4] and the Manhattan trajectory-based
encoding method [6], both of which have been proven effective through extensive
experiments. On the other hand, the ATAFSA is compared with the original AFSA,
and the HMSAFSA and DDECS algorithm from the literature, which are leading opti-
mization algorithms in the SPLP field. Through these comparisons, the optimization
speed, accuracy, and stability of the ATAFSA are validated.

To ensure the fairness of the experiment, algorithm parameters are set according
to the optimal ranges specified in the original literature. The parameter settings for the
HMSAFSA, AFSA, and ATAFSA remain consistent. It should be noted that the feasible
variation space for vector points in this study is significantly reduced compared to previous
research, necessitating parameter adjustments. The aim is to ensure that the movement
variation value of the population in each iteration is about 10% of the maximum feasible
range [5]. After verification, the adjustment principle is as follows: when the feasible
variation space of vector points is reduced to x% of the original, the core action parameters
S_V and S5_S of the algorithm are also reduced to x% of their original values. In this
study, the feasible variation space for pipe layout is reduced by approximately 80%, and
for equipment layout by approximately 70%. Furthermore, this study uses the core and
representative levels 1 and 2-1 as validation cases for the algorithm. During pipe layout,
the equipment positions remain unchanged. The number of tests is 20, with a population
size of 50 and 100 iterations for each test. The final test results are shown in Figures 25-28
and Tables 3 and 4, where E_uval represents the layout evaluation value. The suffixes T and
A represent the encoding methods proposed in Reference [4] and this study, respectively.

(b) ()

\«se

Figure 25. Comparison of optimal layout schemes for various algorithms (equipment layout):
(a) manual experience; (b) MAQL; (c) Wolf-PHC; (d) HMSAFSA; (e) AGMAQL.
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Figure 26. Comparison of optimization performance for various algorithms (equipment layout):

(a) all test results; (b) optimal test results.

Figure 27. Optimal layout schemes for various algorithms (pipe layout): (a) scheme 1; (b) scheme 2;
(c) scheme 3.

1000

250 f---f-+

[~o—DpDECST
[—o— AFSA-A
[—4— HMSAFSA-T|
[—v—DDECS-A
|——ATAFSA-A

40 60 80 100
Iteration

@

Figure 28. Cont.

1000

[Fe—DDECST
[—o—AFSA-A

|—~—DDECS-A
[ ATAFsA-A

<70 T SO e S
=
S, I | L . 2
w500 |-l o f- - g -
250 i
Of v T e SEEEEEERF SRR
i i

40 60 80 100
Iteration

(b)



J. Mar. Sci. Eng. 2024, 12,1187

27 of 34
1500 1500
—&— DDECS-T [—®— DDECS-T
—o—AFsA-A — AFSA-A
1250 |- [—— HMSAFSA-T 1250 |- [—— HMSAFSA-T
+— DDECS-A +—DDECS-A
) ATAFSA-A ATAFSAA
1000 -+ o 1000 - 30001
300 \ \ ‘t\
= @ A = 200 \ “3
S 750 | | 200 IS S N S 750 ey
o @ g \ ~ r-u' == DAY
{ 100 8. 14115119 | 100 12018 0 26 31
500 \\ y----0 g el 500 - 4‘\" 60 2030
Ay \ ’ ”*\ e T TPt -6
250 |- | NN S N A 250 |-
Miobooociocooocooccoomrrs® | T Mottt deocccockooscorscoose:
........................................
oF ok
| i i | i | i i i i i i
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
(c) (d)

Figure 28. Comparison of optimization performance for various algorithms (pipe layout): (a) optimal

test
test

results (S-pipe3); (b) worst test results (S-pipe3); (c) optimal test results (B-pipel_main); (d) worst
results (B-pipel_main).

Table 3. Detailed comparison of evaluation data (equipment layout).

Optimal E_val Deviation Average E_val Deviation
Manual 294.65 14.4% None None
MAQL 301.64 16.4% 816.21 67.2%
Wolf-PHC 270.17 6.6% 494.14 45.9%
HMSAFSA 262.59 4.0% 298.43 10.3%
AGMAQL 252.21 None 267.57 None

Table 4. Detailed comparison of optimization performance data (pipe layout).

Convergence Iterations (S-pipe3) Convergence Iterations (B-pipel_Main)
Best Worst Average Deviation Best Worst Average Deviation
DDECS-T 100+ 100+ 100+ 91.9%+ 100+ 100+ 100+ 90.8%+
HMSAFSA-T 15 28 21.5 62.3% 15 31 239 61.5%
AFSA-A 18 24 20.7 60.9% 19 26 22.3 58.7%
DDECS-A 12 16 13.6 40.4% 14 18 15.7 41.4%
ATAFSA-A 7 10 8.1 None 8 12 9.2 None

4.2.2. Experimental Comparison of Layout Strategies

To verify the effectiveness of the layout strategies, this study compares the proposed

strategies with ideas from other literature and incorporates the concept of ablation experi-
ments to validate the effectiveness of the two proposed collaborative strategies. The specific
experimental setup is as follows:

1.

Strategy 1: Validate the effectiveness of the hierarchical strategy. This strategy follows
the conventional layout approach in SERLD research, where no hierarchical processing
is performed during collaborative layout. All equipment and pipes are processed
at the same level, finding the optimal solution through function constraints. This
method is based on the idea in Reference [22].

Strategy 2: Validate the effectiveness of the adaptive collaborative weight strategy.
This follows the traditional layout approach [29], where the evaluation weights for
equipment and pipes remain constant throughout the collaborative layout process,
specifically /; = 0.6 and I, = 0.4.

Strategy 3: Compare with the most advanced SERLD method from the latest refer-
ence [6]; this method also has similar hierarchical and collaborative guidance strate-
gies, but the equipment does not have rotational actions.

Strategy 4: The layout strategy proposed in this paper.
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All comparative tests for the strategies are conducted under a unified environment,
including the collaborative algorithm AGMAQL-ATA, evaluation methods, and weight
coefficients. Each strategy underwent 20 sets of tests, with each set having 100 iterations.
The final test results are shown in Figures 29-31 and Table 5, where S represents the
abbreviation for strategy. E_eva, P_eva, and C_eva represent the optimization objectives
for the layers of equipment, pipes, and collaboration, respectively.

S-Pipe3

S-Pipe5

(@) (b)

Figure 29. Comparison of optimal layout schemes for various strategies (collaborative layout): (a) S1;

(b) S2; (c) S3; (d) S4.

L

33849

(b) (0)

Figure 30. Comparison of optimal optimization results for various objectives at different levels:
(a) level 2-1; (b) level 2-2; (c) level 3.
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Figure 31. Comparison of optimization performance for various strategies (collaborative layout):
(a) level 2-1; (b) level 2-2; (c) level 3; (d) comprehensive test results; (e) optimal test results.
Table 5. Comprehensive comparison of evaluation data (collaborative layout).
Level 2-1 Level 2-2 Level 3
5 . - - . - Overall Deviati Median Deviati
Optimal Median Optimal Median Optimal Median E_val eviation E val eviation
E_val E_val E_val E_val E_val E_val
S1 None None None None None None 683.98 21.2% 720.46 23.7%
S2 294.70 297.20 158.52 164.47 98.20 99.46 551.42 2.2% 559.64 1.7%
S3 313.63 318.67 170.81 177.16 102.59 107.85 587.03 8.2% 603.31 8.8%
S4 287.06 291.02 154.84 158.68 97.22 99.91 539.12 None 550.05 None

4.3. Analysis and Discussion of Test Results
4.3.1. Equipment Layout Aspects

In terms of equipment layout, the following test results were obtained through exten-
sive comparative testing with manual experience, leading optimization algorithms, and
leading reinforcement learning algorithms: the optimal layout scheme (Figure 25), overall
optimization data, and the optimal optimization data (Figure 26 and Table 3).

All algorithms considered aspects such as balance, relevance, and compliance, among
others, resulting in the optimal layout scheme depicted in Figure 25, with major changes
marked. According to Figure 26 and Table 3, except for MAQL, all algorithms showed
significant improvements compared to manual experience. The AGMAQL proposed in this
paper demonstrated the most significant layout enhancement, validating its feasibility and
engineering practicality. The optimal and average E_val for MAQL differed by 16.4% and
67.2%, respectively, compared to our algorithm, showing lower optimization stability and
a tendency to fall into local optima, resulting in a higher overall E_val. Wolf-PHC shows
considerable improvements in optimization efficiency and stability compared to MAQL, but
it still lags behind AGMAQL and has poor robustness. As seen, compared to reinforcement
learning algorithms in the literature, AGMAQL maintained its optimization performance
even when dealing with multiple agents and large state spaces, ensuring stable optimization
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of multiple variables. In addition to the comparison of reinforcement learning algorithms,
this experiment also compared AGMAQL with the leading optimization algorithm, the
HMSAFSA. As shown in Figure 26b, the HMSAFSA demonstrated stability and efficiency
when applied to equipment layout. However, Figure 26a reveals that although optimization
algorithms are highly efficient, their optimization is somewhat limited due to their iterative
logic and parameter factors. The optimal and average E_val of the HMSAFSA differ from
those of AGMAQL by 4.0% and 10.3%, respectively. Compared to optimization algorithms,
reinforcement learning offers flexible fine optimization capabilities, is less affected by
parameters, and can continuously adjust the optimization extent of equipment according
to environmental changes, making it more targeted. The test results proved that AGMAQL
significantly improves the layout upper limit, and finds a globally better scheme, confirming
its applicability and engineering practicality in equipment layout problems.

4.3.2. Pipe Layout Aspects

In terms of pipe layout, comparative tests are conducted with currently widely used
algorithms and encoding methods in this field, based on the same equipment position
scheme. This resulted in three different types of optimal layout schemes (Figure 27).
Subsequently, the optimal and worst optimization performances of various algorithms are
compared based on different complex pipe cases (Figure 28 and Table 4).

Based on 20 sets of comparative tests, the following conclusions can be drawn:
(1) Both the literature algorithms and the proposed algorithm can achieve better layout
results, validating the feasibility and flexibility of applying optimization algorithms to pipe
layout. This paper selects three representative better layout schemes, as shown in Figure 27.
These algorithms can adjust objective weights according to the engineer’s requirements
to achieve different optimal layouts. For example, Figure 27a,b focus more on the bends
and the length of the pipes, while Figure 27c emphasizes the utilization of the energy zone.
(2) In terms of encoding validation, as shown in Figure 28, the tests on two complex single
pipe cases (S-Pipe3 and B-Pipel_main) indicate that the optimal and worst optimization
performances of ATAFSA-A, DDECS-A, and AFSA-A are superior to those of DDECS-T
and HMSAFSA-T. Specifically, as indicated by the red circles and squares in the figure, they
can find a relatively better region in the initial stage and quickly converge to the optimal
E_val within 7-26 iterations. Table 4 shows that the optimization results of DDECS-A and
DDECS-T, which use different encoding methods but the same algorithm, differ by more
than 50%, further proving the efficiency of the proposed encoding method. (3) In terms of
algorithm validation, a comparison is made between the proposed algorithm ATAFSA-A,
the literature algorithm DDECS-A, and the original AFSA-A, all using the same encod-
ing method. As shown in the red annotations in Figure 28 and Table 4, the optimization
efficiency of DDECS-A and AFSA-A differs from ATAFSA-A by approximately 40% and
60%, respectively, with ATAFSA-A having the best initial solution and requiring only about
eight iterations to find the optimal solution. Additionally, it is noteworthy that the ATAFSA
is an improvement on our previous research, the HMSAFSA. The tests revealed that the
ATAFSA maintains stable efficiency even in the worst optimization scenarios, whereas the
HMSAFSA is less stable, with a significant gap between its best and worst optimization
results. This validates the feasibility of the parallel optimization strategy proposed in this
paper. Through the above tests, the efficiency and stability of the ATAFSA were verified.

4.3.3. Collaborative Layout Aspects

In terms of collaborative layout, extensive and detailed comparative tests were con-
ducted using ablation concepts and strategy ideas from the literature to validate the feasi-
bility of the proposed layout strategy. The following test results were obtained: the optimal
layout schemes (Figure 29), the optimal optimization results for various objectives at each
layout level (Figure 30), and the comprehensive collaborative test results (Figure 31 and
Table 5).
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Based on comparative tests from different perspectives, the following experimental
conclusions can be drawn: (1) According to Figure 29 and Table 5, the optimal layout scheme
obtained by the proposed strategy features the shortest pipe length, the fewest bends, a
large proportion of the energy zone, balanced overall torque, strong layout relevance, and
attention to safety and engineering constraints. Major changes in other schemes are marked
in the figure, and their collaborative values E_val differ from the proposed strategy by
21.2%, 2.2%, and 8.2%, respectively. (2) According to Figures 30 and 31, by comparing
the optimization objectives E_eva, P_eva, and C_eva at each level, a consistent pattern
is observed in levels 2-1 and 2-2: the adaptive collaborative weight strategy proposed
in this paper results in higher E_val in the early optimization stages, leading to larger
errors. However, by comparing the median and optimal data across the entire test, it
is evident that S2 and S3 only achieve local optimal results, which are inferior to the
proposed strategy. For level 3, since it only involves equipment objectives, the results of
52 and the proposed strategy are almost identical, while S3 still performs poorly due to
not considering more collaborative actions and zones. (3) According to Figure 31d,e in
20 sets of tests, S1 performed the worst. This indicates that without adopting a hierarchical
approach, the significant increase in optimization variables leads to a decline in algorithm
performance. Ultimately, the optimal E_val and median for S1 differ by more than 20%
from the proposed strategy. Based on all the data included in Figure 31, the test results for
52 and S3 are consistent with conclusion (2): although they optimize quickly, they have
lower optimization upper limits, making it difficult to find globally better solutions, and
S3 is prone to local optima. In summary, the collaborative layout strategy proposed in
this paper shows significant improvements compared to other literature strategies, further
proving the practicality and rationality of this research. It can efficiently provide designers
with the most valuable reference schemes.

5. Conclusions

To address the research deficiencies in SERLD, this paper proposes a novel layout
method that includes optimization strategies for both independent and overall levels. This
method effectively combines reinforcement learning and heuristic algorithms, significantly
enhancing the upper limit of intelligent layout results in SERLD. The main contributions
are as follows:

1. Interms of equipment layout, to address the multi-variable optimization challenges of
algorithms, this paper creatively applies the multi-agent reinforcement learning algo-
rithm MAQL to SERLD research, proposing an improved AGMAQL algorithm. This
algorithm focuses optimization efforts on easily controllable equipment. AGMAQL
features a reasonable MDP framework, improved state, action, and learning strategies.
Compared with other reinforcement learning and optimization algorithms, AGMAQL
achieved over a 4.0% improvement in layout effectiveness at the equipment level,
validating its efficiency and rationality.

2. In terms of pipe layout, to address the instability of pipe optimization in collabo-
rative layout problems, this paper proposes a powerful adaptive trajectory-based
encoding method and an improved algorithm, the ATAFSA. This algorithm integrates
parameter-adaptive strategy, scouting optimization strategy, and parallel optimization
strategy. Through testing and comparison at both the encoding and algorithm levels,
the ATAFSA achieved an over 40.4% improvement in optimization efficiency at the
pipe level, validating its stability and suitability for collaborative applications.

3. Interms of collaborative layout, to overcome the deficiencies in traditional indepen-
dent layout strategies, this paper considers actual engineering specifications and
multi-level objectives and constraints, proposing a SERLD method that includes an
adaptive collaborative weight strategy, a hierarchical layout strategy, and a more
comprehensive collaborative evaluation function. While simplifying the problem,
these strategies effectively achieve collaborative optimization of equipment and pipes.
Finally, based on a practical engine room case and through comparison with multiple
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literature strategies, AGMAQL-ATA achieved an over 2.2% improvement in layout
effectiveness at the collaborative level, validating the feasibility and engineering
practicality of the proposed strategies.

The proposed SERLD method addresses previous research gaps, provides new insights
into SERLD research, significantly improves ship design efficiency, and can flexibly pro-
vide engineers with reference schemes from different perspectives. However, the current
research exploration mainly focuses on the geometric aspects and typical engine room
environments, without addressing more practical factors such as manufacturing, structure,
gravity, fluid dynamics, and stability. In the future, collaborative research on SERLD will
further consider more practical engineering issues in shipbuilding, such as design for hull
structure and curved surface; design for optimal manufacturing; and design for repair and
disassembly, stability, and ship weight optimization. By rationally arranging the engine
room, the intelligence, efficiency, and stability of ship design can be enhanced.
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