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Abstract: The integrity of the cement sheath is susceptible to failure during multi-stage fracturing.
In this study, the failure mechanisms of cement sheath integrity during multi-stage fracturing in
the A offshore tight oil reservoir wells were investigated. The cement samples were subject to
triaxial compression test (TCT), triaxial cyclic loading test (TCLT), and permeability test. A full-
scale device was constructed for cement sheath integrity experiments. Additionally, a 3-D finite
element model was developed to simulate the interface debonding and the subsequent growth of
micro-annuli throughout multi-stage fracturing. The results revealed that TCLT induced cumulative
plastic deformation in the cement samples, resulting in a 10.7% decrease in triaxial compressive
strength, an 8.3% decrease in elastic modulus, and a 150% increase in permeability. Despite these
significant variations, no serious damage was caused to the cement sheath matrix. It was observed
that gas leakage occurred at the 8th, 10th, and 14th cycles under cyclic loading with upper limits of
70 MPa, 80 MPa, and 90 MPa, respectively. After 15 cycles, the experimentally measured widths of
micro-annuli were 117 µm, 178 µm, and 212 µm, which were in good agreement with simulation
results of 130 µm, 165 µm, and 205 µm, respectively. These findings elucidate the causes of cement
sheath integrity failure, providing insights into the failure mechanisms of cement sheath integrity
during multi-stage fracturing.

Keywords: offshore tight oil reservoir; multi-stage fracturing; cyclic loading; cement sheath integrity

1. Introduction

Global demand for oil and gas has witnessed a substantial increase in recent decades [1].
As the global development of oil and gas reservoirs with medium to high permeability
intensifies, the depletion of high-quality hydrocarbon resources is becoming increasingly
evident [2]. Consequently, there is a growing interest in unconventional resources [3]. The
exploration of unconventional oil and gas resources, particularly tight and low-permeability
reservoirs [4], has steadily expanded and undergone extensive development worldwide [5].

Multi-stage fracturing technology significantly enhances the productivity of oil and
gas wells by creating complex fracture networks within reservoirs, making it the most ef-
fective method for exploiting unconventional resources, such as tight and low-permeability
formations [6]. Offshore unconventional resources, including tight oil reservoirs, constitute
a substantial proportion of the world’s hydrocarbon potential and necessitate multi-stage
fracturing techniques to increase productivity [7].

However, the integrity of the cement sheath is susceptible to failure during multi-
stage fracturing, leading to sustained casing pressure (SCP). It poses threats to the safe
production of oil and gas wells and potentially causes environmental and safety issues
during subsequent drilling operations [8]. Consequently, the sustainable development of
unconventional oil and gas reservoirs is compromised [9]. Understanding the key factors
affecting cement sheath integrity in multi-stage fracturing is crucial [10]. Therefore, it is
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imperative to explore the mechanisms behind cement sheath integrity failure during multi-
stage fracturing, thus providing a basis for the rationalization of fracturing construction
parameters [11].

During multi-stage fracturing, variations in internal pressure within the casing induce
alternating stresses in the cement sheath, serving as a primary factor contributing to its
integrity failure [12]. In addition, the mechanical environment around the cement sheath
becomes more complex during multi-stage fracturing due to abrupt changes in casing
pressure and temperature [13]. This complexity makes it challenging to mathematically
analyze and physically simulate cement sheath integrity failures under such conditions [14].

The causes of cement sheath integrity failure can be categorized into three types:
disking cracks, radial cracks, and debonding. Disking cracks and radial cracks are typically
induced by mechanical stresses, whereas debonding is usually caused by the mismatched
deformation between the casing and the cement sheath [15].

Goodwin and Crook [16] conducted a laboratory test to investigate the integrity of
a casing–cement–casing system. They observed catastrophic shear failure and the forma-
tion of radial cracks in the cement sheath under alternating pressure loading conditions.
Kuanhai et al. [17] designed a simulated wellbore device for evaluating cement sheath
integrity under different pressures. The findings of this study offered valuable insights
into the impact of pressure on the mechanical properties of cement sheath interfaces.
Su et al. [18] developed a mechanical equivalence method to replicate the wellbore loading
on the cement sheath using a self-designed wellbore simulator. Cyclic load tests were
conducted, revealing a decrease in the tensile strength of the cement sheath following cyclic
loading. Feng et al. [19] and Wang and Taleghani [20] developed a combined numerical
model for simulating hydraulic fracturing processes. They observed that fluid pressuriza-
tion may create cracks in the annular space around the wellbore, specifically between the
cement sheath and the formation. This phenomenon subsequently leads to the formation
of channels conducive to gas flow.

Li et al. [21] constructed a comprehensive physical simulation experiment to identify
the primary determinant in scenarios involving cyclic loading and unloading. The results
revealed that plastic strain accumulates throughout the cyclic loading and unloading
process, leading to the formation of micro-annuli at the primary interface, which then
served as channels for gas migration.

In the previous study investigating the integrity of cement sheath, the material
was considered to be elastically brittle with stresses influenced by its properties [22].
Pereira et al. [23] also explored the reduction of shear failure in cement sheaths during
hydraulic fracturing, suggesting that lowering the elastic modulus can mitigate this type
of failure.

Landry et al. [24] found that in a shale gas field in the USA, SCP always occurs after
fracturing and occasionally before fracturing. They attributed the predominance of SCP
to issues such as improper cement placement or incomplete consideration of stimulation
conditions. Additionally, they emphasized the importance of considering changes in
cement sheath stress during stimulation and throughout well operation.

During multi-stage fracturing, the pressure inside the casing frequently rose and
fell, subjecting both the casing and the cement sheath to cyclical loading [25]. Earlier
research has shown that while the cement sheath might withstand a static load, it is prone
to failure under repeated applications of the same load, typical of the pressure fluctuations
experienced in multi-stage fracturing [26].

Ramadan et al. [27] developed a wellbore model to simulate gas migration in the
cemented annulus. A series of tests were performed using this model to assess the sealability
of both neat Class H and Class G cement types. Various additives, including bentonite and
latex, were incorporated. The tests demonstrated that the permeability of annulus cement
in the wellbore increased as the cement aged.

A strong bond between the casing and cement sheath is essential to mitigate the
occurrence of micro-annuli leakage paths at their interface [28]. Various elements, such
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as the cement type, the surface condition of the casing steel, and the curing environment,
significantly affect the bond strength between these materials [29]. Furthermore, the
evaluation of the bond strength between casing and cement sheath commonly involves the
implementation of laboratory pushout tests [30].

Tabatabaei et al. [31] conducted pushout tests to assess the effect of surface-modified
cement additives incorporating graphite nanosheets on bond strength under various sce-
narios involving oil-based mud residues.

Corina et al. [32] examined the sealing effectiveness of neat and silica–cement systems
in pipes with three varying degrees of surface roughness. In their study, gas leaks were
identified in all samples at low differential pressures, demonstrating that the cement–casing
interface is the source of these leaks.

The tight oil reservoir A is located in offshore China, and all of its production wells
utilize a typical three-casing structure. Among them, the structure of Well H is depicted
in Figure 1. After multi-stage fracturing, several wells have exhibited SCP, all of which
occurred in the B annulus (the space between the production casing and intermediate
casing). This phenomenon indicates a failure of the cement sheath integrity within the B
annulus. Thus, investigating the underlying mechanisms responsible for compromising the
integrity of the cement sheath in the B annulus constitutes the primary focus of this study.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 3 of 21 
 

 

bentonite and latex, were incorporated. The tests demonstrated that the permeability of 
annulus cement in the wellbore increased as the cement aged. 

A strong bond between the casing and cement sheath is essential to mitigate the oc-
currence of micro-annuli leakage paths at their interface [28]. Various elements, such as 
the cement type, the surface condition of the casing steel, and the curing environment, 
significantly affect the bond strength between these materials [29]. Furthermore, the eval-
uation of the bond strength between casing and cement sheath commonly involves the 
implementation of laboratory pushout tests [30]. 

Tabatabaei et al. [31] conducted pushout tests to assess the effect of surface-modified 
cement additives incorporating graphite nanosheets on bond strength under various sce-
narios involving oil-based mud residues. 

Corina et al. [32] examined the sealing effectiveness of neat and silica–cement systems 
in pipes with three varying degrees of surface roughness. In their study, gas leaks were 
identified in all samples at low differential pressures, demonstrating that the cement–cas-
ing interface is the source of these leaks. 

The tight oil reservoir A is located in offshore China, and all of its production wells 
utilize a typical three-casing structure. Among them, the structure of Well H is depicted 
in Figure 1. After multi-stage fracturing, several wells have exhibited SCP, all of which 
occurred in the B annulus (the space between the production casing and intermediate cas-
ing). This phenomenon indicates a failure of the cement sheath integrity within the B an-
nulus. Thus, investigating the underlying mechanisms responsible for compromising the 
integrity of the cement sheath in the B annulus constitutes the primary focus of this study. 

This study aims to investigate the failure mechanisms of cement sheath integrity dur-
ing multi-stage fracturing in the A offshore tight oil reservoir wells. The cement samples 
were subjected to triaxial compression test (TCT), triaxial cyclic loading test (TCLT), and 
permeability test. It quantifies the cumulative plastic deformation pattern of the cement 
under cyclic loading, assesses the impact of cyclic loads on the mechanical properties and 
permeability of the cement, and experimentally examines the failure of cement sheath in-
tegrity under multi-stage fracturing conditions using a full-scale device. The morphology 
of the micro-annuli was observed using a scanning electron microscope (SEM), and the 
widths of the micro-annuli were precisely measured. Based on the actual geological con-
ditions and wellbore structure, a 3-D finite element model was developed to simulate the 
development of cumulative plastic strain, interface debonding, and the growth of micro-
annuli during multi-stage fracturing. 

The numerical simulation results are in good agreement with the experimental re-
sults, providing valuable insights for a more in-depth understanding of the failure mech-
anisms and patterns associated with the cement sheath integrity during multi-stage frac-
turing. This study also provides guidance for the rational design of fracturing parameters. 

 
Figure 1. Structure of Well H. Figure 1. Structure of Well H.

This study aims to investigate the failure mechanisms of cement sheath integrity
during multi-stage fracturing in the A offshore tight oil reservoir wells. The cement
samples were subjected to triaxial compression test (TCT), triaxial cyclic loading test
(TCLT), and permeability test. It quantifies the cumulative plastic deformation pattern
of the cement under cyclic loading, assesses the impact of cyclic loads on the mechanical
properties and permeability of the cement, and experimentally examines the failure of
cement sheath integrity under multi-stage fracturing conditions using a full-scale device.
The morphology of the micro-annuli was observed using a scanning electron microscope
(SEM), and the widths of the micro-annuli were precisely measured. Based on the actual
geological conditions and wellbore structure, a 3-D finite element model was developed
to simulate the development of cumulative plastic strain, interface debonding, and the
growth of micro-annuli during multi-stage fracturing.

The numerical simulation results are in good agreement with the experimental results,
providing valuable insights for a more in-depth understanding of the failure mechanisms
and patterns associated with the cement sheath integrity during multi-stage fracturing.
This study also provides guidance for the rational design of fracturing parameters.
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2. Physical Experiments
2.1. Mechanical and Permeability Testing of Cement

The test cement was formulated using 100% G-grade cement, 23% silica fume, 6% anti-
gas channeling agents, 4.5% fluid loss additive, 1.0% retarder, and 0.3% dispersion agent,
with a 0.4 water-to-cement ratio and a 1.84 g/cm3 density. The cement slurry was then cured
to obtain cement stone. This cement stone was standardized for cylindrical specimens,
measuring 25 mm in diameter and 50 mm in height, as depicted in Figure 2a for samples
1 and 2. These specimens had consistent mechanical and permeability characteristics.
Initially, the initial permeability of sample 1 was evaluated using nitrogen gas as the testing
medium, as illustrated in Figure 2b, followed by a TCT in Figure 2c. Subsequently, sample
2 underwent a TCLT, which replicated the stress conditions experienced by cement sheaths
in multi-stage fracturing. Upon completion of the TCLT, sample 2 was also subjected to a
permeability test, followed by a TCT. TCT, TCLT, and permeability tests were conducted
under 10 MPa confining pressure. The implementation of TCT and TCLT was achieved
with the MTS device, possessing a maximum load of 600 kN and a maximum hydrostatic
pressure of 100 MPa.
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TCT procedure: The cement sample was placed within a pressure chamber, the triaxial
cell. The employment of oil ensured the uniform application of confining pressure around
the sample’s lateral surface. On the premise of keeping the confining pressure constant, an
axial load was gradually applied to the sample through a loading platen at the top. The
applied load was increased until the sample failed.

TCLT procedure: With the triaxial cell, the cement specimen was enclosed in a rubber
membrane to isolate it from the confining fluid. During the application of confining
pressure, oil was employed to envelope the specimen. After reaching the desired initial
confining pressure, cyclic axial loading was applied using a dynamic actuator. The cyclic
loading was capped at 80% of the specimen’s initial triaxial compressive strength over
15 cycles.

2.2. Experiment on the Cement Sheath Integrity
2.2.1. Experimental System

A comprehensive full-scale device was designed, comprising a foundation, a wellbore
configuration, and an integrated control and data acquisition system. This device allows
for simulation and evaluation of the cement sheath integrity under multi-stage fracturing.
Notably, considering the exclusive detection of SCP in the B annulus under field conditions,
the current experiments primarily focused on assessing the cement sheath integrity within
this annulus. This device is depicted in Figure 3a, its structural layout is presented in
Figure 3b, and the physical images are shown in Figure 3c,d.
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Cement and casing materials for the experiments were obtained from the oil field.
This practice ensured that the dimensions and materials of the inner and middle casings
were precisely consistent with those used underground. The details of the casing system’s
specifications are provided in Table 1. Specifically, A space within the production casing
was designated to provide cyclic pressure. In contrast, nestled between the production
casing and intermediate casing, the B annulus served as cement injection to establish the
cement sheath. Additionally, the C annulus, with its position between the surface casing
and intermediate casing, exerted confining pressure and simulated the subterranean stress
effects. This configuration guarantees that the experimental setup accurately replicates
real-world field scenarios.

Table 1. Basic parameters of casings.

Casing Grade Diameter
(mm)

Thickness
(mm)

Surface casing P110 177.8 9.19
Intermediate casing P110 244.5 9.65
Conductor casing N80 339.7 11.99

In this experiment, the adoption of a control system allows for the automated manage-
ment of various modules, thereby ensuring the automation of the experimental procedure.
Briefly, the control system guaranteed the source gas injection from the pump into the
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cement sheath foundation; additionally, it continuously documented the data from the
gas flowmeter at the upper side. Subsequently, the system sent commands to the confin-
ing pressure pump to apply the required pressure in the B annulus, thus simulating the
geo-stress effects. Lastly, under the instruction of the control system, the casing pressure
pump applied the required pressure precisely, creating cyclic pressure within the A space
to replicate the multi-stage fracturing process. This automated workflow improved the
experiment’s safety, convenience, and accuracy.

Two-stage and three-stage cementing jobs are prevalent in cementing operations.
Figure 4a,b depict their typical flowcharts. It can be seen that both processes are complex,
leading to a prolonged duration. Bottom hole circulating temperature and bottom hole
static temperature may impact the performance of cement slurries, potentially delivering
adverse effects.
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During the experiments, we prepared the cement slurry in a single batch and injected it
into the annulus within five minutes. This short injection interval ensured consistent prop-
erties throughout, including rheology, permeability, and unconfined compressive strength.

2.2.2. Experimental Procedure

Based on the historical fracturing data from the A oil field, three distinct cyclic internal
pressure groups featuring upper limit pressures of 70 MPa, 80 MPa, and 90 MPa were
selected. The minimum threshold pressure for all cycles was standardized at 20 MPa, con-
sistent with the hydrostatic pressure within the fracturing fluid. The detailed experimental
protocol is outlined below:

(a) The casings from the oil field were installed, and the cement slurry was prepared
according to the on-site cementing formula. Subsequently, the prepared slurry was injected
into Annulus B with a 48 mPa·s plastic viscosity and a 15.3 Pa yield point.

(b) An upper autoclave cover was affixed to the top of the casing strings using bolts
to maintain the integrity of the wellbore system. All necessary valves and sensors were
connected. Confining pressure was applied to the C annulus via the confining pressure inlet
to replicate the compressive force of formation acting on the casing. With the increasing
well depth, the temperature of the geological formations rose continuously [33]. The system
was heated to 60 ◦C with a heating jacket to simulate the geothermal temperatures. At
this constant temperature, the cement was cured for 168 h, thereby creating a solid cement
sheath [34].

(c) Test gas was pressurized to 2 MPa and introduced at the lower end of the B annulus.
Cyclic internal pressures were applied using the casing inner pressure inlet under the
instruction of the control system to mimic the multi-stage hydraulic fracturing operation.
Each cycle was executed for 10 min, summing up to 15 cycles. In the event of a failure in



J. Mar. Sci. Eng. 2024, 12, 814 7 of 19

the cement sheath’s integrity during the cyclic loading and unloading phases, test gas was
prone to migrate from the annulus’s base to its summit and exit through the gas outlet. The
data acquisition system recorded the gas flow rate at the upper B annulus.

The flow chart of the experimental work methodology is shown in Figure 5:
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3. Numerical Simulation

Full-scale experiments have limitations in accurately simulating non-uniform geo-
stress and capturing the evolution of micro-annulus widths during fracturing. For this
consideration, a numerical model using ABAQUS 2022 finite element software was devel-
oped. The developed model helps elucidate the failure mechanism of the cement sheath
integrity under multi-stage fracturing.

3.1. Finite Element Model

The simulation focused on the vertical section of Well H (Section A, located at a
depth of 2000 m), as shown in Figure 6a. A comprehensive 3-D finite element model was
constructed, comprising the production casing, B annulus cement sheath, intermediate
casing, C annulus cement sheath, surface casing, and the surrounding formation, consistent
with the actual dimensions of the wellbore. By employing structured and variable density
meshing techniques, the model measures 5 m × 5 m × 5 m, as demonstrated in Figure 6b,c.
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Figure 6. Finite element model based on actual wellbore structure: (a) structure diagram of the well,
(b) finite element model, and (c) wellbore structure.

Regarding the simulated geo-stress conditions, the maximum and minimum horizon-
tal principal stresses, along with vertical stress, were set at 26 MPa, 33 MPa, and 30 MPa,
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respectively. The casing was represented through a linear elastic material model. Addition-
ally, the cement sheath and formation were modeled using the Mohr–Coulomb constitutive
model, with material specifics outlined in Table 2.

Table 2. Mechanical properties of cement, casing, and formation.

Name Elastic Modulus
(GPa) Poisson’s Ratio Friction Angle

(◦)
Cohesive Strength

(MPa)

Cement 12 0.23 25 9
Formation 23 0.18 30 6.2

Casing 210 0.28

To simulate interface debonding, a zero-thickness cohesive element layer was inserted
at the 1st, 2nd, 3rd, and 4th interfaces. The mechanical properties of these cohesive elements
are detailed in Table 3. The maximum nominal stress damage criterion was used to judge
the damage of the cohesive elements in this study, that is:

Max

{
Ta

T0
a

,
Tb

T0
b

,
Tc

T0
c

}
= 1 (1)

where T0
a , T0

b , and T0
c are the cohesive strengths in the normal direction, the first shear direc-

tion, and the second shear direction, respectively; Ta, Tb, and Tc are the interface stresses in
the normal direction, the first shear direction, and the second shear direction, respectively.

Table 3. Mechanical properties of the cohesive elements.

Name
Normal

Stiffness
(GPa)

Shear
Stiffness

(GPa)

Normal
Cohesive
Strength

(MPa)

Shear
Cohesive
Strength

(MPa)

Critical
Energy
(J/m2)

The 1st, 2nd, and 3rd interface 0.8 2.2 1.2 2.3 100
The 4th interface 1.5 4.5 2.6 5.6 210

The BK fracture criterion was used in this study as the criterion for the damage
evolution, that is: {

Gc = Gc
a + Gc

b + Gc
c

Gc
a + (Gc

s − Gc
a)
{

Gb+Gc
Ga+Gb+Gc

}β
= Gc

}
(2)

where Gc
a, Gc

b, and Gc
c are the critical energies needed for damage in the normal direction,

the first shear direction, and the second shear direction, respectively; Ga, Gb, and Gc are the
dissipation energies in the normal direction, the first shear direction, and the second shear
direction, respectively; β is an empirical index.

3.2. Boundary Conditions and Simulation Steps

Initially, the finite element model was subjected to far-field geo-stresses to achieve a
baseline equilibrium state. Subsequently, cyclic internal pressures were applied to the inner
wall of the production casing to capture the actual construction parameters and replicate
the fracturing experience. The number of circles was 15, with each involving pressurization
and depressurization phases. Moreover, in line with the actual fracturing data from the A
oil field, the internal pressure thresholds were set at upper limits of 70 MPa, 80 MPa, and
90 MPa and a lower limit of 20 MPa. The flow chart of the simulation work methodology is
illustrated in Figure 7.
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3.3. Mesh Sensitive Analysis

A mesh sensitivity analysis on the model is typically necessary to mitigate the effects
of mesh size on computational results [35]. In this process, mesh refinement and the
subsequent coarsening around the wellbore when moving away from the well shaft reduce
the total number of elements in the model, elevating computational efficiency. We adjusted
mesh sizes near the wellbore to obtain different numbers of meshes and varying mesh
divisions. On this basis, three configurations were detailed (refer to Table 4): coarse,
medium, and fine. The coarse configuration comprises 16,371 elements, the medium
configuration contains three times those of the coarse (49,152), and the fine configuration
has seven times those of the coarse, totaling 114,600.

Table 4. Comparison of simulation results under different mesh sizes.

Configuration
Mesh Size of the

Wellbore
(mm)

Total Number of
Meshes

Micro-Annuli Width
(um)

Coarse 8 16,371 130.33
Medium 4 49,152 130.12

Fine 2 114,600 130

Numerical simulations were performed on the three mesh models under multi-stage
hydraulic fracturing conditions at a maximum load of 70 MPa with 15 circles. The micro-
annuli widths for the coarse, medium, and fine meshes at the 1st interface (Table 4) were
130.33 µm, 130.12 µm, and 130 µm, respectively. The relative differences between the
coarse and medium meshes and between the medium and fine meshes were 0.16% and
0.09%, respectively, indicating the stability of calculations with the fine mesh. Moreover,
the grid convergence index (GCI) was calculated [36]. The GCI values of the coarse and
medium mesh groups (GCI21) and the medium and fine mesh groups (GCI32) accounted
for 1.35% and 0.91%, respectively. These findings indicate that using a fine mesh reduces
the computational results’ dependence on mesh size, thereby confirming the accuracy and
reliability of the numerical simulations with the fine mesh. Based on these analyses, we
adopted this mesh without additional refinement, and all subsequent calculations will be
derived from this fine mesh model.

3.4. Model Validation

Prior to conducting cement sheath integrity experiments, preliminary tests were
conducted to evaluate the stability and safety of the experimental system. We chose 60 MPa
as the upper limit for internal cyclic pressure across 16 cycles. As illustrated in Figure 8a,
the test revealed a gas leak at 125 mL/min during the 15th cycle. The post-experiment
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appearance of the cement sheath indicated the micro-annuli generation at the 1st interface,
as shown in Figure 8b.
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Figure 8. Results from the cement sheath integrity experiments: (a) experiment results and
(b) morphology of cement sheath.

Using the established finite element model, we performed a numerical simulation of
cement sheath integrity with an internal cyclic pressure limit of 60 MPa for 16 cycles. The
simulation results showed that debonding occurred at the 1st interface during the 15th
cycle, giving rise to micro-annuli formation. As detailed in Figure 9a, the morphology
of the micro-annuli was measured at 82 µm in size. The casing was sectioned, and the
micro-annulus was examined with a size of 88 µm using SEM, as shown in Figure 9b.
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Figure 9. Microscopic morphology of micro-annuli: (a) experiment results and (b) simulation outcomes.

In numerical simulations and experiments, micro-annuli appeared at the 1st interface
after loaded at the 15th cycle, and their widths were remarkably consistent. This consistency
between the experimental results and numerical simulations confirms the effectiveness and
reliability of the methods and models employed in this study.

4. Results and Discussion
4.1. Experimental Results
4.1.1. TCT, TCLT, and Permeability Test Results

The post-mechanical testing morphology of the cement samples is illustrated in
Figure 10a, and the stress–strain curves before and after the TCT and TCLT are depicted in
Figure 10b. The triaxial compressive strength, elastic modulus, and permeability before and
after TCLT are detailed in Table 5. Initially, the cement’s triaxial compressive strength and
elastic modulus were 55 MPa and 7.2 GPa, respectively. The upper limit of cyclic loading
was set at 44 MPa. After TCLT, the compressive strength and elastic modulus decreased by
10.7% and 8.3%, respectively, to 49.1 MPa and 6.6 GPa.
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Figure 10. Results of mechanical testing on the cement samples: (a) morphology of the cement
samples after testing and (b) stress–strain curves.

Table 5. Data on cement samples before and after TCLT.

Type Triaxial Compressive
Strength (MPa)

Elastic Modulus
(GPa) Permeability (mD)

Before TCLT 55 7.2 0.022
After TCLT 49.1 6.6 0.053

These changes imply microstructural damage in the cement, including elevated micro-
crack and microporosity densities, which reduced the matrix’s load-bearing capacity, as
evidenced by the decreased compressive strength and elastic modulus [37]. Nonetheless,
these reductions were modest, suggesting that the cement retained its significant resilience
to cyclic loading and its mechanical integrity under downhole fracturing conditions [38].

Following the TCLT, the permeability increased from 0.022 mD to 0.053 mD, reinforcing
the observation that cyclic loading facilitated micropore and microcrack development,
thereby enhancing permeability [39]. However, gas leakage through the cement matrix is
only possible under permeabilities above 0.1 mD [40]. Consequently, the cement matrix
maintained its seal integrity even after 15 TCLT cycles, suggesting unlikely bottom-hole
gas leakage through the cement matrix, leading to SCP.

4.1.2. Stress–Strain Evolution in Cement under Cyclic Loading

Figure 11a illustrates the stress–strain curve of TCLT. Initially, the curve ascended
near-linearly during the loading phase until reaching the predetermined upper-stress
limit, triggering the commencement of unloading. The unloading phase featured a linear
decrease until the stress diminished to the lower limit, at which point the cycle of reloading
began. Each loading and unloading cycle contributed to the generation of new plastic
strain, cumulatively increasing the total plastic strain. Notably, the loading and unloading
curves collectively formed a hysteresis loop, which progressively shifted rightward with
each cycle, indicating a gradual increase in accumulated plastic strain.

The dynamics of accumulated plastic strain throughout the TCLT are further detailed
in Figure 11b. From the outset, the irreversible plastic strain (denoted as initial plastic
strain) manifested in the 1st cycle at 0.5%. With the progression of cyclic loading and
unloading, the magnitude of plastic strain grew steadily to 0.85% by the 15th cycle.

The above analysis reveals that the TCLT induces microstructural damage within
the cement, resulting in irreversible plastic deformation. Moreover, as the TCLT cycles
increased, the extent of microstructural damage also intensified, increasing the accumulated
plastic strain.
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4.1.3. Cement Sheath Integrity Experiment Results

Figure 12 presents the results from three experimental groups, each showing changes
in internal casing pressure and the monitoring gas flow rate at the top of the cement sheath
over time. Gas leakage was observed at the 14th, 10th, and 8th cycles under upper limit
pressures of 70 MPa, 80 MPa, and 90 MPa, respectively, solely during the depressurization
phases. The initial leakage rates of the three groups were 151 mL/min, 160 mL/min, and
183 mL/min, respectively. As the cycles increased, the gas leakage rates rose progressively
to 160 mL/min, 210 mL/min, and 235 mL/min, respectively, by the 15th cycle. These
trends indicated that higher upper limit pressures in cyclic loading and unloading reduced
the required cycles for cement sheath integrity failure, with the initial and final cycles
resulting in increased gas leakage rates.
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Figure 13 illustrates the morphology of cement sheaths following the three cyclic
loading experiments. While no cracking was observed in any of the cement sheaths across
the three experimental groups, distinct micro-annuli appeared at the 1st interface, in
contrast to the well-bonded 2nd interface. Thus, cyclic loading induced cumulative plastic
strain in the inner walls of the cement sheath at the 1st interface, which progressively
increased with each cycle. In the depressurization phase, the inner walls could not return
to their original shape, generating tensile stress at the 1st interface. Once surpassing the
interface’s bonding strength, this stress led to debonding and micro-annuli, serving as gas
leakage conduits and causing SCP in the B annulus. Conversely, the 2nd interface showed
no signs of debonding, likely due to lower stress levels that produced insufficient (minimal
or none) cumulative plastic strain to initiate debonding. Gas leakage occurred solely during
depressurization because the micro-annulus formation allowed the compressive forces
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from the outer wall of the inner casing to close the micro-annuli. Consequently, gas from the
bottom of the cement sheath could not breach the 1st interface. However, the micro-annuli
reopened during depressurization, forming gas leakage pathways.
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The casing and cement sheath with micro-annuli were meticulously sectioned, and
their morphology was analyzed via SEM (Figure 14). Precise width measurements of
the micro-annuli indicated that after 15 loading cycles under upper limit pressures of
70 MPa, 80 MPa, and 90 MPa, the widths reached 117 µm, 178 µm, and 212 µm, respectively.
These results demonstrate that the widths of the micro-annuli increase with the upper
limit pressure during cyclic loading. Thus, higher upper limit pressures induce more
significant cumulative plastic strain on the cement sheath’s inner walls, resulting in broader
micro-annuli and, consequently, higher gas leakage rates.
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4.2. Numerical Simulation Results
4.2.1. Equivalent Plastic Strain Evolution in Cement Sheaths

The Plastic Equivalent Strain (PEEQ) quantifies the accumulated plastic strain follow-
ing cyclic loading. PEEQ = 0 signifies no accumulated plastic strain, whereas PEEQ > 0
confirms its occurrence, with a larger PEEQ indicating a more significant accumulation.
Figure 15 depicts the PEEQ distribution in the cement sheaths of the B and C annuli fol-
lowing 15 loading cycles. A marked plastic strain accumulation is observed in the cement
sheath of the B annulus, whereas the C annulus exhibits no such strain. Despite unequal
horizontal principal stresses, the C annulus’s cement sheath and the intermediate casing
mitigate horizontal geo-stresses, whereas the primary source of accumulated plastic defor-
mation in the cement sheath is the casing’s internal pressure. As a result, PEEQ shows a
relatively uniform circumferential distribution. Notably, the highest PEEQ values are at
the 1st interface, diminishing progressively toward the 2nd interface, with the 3rd and 4th
interfaces exhibiting zero PEEQ values.

Figure 16 illustrates the PEEQ variations at the 1st, 2nd, 3rd, and 4th interfaces of
the cement sheath under cyclic loading, with upper limit pressures of 70 MPa, 80 MPa,
and 90 MPa. The initial PEEQ values at the 1st interface were 0.31%, 0.53%, and 0.66%,
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respectively, for each pressure setting during the 1st cycle. As the cycles increased, the
PEEQ values rose almost linearly to 0.79%, 0.95%, and 1.13% by the 15th cycle. At the 2nd
interface, the initial cycle’s PEEQ values were 0.11%, 0.18%, and 0.23%, which increased
to 0.26%, 0.32%, and 0.47% by the 15th cycle. These results demonstrate that the largest
PEEQ increases occurred during the 1st cycle for both the 1st and 2nd interfaces, with
the 2nd interface’s PEEQ values significantly lower than those at the 1st, indicating lesser
cumulative plastic strain. PEEQ values at the 3rd and 4th interfaces remained at zero
throughout the whole process.
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4.2.2. Micro-Annulus Evolution at Interfaces

After 15 internal pressure cycles, the interface bonding states are illustrated in Figure 17.
Micro-annuli were not observed at the 2nd, 3rd, and 4th interfaces but at the 1st interface.
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Post-processing of numerical simulation results yielded the circumferential widths of
the micro-annuli at the 1st interface (Figure 18). Micro-annuli first appeared at the 8th, 10th,
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and 14th cycles under upper limit pressures of 70 MPa, 80 MPa, and 90 MPa, respectively,
with widths nearly uniformly distributed around the circumference. The initial widths of
these micro-annuli were 83 µm, 95 µm, and 103 µm, respectively. As the cycles increased,
the widths of the micro-annuli gradually expanded to 130 µm, 165 µm, and 205 µm by the
15th cycle, indicating that the largest width increase occurred during the initial appearance.
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4.3. Correlation between Numerical Simulation and Experimental Results

The results of the three sets of experiments consistently demonstrated the presence of
micro-annuli at the 1st interface. This finding was supported by the three sets of numerical
simulations that also identified micro-annuli at the same location, confirming alignment
between the numerically simulated and experimentally observed micro-annuli positions.

Experimental observations recorded gas leakage during the 8th, 10th, and 14th cyclic
loading under upper pressure limits of 70 MPa, 80 MPa, and 90 MPa, respectively. Corre-
sponding numerical simulations displayed micro-annuli at the 1st interface during identical
cycles, corroborating the experimental findings. The agreement between the experimen-
tal cycles with gas leakage and the simulated cycles with micro-annuli substantiates the
simulations’ accuracy.

After 15 loading cycles, the experimentally measured widths of the micro-annuli were
117 µm, 178 µm, and 212 µm, respectively, closely mirrored by the simulation results of
130 µm, 165 µm, and 205 µm. This high degree of concordance underscores the consistency,
stability, and reliability of this research.

4.4. Sensitivity Analysis

The mechanical properties of cement materials profoundly affect the stress level within
the cement sheath. Choosing a cement formulation with suitable mechanical parameters can
significantly reduce plastic deformation. This study performed a sensitivity analysis on four
key mechanical properties, elastic modulus, Poisson’s ratio, cohesive force, and friction angle,
to guide future cement formulation designs. This analysis utilized a previously established
finite element model, setting the casing’s cyclic upper pressure at 70 MPa over 15 cycles.

Figure 19 depicts the PEEQ curves of cement sheaths under varying elastic moduli,
where the PEEQ values increase progressively with the cycles, and both initial and final
PEEQ values escalate as the elastic modulus increases. These observations suggest that
cement with a lower elastic modulus can effectively reduce the risk of integrity failure in
cement sheaths during multi-stage fracturing.

Figure 20 depicts the PEEQ curves under varying Poisson’s ratios. Under the Pois-
son’s ratios of 0.13, 0.18, and 0.23, the initial PEEQ values are 0.42%, 0.312%, and 0.09%,
respectively, while the final PEEQ values are 0.51%, 0.79%, and 0.84%, respectively. These
results demonstrate that cement with a higher Poisson’s ratio helps reduce the stress level
of the cement sheath during multi-stage fracturing.
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Figure 20. PEEQ values under different Poisson’s ratios.

Figure 21 illustrates PEEQ curves under varying friction angles. While both initial and
final PEEQ values increase with the friction angle, the variations across different angles
are not particularly significant. Nevertheless, a higher friction angle still benefits cement
sheath integrity.
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Figure 21. PEEQ values for different friction angles.

Figure 22 depicts the PEEQ curves under various cohesive strengths. The data indicate
that at cohesive strengths of 5 MPa, 9 MPa, and 13 MPa, the initial PEEQ values are 0.14,
0.312, and 0.42, respectively, while the final values are 0.56%, 0.79%, and 0.84%. Thus,
cement with a higher cohesive strength is advantageous for maintaining the integrity of
the cement sheath during multi-stage fracturing.
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4.5. Suggestions for Future Work

Experimental and numerical studies on cement sheath integrity revealed that during
multi-stage fracturing, elevated cyclic pressure and increased cycling promoted micro-
annulus formation, resulting in SCP. Therefore, it is essential to design the most appropriate
multi-stage fracturing pressures and cycles based on the specific conditions of the forma-
tion and wellbore. Additionally, numerical simulations showed that cement mechanical
properties significantly influence the plastic deformation extent of the cement sheath.
When selecting cement materials, it is crucial to consider characteristics such as low elastic
modulus, high Poisson’s ratio, high cohesion, and high friction angle. Optimizing engineer-
ing parameters and choosing cement materials with superior properties are essential for
enhancing wellbore integrity.

5. Conclusions

This research used the actual parameters from the A oil field in experiments and
numerical simulations to investigate the integrity failures of cement sheaths during multi-
stage fracturing, which uncovered the mechanisms behind these failures. The key findings
are as follows:

Cyclic loading and unloading experiments on cement samples demonstrated cumu-
lative plastic deformation in the cement, with triaxial compressive strength and elastic
modulus decreasing by 10.7% and 8.3%, respectively, and permeability increasing by 150%.
These results confirmed that cyclic loading caused micro-damage in cement. However,
after 15 cycles, the permeability of the cement remained below the threshold for gas flow,
indicating that gas would not leak through the cement sheath matrix underground.

Experiments with a full-scale device on cement sheath integrity under multi-stage
fracturing confirmed that integrity failure was primarily due to micro-annulus formation at
the 1st interface, attributed to cumulative plastic strain in the inner walls of the B annulus
cement sheath during cyclic loading, leading to debonding at the 1st interface. While the
outer wall of the B annulus cement sheath also experienced plastic strain, it was insufficient
to cause debonding at the 2nd interface. No plastic strain was observed in the cement
sheath of the C annulus, and no debonding occurred at the 3rd and 4th interfaces.

Both full-scale experiments and numerical simulations established that higher cyclic
pressure limits resulted in fewer required cycles for cement sheath integrity failure, wider
micro-annuli formation, and increased gas leakage rates through the interfaces.

The number of cycles for cement sheath integrity failure in the experimental groups
matched perfectly with the cycles at which micro-annuli first appeared at the 1st interface in
the numerical simulations. The measured widths of micro-annuli at the 1st interface were
very close to those determined through numerical simulations, showing strong consistency
between experimental and numerical results. These results validated the reliability of
both approaches and provided valuable insights into the mechanisms of SCP generation
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in offshore A oil field development wells, offering guidance for the design of offshore
multi-stage fracturing parameters.
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