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Abstract: Feeding is a critical process in aquaculture, as it has a direct impact on the quantity and
quality of fish. With advances in convolutional neural network (CNN) and vision transformer (ViT),
intelligent feeding has been widely adopted in aquaculture, as the real-time monitoring of fish
behavior can lead to better feeding decisions. However, existing models still have the problem
of insufficient accuracy in the fish behavior-recognition task. In this study, the largemouth bass
(Micropterus salmoides) was selected as the research subject, and three categories (weakly, moderately,
and strongly hungry) were defined. We applied the deformable attention to the vision transformer
(DeformAtt-ViT) to identify the fish hunger degree. The deformable attention module was extremely
powerful in feature extraction because it improved the fixed geometric structure of the receptive
fields with data-dependent sparse attention, thereby guiding the model to focus on more important
regions. In the experiment, the proposed DeformAtt-ViT was compared with the state-of-the-art
transformers. Among them, DeformAtt-ViT achieved optimal performance in terms of accuracy,
F1-score, recall, and precision at 95.50%, 94.13%, 95.87%, and 92.45%, respectively. Moreover, a
comparative evaluation between DeformAtt-ViT and CNNs was conducted, and DeformAtt-ViT still
dominated the others. We further visualized the important pixels that contributed the most to the
classification result, enabling the interpretability of the model. As a prerequisite for determining
the feed time, the proposed DeformAtt-ViT could identify the aggregation level of the fish and then
trigger the feeding machine to be turned on. Also, the feeding machine will stop working when the
aggregation disappears. Conclusively, this study was of great significance, as it explored the field of
intelligent feeding in aquaculture, enabling precise feeding at a proper time.

Keywords: computer vision; convolutional neural network; vision transformer; deformable attention;
hunger degree; intelligent feeding

1. Introduction

Aquatic products have been increasingly recognized for their key role in providing
food and nutrition because they can contribute about 17 percent of animal protein, ac-
counting for over 50 percent in many developing countries in Asia and Africa [1]. In 2020,
global aquaculture production reached a record of 122.6 million tons, and the world’s
consumption of aquaculture production is estimated to continuously rise. With the devel-
opment of various techniques like the Internet of Things (IoT) and artificial intelligence (AI),
traditional labor-intensive aquaculture methods have transformed into smart automated
systems [2]. For instance, as a key practice in aquaculture, the traditional feeding method
requires a human to determine the feeding frequency and quantity, leading to an increase
in the feeding cost and bait waste. Research on intelligent feeding systems in aquaculture
has been gaining momentum in recent years due to the potential benefits they offer in
terms of optimizing feeding practices, improving efficiency, and reducing environmental
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impact [3–5]. In particular, the feeding system usually first recognizes the fish’s behavior,
thereby guiding the feeding practice according to the degree of hunger [6].

It is estimated that feeding expenses account for up to 50% of the total production
cost [7]. On the one hand, over-feeding may reduce production efficiency and the excess
amount of baits would cause serious issues, such as water contamination and disease. On
the other hand, underfeeding would slow the growth rate of fish and even lead to aggres-
sive competition for food [8]. It is also noted that many factors, such as water turbidity,
temperature, dissolved oxygen content, pH, nitrogen, and ammonia concentration, can also
have an impact on the fish’s appetite [9–12]. Therefore, monitoring the fish’s behavior and
identifying their hunger degree is extremely helpful for determining the feeding time and
the quantity of baits to be released.

Recent advances in computer vision have made it possible to analyze fish behavior
quickly and non-destructively. In general, the computer-vision technique is a branch of
AI, and its goal is to replace human vision with digital cameras (e.g., RGB, RGB-D, and
hyperspectral cameras) for observation. After obtaining the images, deep learning (DL)
is a preferable approach for recognizing fish behavior. The merit of the DL-based model
includes automatic feature extraction, and it can learn semantic information from a given
image [13]. Various researchers have reported several successful neural networks in the
task of fish behavior recognition. Iqbal et al. [14] proposed an effective end-to-end convolu-
tional neural network (CNN) that can classify fish behavior into two categories: normal
and hungry. By integrating three fully connected layers and max pooling operations, the
accuracy of the network was improved by 10%. Zhu et al. [15] identified the feeding status
of fish by applying a lightweight neural network, MobileNetV3-Small. They classified the
degree of appetite of bass into four grades, namely strong, medium, weak, and none. To
make the classification more practical, strong and medium appetites were divided into
hungry categories, and weak and no appetites were divided into non-hungry categories.
Zhou et al. [16] proposed a feeding-intensity assessment system based on the LeNet5 frame-
work, which divided the feeding intensity into four levels, namely, none, weak, medium,
and strong.

The traditional convolutional kernels used in the previous approach have fixed sam-
pling positions and pooling layers, which limit the model’s ability to adapt to the complex
spatial structure in the image. In contrast, the deformable convolutional neural network
(DCNN) introduces deformable convolutional sampling positions that can be adjusted in
size and shape based on the complex spatial context of the image. Experimental results have
demonstrated that DCNN can achieve better classification performance when compared
with typical CNN classification methods like VGG [17] and ResNet [18]. Chen et al. [19]
proposed a novel DCNN framework to exploit classification for imbalanced water inflow
in rock tunnel faces, and the experimental results showed that it outperformed well-known
models in terms of both classification map quality and classification accuracy.

The transformer model [20] was originally developed for natural language processing.
In recent years, a variant of this model called vision transformer has shown remarkable
performance in computer-vision tasks [21]. As a result, researchers have started to use
vision transformer models for fish-feeding behavior recognition and detection. Li et al. [22]
proposed a transformer-based multiple fish tracking model to solve the problem of instance
loss of fish targets in aquaculture ponds. Zeng et al. [23] proposed a recognition model for
fish-feeding behavior that used a sliding window to convert acoustic signals into spectral
features, and they used the hierarchical structure of the Swin transformer model to combine
shift patch tokenization, local self-attention, and other modules, finally completing the
classification task of fish-feeding behavior. Xia et al. [24] introduced a novel deformable
attention-based vision transformer, called DAT, which combined the strengths of DCNN
and the Swin transformer. DAT has demonstrated its effectiveness by achieving outstanding
performance on widely used public datasets, such as ImageNet and COCO.

However, the application of DAT in some specific domains, such as fish behavior
recognition, is still limited. Most of the researchers have focused on applying CNN to
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classify fish behavior, and they did not compare with the vision transformer, nor did they
use deformable attention. But recent advances in vision transformers (ViTs) have shown
excellent results compared with CNNs [25]. Therefore, further research is needed to apply
ViTs in the aquaculture domain. Finally, deep-learning models are often considered a “black
box”, meaning that the decision-making mechanism of these models is not transparent. It is
noted that the model transparency allows users to have confidence during decision-making.
In this study, the largemouth bass (Micropterus salmoides) was chosen as the research
subject, and the main contributions of this paper can be summarized as follows.

• We constructed a dataset of fish hunger degrees. Three degrees, including weakly, mod-
erately, and strongly hungry, were defined based on the aggregation levels of fish. The
established dataset was then used to train and validate the proposed detection model;

• We proposed the DeformAtt-ViT model by integrating the transformer architecture
and the deformable attention mechanism to classify the fish hunger degree. The
use of the deformable attention mechanism enabled DeformAtt-ViT to adaptively
concentrate on the spatial features that were important to generate the final predictions.
The comparative experiment verified the effectiveness of DeformAtt-Vit through
the evaluation criteria, including accuracy, precision, F1-score, etc. By accurately
classifying the hunger level, we can provide guidance on the appropriate time and
bait amount to feed the fish;

• We utilized the Grad-CAM method to provide insights into the decision-making
process for both CNNs and ViTs. This approach allowed us to visualize the pixels that
contributed the most to the model’s predictions in a given image.

2. Materials and Methods
2.1. Fish Samples and Dataset Creation

In this experiment, largemouth basses (4 to 6 cm in length) were used for data collection
in a fish tank with a diameter of 1.4 m and a height of 0.5 m. We divided the same batch of
200 basses into two groups. One group was fed manually at 10 am each day regularly. The
other group was subjected to controlled feeding stress, with feeding conducted every five
days (also at 10 am) to facilitate data collection under hunger conditions. These bass had
been domesticated to eat bait and acclimated to the environment. The water temperature
was set to 18 ◦C (maintained by a heater) and the pH value was maintained between 7 and
7.5, which was the most suitable growth temperature for bass [26]. Oxygen was sufficiently
provided with an aeration pump. We used two light sources to ensure the illumination
during data collection. Since the experiment was carried out indoors, the light sources
were also used to simulate day and night. To be exact, the lights were turned on from 6 am
to 8 pm and turned off during the rest of the time. The luminous intensity of the light
source was around 1800 lx. Meanwhile, the largemouth bass received one feeding a day for
2 weeks before data collection. The water treatment system was used to treat fish excrement
and tail water in the fish tank. A camera (Canon EOS 70D) was set up above the fish tank,
and the schematic diagram is shown in Figure 1. We used this camera to capture videos
of largemouth bass feeding at different hunger intensities, and the original video data
was acquired at around 8 am and lasted for 4 h. Then, the downsampling operation was
performed over these videos to obtain image frames by extracting representative images
from them to be our dataset images. The acquired images were eventually transferred
to a computer for further processing. The original resolution of the acquired image was
1280 × 720, and we resized it to 224 × 224 before inputting it to the model.

A total of 1600 images were obtained. These images were then categorized into
3 states: weakly, moderately, and strongly hungry. Additionally, a combination of the
relevant literature and expertise from aquaculture experts was used to classify the hunger
state of the images during the feeding period of the fish school. In total, the images were
categorized into 757 images depicting a weakly hungry degree, 154 images representing a
moderately hungry level, and 689 images illustrating a state of strong hunger. The original
datasets of these three states are illustrated in Figure 2.
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Figure 2. Three hunger degrees of fish samples. (a) weakly hungry; (b) moderately hungry; and
(c) strongly hungry.

For the category of weakly hungry, the largemouth basses were fed regularly, and the
images were taken when they did not respond to food. To induce a state of strong hunger,
the largemouth basses were intentionally deprived of bait for a period of 5 days. This was
done to create an environment of starvation and accurately capture the hunger degree of
the fish. It was noted that the largemouth basses would move around in search of food,
gather within a certain area, and float to the water surface more frequently when strongly
hungry. As the largemouth basses consumed a certain amount of feed, the degree level of
hunger decreased. If feeding was continued at this point, their feeding behavior would
slow down, and the intensity of bass gathering and competing for food would decrease.
This degree was considered moderately hungry, indicating that the fish have consumed
enough to alleviate their initial hunger but are still in need of additional nourishment.

2.2. Network Architecture of DeformAtt-ViT

DeformAtt-ViT is a universal backbone network model with deformable attention. In
terms of network architecture, DeformAtt-ViT has replaced the previous multi-head self-
attention (MHSA) and combined it with a multi-layer perceptron (MLP) to construct the
deformable vision transformer block. To build a hierarchical feature pyramid, the backbone
consists of four stages where the stride gradually increases. Between two consecutive
stages, a non-overlapping 2 × 2 convolution with a stride of 2 is applied to perform the
downsampling operation over the feature map, thereby reducing the spatial dimension by
half and doubling the feature size.

The backbone architecture primarily consists of four stages. Prior to Stage 1, the
model processes the input fish images with a shape of H × W × 3 using non-overlapping
4 × 4 convolutions with a stride of 4 to obtain embeddings. These embeddings are then
normalized to obtain patch embeddings of size (H/4) × (W/4) × C. In the first two stages,
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the feature maps have a rather large spatial size, leading to the fact that the computational
workload, i.e., the dot product and bilinear interpolation, would be extremely heavy.
Therefore, we adopted the shift window attention of the Swin transformer during early
feature learning [27]. In the latter two stages (i.e., Stages 3 and 4), as the keys and values
decrease, the deformable attention module is applied to obtain the global relationships
between local tokens. The overall architecture of DeformAtt-ViT is shown in Figure 3.
Successive local attention and deformable attention blocks are introduced in the latter two
stages. The purpose of local attention is to process the input feature maps and obtain locally
aggregated information, which is then passed on to the subsequent deformable attention
step. This allows for the modeling of global relationships between enhanced tokens within
the local region. As a result, the model possesses both local and global receptive fields.
More detailed information about deformable attention blocks will be discussed in the
next section.
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2.3. Deformable Attention Module

Compared with CNN models, transformer-based models offer the advantage of larger
receptive fields and have demonstrated exceptional performance when being trained
with a significant amount of data. However, some transformer-based models are facing
challenges like high computational costs and slow convergence speed. For instance, the
Swin transformer adopts a window-based local attention mechanism to limit attention
within local windows. Though this approach is effective, it may not be optimal, as it can
result in the exclusion of relevant keys and values while retaining less important ones. In
the domain of CNN, the feasibility of learning deformable receptive fields for convolution
filters has been put forward. Deformable convolutional networks (DCNs) [28] are one
notable example of deformable methods and serve as an inspiration for the development
of the deformable attention mechanism.

Deformable attention builds upon the original attention mechanism by directing some
inappropriate reference points toward more meaningful positions. This process filters out
useless information and enhances the utilization of useful information. Unlike DCNs, which
learn different offset values for different pixels in the entire feature map, the deformable
attention module learns several sets of shared sampling offsets for all queries and then
transfers keys and values to important regions. This enables the original self-attention
module to have higher flexibility and efficiency in capturing more informative features. In
general, at the initial state, the reference points were evenly distributed in the given image.
The deformable attention module allowed for modeling the relationships among tokens
effectively under the guidance of the important regions. These important regions were
determined by multiple groups of deformed sampling points which were learned from the
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queries by an offset network. With the learned offsets, the reference points can be shifted
towards the appropriate positions.

The principle of deformable attention is shown in Figure 4. For clarity, at the bottom of
the figure, four reference points, represented by red, orange, yellow, and green colors, were
selected from the given input feature map x (H × W × C). Then, by combining the offset
values learned from the query using the offset network, the feature map obtained from the
deformed points was effectively utilized to sample the features in the feature map through
the application of bilinear interpolation. The sampled features were then inputted into
the key and value projections to obtain deformed feature keys and values. Furthermore,
based on the deformed points, relative positional bias offsets were calculated to enhance
the multi-head attention of the subsequent output transformation features. The features of
each head were concatenated together and then projected to obtain the final output z. The
relevant formulas are shown below.

q = xWq, k̃ = x̃Wk, ṽ = x̃Wv (1)

∆p = O f f (q), x̃ = ϕ(x; p + ∆p) (2)

z = Concat
(

z(1), . . . , z(m)
)

Wo (3)

where k̃ represents the deformed key; ∆p represents the offsets generated by offset network
Off(·); ϕ(·; ·) represents a sampling function to a bilinear interpolation, following previ-
ous work [27]; ṽ represents the value embeddings; and z(m) represents the output of an
attention head.
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In the offset network module, the depthwise convolution performed convolutional
calculations on each input channel individually, without considering the relationships
between the different channels. This computation can be viewed as a way to compress the
model parameters, as it would accelerate the computation process and reduce the overall
network size. The input was the query token q, and it was obtained by linearly projecting
the feature map. Initially, local features were captured by using Depthwise Convolution.
Then, the GELU activation and a 1 × 1 convolution were applied to generate 2D offsets. It
is important to note that the bias in the 1 × 1 convolution will be minimized to mitigate the
presence of forced offsets at all positions.

2.4. Successive Local Attention

In the field of deep learning, attention mechanisms are commonly used to enhance
the model’s focus on certain parts of the input data, thereby improving the model’s perfor-
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mance and accuracy. By learning the relationships between input data and dynamically
adjusting weights based on these relationships, attention mechanisms can help models
handle complex tasks and data more effectively. The drawback of a standard transformer in
image classification is that it performs a global self-attention computation, which performs
operations between a token and all other tokens, leading to a quadratic complexity increase
in the number of tokens [26]. To avoid excessive attention computation, a window-based
local attention was adopted to restrict attention in local windows. For an input image
of size C × H × W, the computational complexity of the global MHSA module can be
calculated with Formula (4) [27]. The computational complexity of MHSA can be seen as
O(np2), where np is the number of patches. It is evident that the computational workload is
significant, making it unfriendly for large-scale images.

When the image was divided into multiple windows in a non-overlapping and uni-
form manner, each window contained M × M patches. Therefore, we only need to calculate
attention for all patches in the windows to extract local dependencies. For a window, the
computational complexity involves replacing h and w with M in 4hwC2 +2 (hw)2C. Thus,
the complexity for a window is 4M2C2 + 2M4C, and since there are hw/M2 windows in an
image, multiplying the two gives the computational complexity of window-based MHSA
as calculated by Formula (5).

Ω(MHSA) = 4hwC2 + 2(hw)2C (4)

Ω(W–MHSA) = 4hwC2 + 2M2hwC (5)

when M was set at 7, the computational complexity of window-based MHSA was signifi-
cantly smaller than that of global MHSA. When the image height and width were large,
the global self-attention computation was generally unaffordable, while the window-based
local attention was scalable. Thus, the feature maps were first processed by a window-based
local attention to aggregate information locally.

2.5. Shift-Window Attention

The window-based local attention module can only perform local self-attention within
individual windows, thereby ignoring the connections across windows. This limitation
hinders its ability to achieve global modeling power. However, the shift-window attention
addresses this issue by facilitating interaction and communication between windows, pre-
serving contextual information, and ensuring efficient computation with non-overlapping
windows [27]. By employing window-based local attention and then applying window-
based shifted multi-head attention, connections across windows can be established.

As shown in Figure 5, the first module, Layer 1, used a conventional window-
partitioning strategy starting from the top-left pixel. The 8 × 8 feature map was divided
into 2 × 2 windows evenly, with each window containing 4 × 4 patches (M = 4). Local
attention was then computed within each window. The next module, Layer 1 + 1, was
obtained by shifting Layer 1 to the bottom-right by (M/2, M/2) pixels. In this case, the
self-attention computation in the new window considered both Layer 1 and Layer 1 + 1,
allowing for the extraction of information across windows. However, this introduced a
new challenge: while the previous module had four uniformly sized windows, Layer 1 + 1
had nine windows of varying sizes, making it difficult to perform batch computation.
To address this challenge, cyclic shift and masking operations were applied to enable
efficient batch processing of the shift-window attention. By cyclic shift, a batch window
was composed of several non-adjacent sub-windows in the feature map. Then, a masking
mechanism was used to restrict the self-attention computation within each sub-window.
This ensured that the number of batch windows remained the same as the number of
windows in the conventional window partition.
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Window-based shifted multi-head attention combines the concepts of window-based
attention and shifted multi-head attention. This approach allows the model to effectively
capture local dependencies and extract important features from different parts of the input
sequence. Overall, window-based shifted multi-head attention enhances the model’s ability
to analyze and process complex sequences efficiently.

2.6. Performance Evaluation Metrics

To quantitatively assess fish hunger-degree classification performance, four commonly
used evaluation criteria, namely precision, recall, F1-score, and accuracy, were used. Preci-
sion refers to the proportion of true positive samples among all predicted positive samples.
Recall represents the proportion of correctly predicted positive samples among all actual
positive samples. F1-score is the harmonic mean of precision and recall, which is used
to evaluate the overall classification performance of the model. Accuracy represents the
proportion of correctly classified images among the total number of samples. A higher
accuracy indicates better performance of the model in identifying the fish’s hunger degree.
The four performance-evaluation metrics are defined as follows. Precision, recall, F1-score,
and accuracy calculations are shown in Equations (6)–(9).

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 − score = 2×Precision×Recall
Precision+Recall (8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

TP denotes the number of samples that were predicted to be positive and were positive,
and FP denotes the number of samples that were predicted to be positive but were actually
negative. Likewise, FN denotes the number of cases that were predicted to be negative
but were actually positive, and TN denotes the number of cases that were predicted to be
negative and were actually negative.

In addition, visual analysis is a commonly used technique in computer vision and
it enables the transparency of the model during decision-making. In image-classification
tasks, visualization can analyze the image area that the model is most interested in, such
as whether it is a key entity in the image or the image background and infer the current
learning situation of the model. Grad-CAM can help us understand the classification
decision-making process of deep neural networks, improve the interpretability of the
model, and guide us in improving and optimizing the model [29]. To better understand the
mechanism of different classification models and to identify the criteria that distinguish
hunger intensity, the Grad-CAM was introduced to visualize the feature attention of the
three hunger degrees.
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3. Results

This section first described the software and hardware information required for the ex-
periments, the experimental dataset division, and the settings of various model parameters.
Then, ablation experiments were performed to verify the effectiveness of the deformable
attention module in the DeformAtt-ViT model. Then DeformAtt-ViT was compared with
three transformers and three CNNs for the experiments, respectively.

3.1. Experiment Setting

All experiments were performed using Pytorch1.11.0 under the computational spec-
ification of 64-bit Ubuntu18.04, with an Intel(R) Xeon(R) Platinum 8255C CPU, 64 GB
random-access memory (RAM), and NVIDIA GeForce RTX 3090 (24GB) GPU.

For the experiment, we divided the dataset into a training set and a validation set
in a ratio of 8:2. To ensure reliable and consistent results, we employed the five-fold
cross-validation method. Each model underwent training for 50 epochs, using the same hy-
perparameter settings across all models. The batch size was set to 64, the initial learning rate
was 0.001, and the optimizer used was Adam. We also verified different hyperparameter
settings, and the results are presented in Figures S1 and S2.

3.2. Ablation Study on Deformable Attention

As mentioned in Section 2.2, the DeformAtt-ViT model replaced the shift-window
attention of the Swin transformer with deformable attention in Stages 3 and 4. An ablation
study was used to verify the effectiveness of deformable attention. Five sets of experimental
setups and results are shown in Table 1, # means that the mentioned stage consisted of
successive local attention and deformable attention transformer modules. Results of Model-
E showed that the fish hunger-degree dataset by the Swin transformer has an accuracy of
94.6% for classification. Adding deformable attention only in Stage 4 increased the accuracy
by 0.2% compared with Model-E, while adding deformable attention in the last two stages
at the same time showed the best accuracy, with an accuracy of 95.5%, which was 0.9%
higher than that of the Swin transformer. Thus, the subsequent experiments in this paper
were all designed using Model-C.

Table 1. Design of ablation studies using deformable attention at different stages.

Experiment
Name

Stages w/Deformable Attention Accuracy (%)
Stage 1 Stage 2 Stage 3 Stage 4

Model-A # # # # 95.2
Model-B # # # 95.4
Model-C # # 95.5
Model-D # 94.8
Model-E Swin transformer 94.6

Note: The bold value represents the optimal performance.

3.3. Comparative Experiments between DeformAtt-ViT and other ViTs

To validate the performance of common ViT models on the task of classifying the
hunger degree of fish, we selected three models, ViT, CaiT, and DeiT, to conduct compara-
tive experiments with DeformAtt-ViT. First, we presented comparative graphs of loss and
accuracy curves for our DeformAtt-ViT and three transformers. The two sets of comparative
experimental tables are shown in Figure 6.
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It can be observed that the loss curves of all ViT models gradually decreased and
reached a convergence state, while the accuracy curves gradually increased and eventually
stabilized. All curves exhibit normal behavior, indicating that the model continuously
learns more accurate features. Compared with ViT, CaiT, and DeiT, DeformAtt-ViT had the
highest accuracy value and the lowest loss value at the same number of iterations. As shown
in Figure 6, after the number of iterations reached 40, the curve of the validation loss value
gradually became flattened, indicating that the model was close to convergence. Compared
with the other three Transformer models, DeformAtt-ViT had a smoother fluctuation in
its loss curve. It demonstrated a better level of model training in the initial stages of
iteration, indicating a higher degree of network optimization. Thus, it can be stated that
the inclusion of deformable modules in DeformAtt-ViT indeed significantly enhanced
the performance of the model, and the network of DeformAtt-ViT was more stable and
exhibited good robustness.

We then evaluated the performances of the four models by using the relevant metrics
data. As shown in Figure 7, among the four transformer models, both ViT and CaiT
exhibited very similar performance in the four metrics, but they were noticeably lower
than DeiT and DeformAtt-ViT. DeformAtt-ViT achieved an overall accuracy of 95.50% in
fish hunger-degree classification, which was 1.31% higher than the second-best performer
(DeiT). Additionally, the precision, recall, and F1-score were 96.58%, 94.17%, and 95.36%
respectively, which were all improved compared with other ViT models.
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3.4. Comparative Experiments between DeformAtt-ViT and other CNNs

CNN has been widely used in a variety of computer-vision classification tasks due to
its inherent good properties. We continued to choose three CNN models as comparative
models, including AlexNet, VGG16, and ResNet50 for comparison with DeformAtt-ViT.
Graphs of loss and accuracy curves for DeformAtt-ViT and three CNNs are shown in
Figure 8. DeformAtt-ViT initially performed well in terms of the accuracy curve, but it
was later surpassed by ResNet50 until after the 30th round, when it surpassed again and
started to converge. In terms of the loss curve, it can be observed that traditional CNNs
had larger loss values during the initial validation stage, but they converged faster, while
DeformAtt-ViT had relatively lower values.
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The performance evaluation on the four metrics precision, recall, F1-score, and accu-
racy are shown in Figure 9. As can be seen, among the three CNN models, ResNet50 per-
formed the best in all metrics. The precision, recall, F1-score, and accuracy of ResNet50 were
92.38%, 95.77%, 94.04%, and 95.31% respectively. Additionally, AlexNet, which was the
worst-performing model among the three CNN models, also outperformed the other three
transformer models in all four metrics, except DeformAtt-ViT. Compared to ResNet50 meth-
ods, DeformAtt-ViT showed improvements in all four metrics. DeformAtt-ViT achieved
an overall accuracy of 95.50% in fish hunger-degree classification, which is an increase
of 0.19%. Additionally, the precision, recall, and F1-score were 96.58%, 94.17%, and
95.36% respectively.

We further compared DeformAtt-ViT with previous publications [14–16]. The frame-
works of these networks can be referred to in Table S1, while the evaluation results are
presented in Figures S3 and S4.
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ResNet50 and DeformAtt-ViT.

3.5. Model Visualization

To guarantee the robustness of the model, we used Grad-CAM to generate heatmaps
for the last layer of the seven models. Grad-CAM is an explainable approach for analyzing
the decision-making mechanism of deep-learning models (i.e., to visualize where the deep-
learning model is looking). The redder the color, the larger the contribution of the region to
the final prediction result will be, while the blue area indicates a weak contribution. From
Figure 10, it can be observed that, compared with AlexNet and VGG16, ResNet50 is more
focused on detecting overlapping areas of fish shoals and accurately capturing the key
features of the fish shoal. On the other hand, ViT showed a more divergent focus in the
three classification states. The advantage of ViT lies in its ability to capture long-range
dependencies in images without the need for complex convolutional operations [30]. As
shown in Figure 10, ViT was better at focusing on small areas where two to three fish
congregate. CaiT focused more on the background areas where fish were sparse in the
strongly hungry degree. DeiT [31], which is based on ViT and incorporates a distillation
token for distillation learning, paid more attention in the hungry degree. In the weakly
hungry degree, DeformAtt-ViT had a larger red area, indicating that fish shoals were more
dispersed in this state. Through deformable convolutions, DeformAtt-ViT could learn
relationships such as the distance between fish shoals. In the two kinds of hunger degrees,
several heavily overlapping areas with multiple fish were highlighted, and the feature
maps had a better sense of boundaries.
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Figure 10. Heat maps of seven networks of three hunger degrees. (a) illustrates the visual heat
map for the weakly hungry degree, (b) displays the heat map for the moderately hungry degree,
and (c) showcases the heat map for the strongly hungry degree. All the original input images were
selected randomly for this analysis.

4. Discussion
4.1. Comparison Analysis between CNNs and Transformers

In this study, two popular deep-learning architectures, CNN and transformer, were
chosen for comparative evaluation over the established dataset in the fish hunger-degree
identification task. In general, the identification accuracy of the proposed DeformAtt-ViT,
along with three transformers (ViT, CaiT, and DeiT) and three CNNs (AlexNet, VGG16,
and ResNet50), all achieved over 92%, indicating that all models can accurately extract
the features of different hunger degrees. Among them, DeformAtt-ViT achieved the
optimal performance in regard to all evaluation criteria. The advantageous architecture of
DeformAtt-ViT utilized the deformable attention module in Stages 3 and 4 based on the
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ablation experiment (Table 1). DeformAtt-Vit would focus more on relevant regions (i.e.,
where the fish objects were located) and identify whether the fish were gathering from a
global view, thereby categorizing the fish hunger degree accurately.

It was also worth noting that all three CNNs performed slightly better than ViT,
CaiT, and DeiT. This was because the performance of transformers relied on the size of
the datasets to be trained. Training vision transformers requires a larger amount of data,
with better training results achieved with larger datasets [32]. When insufficient data is
provided, the generalization of transformers would be limited. For instance, Li et al. [33]
conducted a comparative study on the recognition of 2095 diseased and healthy sugarcane
leaves collected in the field environment and found that ResNet50 had a significantly better
effect than ViT. Li et al. [34] compared ViTs with ResNet on 7434 sheet face-recognition
tasks. The results showed that ResNet-50 performed better than ViT Base but worse than
Swin Base. The performance of ViTs and CNN does not entirely depend on the size of the
dataset but is closely related to the quality, distribution, application scenarios, and other
characteristics of the image dataset itself. For example, Li et al. [35] proposed a specialized
medical image-classification model with a visual transformer backbone based on the gap
between medical images and natural images.

Meanwhile, the architectures of CNNs and transformers have a major difference [36].
In a CNN, the convolutional kernels can capture local features through local receptive fields
and shared weights. However, a vision transformer divides a given image into several
patches and assigns a position embedding to each patch. All patches are then flattened by
linear projection and transferred to the encoder module. In essence, the vision transformer
evaluates the contribution of an individual patch in the whole image when generating the
output [37]. Under such a circumstance, more training data is required. Furthermore, a
CNN would perform better due to its deep architectures [38]. It can be seen from Figure 9
that ResNet50 achieved the optimal performance among all three CNNs, considering it has
50 layers (49 convolutional layers and 1 fully connected layer) in total. When a CNN has a
deep layer, the feature-extraction ability would be greatly enhanced [39]. Usually, shallow
layers can capture features like edges and textures, while deep layers are able to extract
semantic information.

Compared with ResNet50, DeformAtt-ViT still showed an improvement in precision,
recall, F1-score, and accuracy. The success of DeformAtt-ViT was attributed to its unique
deformable attention module. The deformable attention ensured that the same receptive
field was applied to all queries, and the sampling points were learned through the offset
network [40]. Moreover, the offset network leverages query features as inputs to generate
corresponding offsets for all reference points. This process effectively shifts the candidate
keys and values to important regions, enabling the model to enhance the original self-
attention module with greater flexibility and efficiency.

Lastly, considering the use of the attention mechanism, DeformAtt-ViT seemed to
be more transparent than CNNs. By visualizing the heatmap generated by the attention
mechanism in the given image, highlighted contributing pixels would naturally provide a
visual explanation of the decision-making process of the model [41]. In this fish hunger-
degree classification task, the deformable attention module was particularly helpful when
dealing with the weakly hungry categorization, since fish were generally sparse within the
space. From the result in Figure 10a, DeformAtt-ViT successfully looked at multiple objects
from a global view with a larger receptive field [42]. However, the feature-extraction ability
of CNNs was limited due to the fixed size of convolutional kernels.

4.2. Limitation and Future Work

DeformAtt-ViT has proven to be effective in monitoring the fish-feeding process in
recirculating aquaculture systems. DeformAtt ViT can identify the degree of aggregation
of fish and then trigger the feeding machine to be turned on. When the aggregation
disappears, DeformAtt ViT then suggests stopping the feeding machine. This intelligent
and precise feeding approach allows for optimizing the use of feed resources, ensuring
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efficient aquaculture operations, and reducing production costs. There are also some
limitations to be overcome for this study in the future.

First, the feeding dataset was collected in a laboratory setting with relatively small-
sized image data. It is crucial to consider that, as the largemouth bass grows, its behavior
may change with time. Additionally, fish habits can vary under different conditions,
such as water temperature, pH, lighting, and other environmental factors. To address
these limitations, future work should involve collecting data in real-life aquacultural
environments, evaluating the hunger levels of largemouth bass throughout their entire
growth cycle and considering different stress conditions.

Secondly, this study classified the hunger degree of fish based on static 2D feeding
images. We acknowledged that image-based and video-based approaches are adopted
in the intelligent-feeding research, both of which are important. On the one hand, for
the image-based approach adopted in this manuscript, our objective was to detect the
aggregation level to determine whether the fish are hungry before the feeding bait is
released. Although the image data used in this study was downsampled from videos, we
noticed that neighboring video frames might contain redundant information. Inputting a
continuous temporal sequence of video frames not only heavies the computational burden
but also may affect the mode performance. Therefore, the image-based approach is a
preferable option for our study. On the other hand, most of the video-based approaches
aim at detecting the feeding intensity of fish after releasing the bait. Also, the behavior
analysis under stress (e.g., swimming, cruising, escaping, etc.) needs the support of
video-based approaches. For instance, Beyan et al. [43] demonstrated through analysis
of 12,247 videos that, as the water temperature increases, the swimming speed of fish
increases. Xu et al. [44] analyzed the abnormal behavior trajectory, movement volume, and
movement speed of sturgeon, bass, and crucian carp in different stages of acute ammonia
nitrogen stress-recovery experiments through video monitoring, in order to alert whether
ammonia nitrogen in aquaculture water was abnormal. Conclusively, the image-based and
video-based analysis approaches have different objectives. However, intelligent feeding is
a complex and dynamic process. Integrating both approaches can potentially enrich the
functionality of the intelligent feeding system and improve the system’s performance [45].
We have initiated preliminary experiments by employing YOLOv8 in conjunction with
the ByteTrack object-tracking algorithm to track both aggregated and relatively stationary
states, as well as normal swimming states. The results are shown in Figure S5. It could
be observed that the consecutive frames extracted in Figure S5a indicated that the fish
were relatively stationary, as evidenced by the lack of significant movement in the motion
trajectories of the fish. In contrast, the consecutive frames in Figure S5b showed that most
of the fish were in a normal swimming state, such as fish with the identification numbers 1,
12, and 26, exhibiting distinct changes in their motion trajectories. Additionally, studies
have shown that the sound produced by fish during feeding can also quantify their feeding
behavior [23]. Therefore, fusing multiple data sources can lead to more reliable and effective
decision-making for the feeding process.

Furthermore, although deep-learning models with deep layers have the potential
to achieve promising results, they may require more training time. Considering that
the deployment of models on edge devices with limited computational capabilities is
becoming increasingly important, there is a growing trend toward designing lightweight
networks [46].

5. Conclusions

This study focused on the practical requirements of fish feeding, specifically targeting
largemouth bass. DeformAtt-ViT, serving as a reference model, was compared with six
other models in the classification task of fish hunger degree. The main findings of the paper
are as follows. We validated that deformable attention was capable of effectively filtering
out irrelevant information and enhancing the utilization of useful information through
an ablation study. As a result, it guides the model to prioritize more significant regions.
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The performance of the results demonstrated that DeformAtt-ViT outperformed the other
models, achieving a classification accuracy of 95.5%. To further evaluate the effectiveness
of the models, we generated visual heat maps using the Grad-CAM method. These heat
maps specifically highlighted the regions of interest that are crucial for determining the
hunger degree of fish. The findings of this study have significant implications for the
establishment of intelligent feeding systems and the reduction of fish-feeding costs. They
also offer valuable guidance for researchers in model selection and optimization for similar
tasks. By leveraging the insights gained from this research, future studies can enhance the
accuracy and efficiency of fish-feeding systems, leading to improved aquaculture practices.
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