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Abstract: Unmanned surface vehicle (USV)’s motion is represented by time-series data that exhibit
highly nonlinear and non-stationary features, significantly influenced by environmental factors,
such as wind speed and waves, when sailing on the sea. The accurate prediction of USV motion,
particularly crucial parameters, such as the roll angle and pitch angle, is imperative for ensuring safe
navigation. However, traditional and single prediction models often struggle with low accuracy and
fail to capture the intricate spatial–temporal dependencies among multiple input variables. To address
these limitations, this paper proposes a prediction approach integrating temporal convolutional
network (TCN) and bi-directional long short-term memory network (Bi-LSTM) models, augmented
with a temporal pattern attention (TPA) mechanism, termed the TCN-Bi-LSTM-TPA (TBT) USV
motion predictor. This hybrid model effectively combines the strengths of TCN and Bi-LSTM
architectures to extract long-term temporal features and bi-directional dependencies. The introduction
of the TPA mechanism enhances the model’s capability to extract spatial information, crucial for
understanding the intricate interplay of various motion data. By integrating the features extracted
by TCN with the output of the attention mechanism, the model incorporates additional contextual
information, thereby improving prediction accuracy. To evaluate the performance of the proposed
model, we conducted experiments using real USV motion data and calculated four evaluation metrics:
mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and
R-squared (R2). The results demonstrate the superior accuracy of the TCN-Bi-LSTM-TPA hybrid
model in predicting USV roll angle and pitch angle, validating its effectiveness in addressing the
challenges of multivariate USV motion prediction.

Keywords: USV motion prediction; multivariate prediction; Bi-LSTM; temporal convolution network;
temporal pattern attention mechanism

1. Introduction

For unmanned surface vehicles (USVs), navigation safety is crucial to effectively fulfill
their role in various tasks and plays an important role in ensuring the stability and safety
of boats. Therefore, it is necessary to analyze the safe navigation status of USVs, which
involves predicting motion data in advance. In this context, the accurate prediction of USV
motion is essential for promptly assessing the status of USVs and implementing proactive
control measures based on the prediction outcomes. This will significantly enhance the
seaworthiness and safety of USVs [1,2]. Due to the complexity and unpredictability of
sea conditions, when USVs sail on the sea, they often experience the coupling effects of
multiple factors, such as winds, waves, and currents [3,4]. Therefore, the high-precision
prediction of USV motion is quite challenging. The complex environment results in complex
nonlinear six-degree-of-freedom random motion, including roll, pitch, yaw, sway, surge,
and heave. In this six-degree-of-freedom motion, the roll angle and pitch angle are closely
related to the sailing stability of USVs [5]. If these angles are too large, the possibility of
capsizing increases.
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The current research on USV motion prediction can be categorized into three main
methods: mathematical models, statistical models, and machine learning models. The
prediction methods based on the mathematical model involve establishing a mathematical
model of the ship’s motion and the surrounding marine environment. The more typical
methods include the Kalman filter method [6], as well as the bow wave method [7]. It is
worth noting that, although such methods have natural advantages in the interpretability of
forecasts, they often rely on a large number of empirical formulas, leading to the accuracy of
forecasts being highly affected by environmental factors and often failing to meet real-time
forecasting requirements [8].

Statistical prediction methods are primarily based on regression analysis. These
methods treat the ship’s motion attitude data as a sequence of random variables arranged in
chronological order, including autoregressive (AR) models, autoregressive moving average
(ARMA), and autoregressive integrated moving average (ARIMA). In [9], researchers
introduced an AR model combined with error correction, aiming to minimize errors in the
iterative process and improve the accuracy of multi-step predictions. In [10], the ARMA
model was used to predict ship motion attitude data and achieved a better prediction
performance than the AR model. While the ARMA model is effective in handling prediction
errors, it requires stationary data to produce accurate results, which restricts its applicability.
The ARIMA model incorporates differencing based on the ARMA model, which transforms
non-stationary external datum into stationary datum before inputting it into the ARMA
model. In [11], researchers utilized the ARIMA model to rectify prediction errors, leading
to enhanced prediction accuracy by employing a single prediction method. Although their
performance is gradually improving, these models are linear methods and limited in their
ability to handle the strong nonlinearity of motion attitude data generated in complex
ocean environments.

To better deal with the characteristics of nonlinear and non-stationary inputs caused by
rough sea state and hydrodynamic factors, motion prediction methods based on machine
learning models have emerged. The research on using machine learning theoretical-based
methods can be divided into two categories: methods based on traditional machine learning
models and methods based on deep learning models. For the former, scholars mostly use
support vector regression (SVR) and decision tree (DT) methods. In [12], the empirical mode
decomposition (EMD) method was used to preprocess the raw data and input them into an
SVR model to mitigate the marginal effect of EMD and generate short-term forecasts of ship
movements. With the development of DT methods, some variant models are utilized for
prediction, such as random forest (RF) and eXtreme gradient boosting (XGBoost). In [13],
the researchers combined a traditional data-driven model with the RF model to develop a
ship-speed prediction model, resulting in higher accuracy and applicability compared to
traditional prediction models that only consider environmental factors as features. In order
to address the issue of the inadequate prediction accuracy of a single XGBoost model, a
combined prediction model using XGBoost and a convolutional long short-term memory
neural network (Conv-LSTM) was proposed [14], and an accurate prediction model was
created by training the two models independently and then combining them.

Due to the ability to adapt to complex patterns, better generalization, and sufficient
scalability, deep learning methods based on artificial neural networks have become a popu-
lar research direction in the field of predicting ship motion data. This approach commonly
employs USV motion data as time-series inputs and utilizes diverse time-series prediction
models to forecast USV motion data. It can learn nonlinear features in a large amount of
input data through nonlinear activation functions. Note that current studies on predicting
ship motion data using artificial neural networks are mainly based on recurrent neural
network (RNN) [15] and convolutional neural network (CNN) models [16]. For research
based on the RNN method, LSTM [17] and GRU [18] are widely used. In [19], researchers
proposed a theory-driven and data-driven approach combined model and utilized LSTM to
formulate a ship-following behavior prediction model. In [20], LSTM and gated recurrent
unit (GRU) models were reconstructed, and the researchers incorporated residual connec-
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tions into the standard architecture and achieved high-accuracy real-time predictions. Some
scholars utilized bi-directional recurrent neural network models, including Bi-LSTM, bi-
directional convolution long short-term (Bi-Conv-LSTM), and bi-directional gated recurrent
unit (Bi-GRU), to enhance the extraction of features from the input data. In [21,22], Bi-LSTM
was utilized for forecasting ship roll attitude data and demonstrated that the bi-directional
structure of the LSTM model outperformed the unidirectional structure. In [23], researchers
proposed a channel attention-weighted Bi-Conv-LSTM hybrid model for ship pitch angle
predictions, and achieved high-precision forecasting on specific datasets. And, in [24], the
BIGRU model was utilized for predicting the trajectory of ship motion by integrating an
efficient channel attention mechanism, and the performance of the model under different
iterations was analyzed.

Due to the advantages of weight sharing and low computational resource consumption,
CNN-based methods are increasingly being utilized in the field of ship motion prediction.
Based on the powerful feature extraction capability of the CNN, more and more researchers
tend to combine CNN and RNN methods for ship motion predictions, achieving the ability
to extract multi-modal information in time and space at the same time. In [25], researchers
designed a new structure for a RNN-based model to capture the spatial features handled
by the CNN model. Zhang et al. [26] combined a CNN with LSTM to establish a ship
roll attitude prediction model, using the CNN to extract the spatial features of input data
and LSTM to extract temporal features. Wei et al. [27] established a prediction model
based on CNN and Bi-LSTM models, which performed bi-directional feature extraction
on the basis of CNN-LSTM, and compared it with other models, such as SVR, DBN, and
ARMA. to verify the effectiveness of the proposed algorithm. In [28], unlike previous
work, the researchers built a hybrid model by adding a CNN to the back of a Bi-LSTM
model to extract the bi-directional cross-temporal features of inputs, and established two
high-precision prediction models for single-variable and multi-variable input scenarios.
There are also some researchers who combined a CNN with GRU; Rashid et al. [29] and
Li et al. [30] chose to combine a CNN and GRU to simplify the computational complexity
of the LSTM model, and their work proved that the GRU model combined with a CNN
shows a good performance in the task of predicting ship motion attitude data, and is better
than the single GRU model in model training.

In order to leverage convolutional neural network (CNN) models for capturing tem-
poral patterns in time-series data, a model known as the temporal convolutional network
(TCN) was proposed [31]. The TCN makes use of stacked residual connection blocks
consisting of one-dimensional dilated causal convolutions to effectively extend the recep-
tive field of the model. This extension enables the model to capture and model complex
temporal relationships within the time-series data. By incorporating dilated convolutions,
the TCN can efficiently capture long-range dependencies in the temporal domain and
extract meaningful features from time-series inputs. The utilization of residual connections
helps alleviate the vanishing gradient problem and allows for the more effective and stable
training of the network. By taking advantage of both dilated convolutions and residual
connections, the TCN has demonstrated a promising performance in forecasting. In [32],
the researchers combined the TCN model with variational modal decomposition (VMD)
and proposed a novel prediction model; this model utilized the TCN to process ship motion
data after decomposition and performed high-precision predictions. In [33], the researchers
employed the TCN model to determine the optimal hyper-parameters in conjunction with
the optimization algorithm and developed a prediction model suitable for various sea
states. Due to the excellent ability of the TCN to capture temporal features, there are many
studies that combine them with RNN models to comprehensively improve the prediction
ability of the models. In [34], the researchers proposed a parallel architecture model based
on TCN-LSTM and investigated such a combined model for wind power prediction, and
the results show that the proposed model performs better in terms of prediction perfor-
mance and generalization and has a faster convergence speed compared with the separate
prediction model and the serial model of TCN-LSTM. Some scholars [35] combined a TCN
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and Bi-GRU for generator capacity prediction and assigned capacity weights to different
distribution modes through the attention mechanism to improve the accuracy of prediction.
In comparison with traditional machine learning and deep learning prediction models, the
proposed prediction method has a higher capacity accuracy inspired by bi-directional re-
current class neural networks. In [36], the researchers employed a combination of the TCN
model and Bi-LSTM in their study. In addition, the researchers integrated the complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and empirical
wavelet transform (EWT) decompositions into the model to decompose the input data so
that the model could be targeted for predictions based on different decomposition features.
The proposed model’s performance was thoroughly evaluated through extensive compara-
tive experiments. These experiments provided a robust validation and assessment of the
model’s effectiveness in handling time-series data.

For USV motion prediction, many existing studies primarily focus on univariate
features or neglect the interplay between different motion data variables of USVs. However,
due to the complex and non-linear nature of USV motion data, insufficient consideration of
the spatial relationships between USV motion data variables often hinders the accuracy of
the predictions [37]. To overcome these limitations, this study proposes a method based on
the TCN-Bi-LSTM-TPA hybrid model to enhance the accuracy of USV motion predictions in
multivariate scenarios. The contributions and motivations of this paper can be summarized
as follows:

1. Aiming to capture the sequence characteristics and inter-dependencies among mul-
tivariate USV motion inputs, this research considers multiple variables input simul-
taneously by establishing spatial–temporal mapping relationships among multiple
USV features.

2. To effectively extract temporal features from USV motion data, this paper integrates
TCN and Bi-LSTM models. By leveraging the strengths of these models, the pro-
posed methodology can capture long-term dependencies and bi-directional causal
relationships, enabling more accurate prediction results.

3. In order to address the coupling effect between different motion data variables, this
research enhances the model’s ability to process spatial information through the TPA
mechanism. Additionally, Conv-1D is used at the end of the model to extract local
spatial features to further enhance the prediction accuracy.

4. Numerical experiments are conducted using the roll and pitch motion data of an
actual USV to verify the feasibility and effectiveness of the proposed model compared
with nine established classic prediction models.

The remaining structure of the paper is described as follows: Section 2 introduces the
neural network structure used in this study; Section 3 describes research methodology,
including the proposed prediction model’s structure and the methods used to train the
model and generate predictive values; Section 4 shows the data description and experi-
mental results; Section 5 discusses the experimental results; and Section 6 summarizes the
conclusions and discusses future work.

2. USV Motion Feature Extraction Structure
2.1. TCN Nerual Network

This paper utilizes dilated causal convolution to construct a TCN neural network
aimed at effectively capturing long-term temporal trends from input data. By employing
dilated causal convolutions, the network is capable of significantly increasing the receptive
field size through the deepening of layers.

In traditional convolutional neural networks, the receptive field size exhibits a linear
growth pattern in correlation with the network depth and the size of the convolutional
kernel. For instance, considering a convolutional neural network with n-layer 1D convolu-
tional layers, each equipped with a kernel size of k, the receptive field, r, can be calculated
as follows:

r = 1 + n·(k− 1) (1)



J. Mar. Sci. Eng. 2024, 12, 711 5 of 26

It is evident that producing a large receptive field in traditional convolutional neural
networks can be accomplished by either increasing the size of the convolutional kernel or
adding more convolutional layers. However, these approaches may lead to excessively
deep network architectures, which can introduce challenges such as gradient vanishing
or exploding. Moreover, the increased model complexity can result in higher training
costs. Therefore, in this paper, dilated casual convolution was utilized to create a larger
receptive field while mitigating the issue of excessively deep network layers. Dilated causal
convolution is introduced to manage the exponential expansion of the convolution kernel
as the number of network layers increases, for instance, considering a convolutional neural
network with a 1D dilated causal convolutional layer. When setting the initial dilation
factor to d and the initial convolutional kernel size to k, then the output layer’s receptive
field of the network can be calculated as follows:

r = 1 +
(k− 1)(dn − 1)

d− 1
(2)

where n is the number of dilated causal convolutional layers; by adjusting the values of
d and k, the receptive field can be significantly enlarged without requiring an excessively
deep network architecture. This approach allows us to capture long-term temporal patterns
in the input data while maintaining a manageable network depth. Assuming a given
one-dimensional input sequence, X1,T = {x1, x2, · · · , xT} ∈ R1×T, and an n-dimensional
convolution filter, k = {k0, k1, · · · , kn} ∈ R1×n, the result of the dilated causal convolu-
tion at time step t can be represented by Equation (3) [31]:

X ∗ kt =
n−1

∑
s=0

ksXt−d×s (3)

As opposed to RNN-based models, the TCN offers the advantage of analyzing longer
sequence inputs. This characteristic is beneficial for parallel computing, model simplifica-
tion, and the prevention of gradient explosions. By stacking residual layers, computational
resources can be conserved while simultaneously expanding the network’s receptive field
and capturing longer input sequences. The structure of the TCN neural network is illus-
trated in Figure 1.
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2.2. LSTM and Bi-LSTM Neural Networks

The traditional recurrent neural network often encounters the issue of gradient vanish-
ing when processing temporal information. To address this problem, LSTM was introduced.
Building on the foundation of traditional a RNN, the LSTM network incorporates gating
units to regulate the flow and retention of information. It consists of three gates, the input
gate, output gate, and forget gate, which determine whether the hidden state of the current
time step should be passed along to the next step. This design effectively circumvents the
gradient vanishing problem associated with traditional RNNs and enables the capture of
sequence feature information over longer time steps.

When the LSTM network processes time-series data, the data of the current time step
are only determined by the sequence of the earlier time steps; so, the transmission of its
hidden state follows a unidirectional flow from front to back. Based on the LSTM network,
the Bi-LSTM network incorporates a bi-directional design. This design increases the hidden
layers transmitted from front to back. Consequently, when the hidden state is transmitted,
in addition to the front-to-back transmission, it will also be transmitted from the back to
the front, and its structure is shown in Figure 2.
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Assuming that xt ∈ Rn×1 is the USV motion feature that input into Bi-LSTM at the

t time step, n is the number of samples. In Figure 2,
→
h t ∈ Rh×1 represents the forward-

propagation hidden state, while
←
h t ∈ Rh×1 represents the backward-propagation hid-

den state, where h is the number of forward and backward hidden units. Then the for-
ward and backward hidden states output of the Bi-LSTM, ht ∈ Rh×1, is computed by
Equations (4)–(6):

→
h t =

→
o t ⊙ tanh(

→
c t) (4)

←
h t =

←
o t ⊙ tanh(

←
c t) (5)

ht = concat(
→
h t,
←
h t) (6)

where
⊙

denotes the product of the elemental direction;
→
o t and

←
o t denote the outputs

of the forward and backward LSTM output gates at the t time step, respectively (they
are calculated in the same way, as shown in Equation (9)); and the other two gates, the
forget gate and input gate, can be calculated as Equations (7) and (8) [17].

→
c t and

←
c t denote

the memory cell outputs of the forward and backward LSTM inputs at the t time step,
respectively, which are also calculated in the same way, as shown in Equation (11). The
function tanh is the activation function applied to the memory cell.

ft = σ(W( f ) · [xt, ht−1]
T + b f ) (7)
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it = σ(W(i) · [xt, ht−1]
T + bi) (8)

ot = σ(W(o) · [xt, ht−1]
T + bo) (9)

c̃t = tanh(W(c̃) · [xt, ht−1]
T + bc̃) (10)

ct = ft ⊙ ct−1 + it ⊙ c̃t (11)

where
∼
c t indicates the candidate memory cell output, which can be calculated as

Equation (10). W( f ) consists of Wxf ∈ Rh×1 and Whf ∈ Rh×h, which represent the weights
multiplied by the input and multiplied by the hidden state of the forget gate, respec-
tively; W(i) consists of Wxi ∈ Rh×1 and Whi ∈ Rh×1; W(o) consists of Wxo ∈ Rh×1 and

Who ∈ Rh×1; and W(
∼
c ) consists of W

x
∼
c
∈ Rh×1 and W

h
∼
c
∈ Rh×1. Then, b f , bi, bo,

and b∼
c

represent the corresponding bias terms of different information units, and σ denotes
the activation function.

2.3. Temporal Pattern Attention Mechanism

As deep learning has advanced, the attention mechanism was introduced to capture
the hidden and diverse information in deep learning models. The TPA mechanism [38]
is specially designed for time-series data. To retain the temporal pattern when extracting
spatial features, the TPA mechanism uses a convolutional filter to extract the fixed-length
time-series mode from the input information; then, it employs a scoring function to deter-
mine the appropriate weight of each time-series mode to extract spatial features. Finally,
the output information is obtained based on the values of weights. Unlike the traditional
attention mechanism, which primarily emphasizes the relationship between the features
of the input data, the TPA mechanism goes a step further by considering the temporal
relationship in addition to the spatial relationship. It assigns weights to the features of
each time step of the input data to calculate the weights at different time steps. For the
TCN-Bi-LSTM-TPA hybrid model proposed in this paper, the inputs to the TPA mecha-
nism are temporal features for several time steps processed by the residual TCN-Bi-LSTM
framework. Its scheme is illustrated in Figure 3.
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Figure 3. The scheme of the TPA mechanism.

In Figure 3, assuming that H =
[
ht−w, ht−(w−1), · · · , ht

]
represents the output hidden

states of previous model’s outputs, Cj denotes the convolution kernel and w is the predeter-
mined number of time steps to be predicted. The result of the calculation is denoted as HC

i,j,
where subscripts i and j, respectively, represent the data selected in the i-th row and j-th
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column for the convolution operation. The final output of the TPA mechanism is computed
by Equations (12)–(16):

HC
i,j =

W

∑
i=1

Hi,(t−w−1+l) × Cj,T−w+l (12)

f
(

HC
i , ht

)
=

(
HC

i

)T
Waht (13)

where T represents the maximum weight extracted by the convolution kernel, which is
often taken as w. l is the filling length in the convolution operation. f is the score function
used to compute the attention weights, which is shown in Equation (14):

ai = σ
(

f
(

HC
i , ht

))
(14)

where ai represents the weight of the TPA and σ represents sigmoid, which is used as the
activation function of the weight matrix calculation. After obtaining the convolution values
and weights, attention vector vt can be calculated as:

vt =
n

∑
i=1

aiHC
i (15)

Then add the hidden state ht and the attention vector vt after the linear mapping oper-
ation to obtain the predicted value yt of the output model, which is shown in Equation (16),
where Wy, Wh, and Wv denote the corresponding weights:

yt = Wy(Whht + Wvvt) (16)

3. Methodology
3.1. The Scheme of Predicted Values’ Generation and Model Training

The multivariate motion data of the USV can be regarded as a series of multi-
dimensional time-series data, including the roll angle, pitch angle, rotation rate, head-
ing angle, and other related variables. In this paper, the USV motion prediction problem is
regarded as a regression task with supervised learning, so it is necessary to construct USV
motion data in the form of data with samples and labels, which are usually implemented
by using a sliding window, as shown in Figure 4.

In Figure 4, the sliding window divides the multivariate input USV motion into
sample data (indicated by the gray dots) and label data (indicated by the green dots). For
the sample data, assuming that the USV motion dataset consists of N variables and T
time steps are sampled together, then the dimension is 1, and USV motion data from the
preliminary sampling time step t-T to the current moment, t, can be expressed as Xt−T:t ={

xt−T , xt−(T−1), · · · , xt

}
∈ RT. Thus, the multivariate USV motion data X1:N,t−T:t ∈

RN×T with a dimension of N and a sampling time step of T can be expressed as X1:N,t−T:t =
{X1,t−T:t, · · · , Xi,t−T:t, · · · , XN,t−T:t} ∈ RN×T , where Xi, t−T:t ∈ RT denotes the time-series
data from time step t-T to time step t of the i-th dimension.

For the label data, since the sliding window only moves one step at a time and only
generates label data at the following moment each time, let P represent the total sliding
step size of the sliding window; thus, label data Y1:N,t;t+P ∈ RN×P can be generated by
iteratively moving the sliding window, as shown in Figure 4. Therefore, the prediction of
USV motion data uses the historical time-series data input X1:N,t−T:t ∈ RN×T to predict the
trend change in the data in future P time steps, which is presented as Ŷ1:N,t;t+P ∈ RN×P.
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Figure 4. Sliding window for constructing USV motion prediction samples and labels.

Assuming that there is a mapping relationship of fΘ(·) from X1:N,t−T:t to Ŷ1:N,t;t+P ,
the training problem of the USV motion prediction model can be abstracted to find a
suitable parameter matrix, θ, so that the error between the historical observation data of
the USV motion data and the predicted data obtained through mapping fθ(·) is minimized,
and this process can be expressed as shown in Equation (17):

min
Θ

L f (
⌢
Y1:N,t:t+P, Y1:N,t:t+P)

s.t.
⌢
Y1:N,t+P = fΘ(X1:N,t−T:t)

(17)

where L f represents the loss function between the predicted value, Ŷi, and the true value, Yi,
which can be expressed as:

L f =
1
n

n

∑
i=1

(
⌢
Y i − Yi) (18)

where n is the number of samples. Figure 5 shows the overall flowchart of the TBT USV
motion prediction model. In Figure 5, the process can be summarized as follows:

1. USV motion data preprocessing: The sliding window technique is utilized for obtain-
ing multivariate USV motion data as inputs. The input data undergo preprocessing,
which includes data normalization and data splitting, to meet the input and output
format requirements. Subsequently, the preprocessed dataset is divided into training,
validation, and test sets.

2. Model training and validation: The preprocessed data are fed into the TBT hybrid
model, and the model is trained using the training sets based on Equations (17) and (18).
The model’s performance is evaluated on the validation sets to optimize and update
the model’s parameters.

3. Model performance testing: Once the current training iteration surpasses the maxi-
mum specified training iterations, the training process is concluded. The obtained
model is then applied to the test sets to evaluate its performance. Further fine-tuning
is performed to obtain the best model configuration.
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3.2. The Structure of the TCN-Bi-LSTM-TPA USV Motion Prediction Model

The TCN-Bi-LSTM-TPA (TBT) hybrid model is designed to create a deep neural
network for multivariate USV motion prediction, incorporating TCN, Bi-LSTM, and TPA
models; its framework is illustrated in Figure 6.

In Figure 6, the raw multivariate motion data of the USV is segmented into samples
and labels using a sliding window technique and subsequently batched for input into the
model. The data fed into the model are 2D time-series data, which have the shape of [T, N]
for each batch, where T is the input time step and N is the dimension of the input.

As depicted in Figure 6, the multivariate USV motion raw data undergo initial pro-
cessing and sent to the TCN layer for the extraction of features over a longer time scale.
Following the TCN layer, two successive layers of the Bi-LSTM model are employed to
capture the deep bi-directional features. By leveraging the bi-directional architecture, the
Bi-LSTM model effectively captures temporal information from the data sequence in a com-
prehensive manner, thus enhancing the overall accuracy of the model. The bi-directional
nature of the Bi-LSTM model enables the exploitation of information from both past and
future time steps, allowing for a more nuanced understanding of the temporal dynamics
present in the data. The forward and backward hidden states are combined to obtain the
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hidden state that encapsulates a richer representation of the input data. Subsequently,
this new hidden state traverses through the output layer to yield the final output of the
Bi-LSTM model.
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To further refine the output of the Bi-LSTM model, the TPA mechanism is employed.
This step aims to emphasize the prominent spatial features while reducing the influence of
less important features on the model’s prediction outcomes. By selectively emphasizing
the key temporal patterns of various dimensions and suppressing noise or irrelevant infor-
mation, the TPA mechanism enhances the model’s capability to make accurate predictions.

Traditionally, researchers often utilize fully connected layers to directly process the
output value and obtain the final predictive value. However, this approach may result in
information loss and present challenges in capturing temporal or spatial characteristics,
especially in the presence of extensive output features. To address this problem, after
obtaining the output of the TPA mechanism, the features extracted by the TCN were
further combined with the TPA module’s output to enhance the model’s performance; this
approach has been proven to be beneficial to the stability of the network [39].

In order to enhance the model’s performance, further extracting the single-channel
information from the output features, a 1D CNN was integrated into the model to capture
the changing trends at specific positions. Finally, the prediction was generated through a
fully connected layer with a linear activation function.

3.3. Model’s Parameters Setting

To obtain the optimal prediction model, the grid search method was used to choose
suitable hyper-parameters. The Adam optimizer was chosen to train the model, with an
initial learning rate set to 0.001, and other hyper-parameters used for model training are
shown in Table 1. In this paper, the sliding window size was set to 10, which meant that
the previous 9 time steps of input data were used to predict the output data for the next
time step.

Table 1. Model parameter settings.

Network Layers and Hyper-Parameters Roll Angle Dataset Parameters Value Pitch Angle Dataset Parameters Value

TCN layer dilations = [1, 2, 4, 8], kernel size = 5,
filters = 10

dilations = [1, 2, 4, 8], kernel size = 3,
filters = 10

Bi-LSTM layer 1 units = 100 units = 100
Bi-LSTM layer 2 units = 100 units = 100

TPA layer units = 200 units = 200
Conv-1D layer filters = 12, kernel size = 9 filters = 12, kernel size = 9
Dropout layer rate = 0.2 rate = 0.4

Fully connected layer activation function = linear activation function = linear
Sliding window size 10 10

Optimizer Adam Adam
Batch size 64 64

Epochs 100 100
Learning rate 0.001 0.001

4. USV Motion Prediction Experimental Results
4.1. Experimental Environment

The experiment was conducted on a 64 bit computer with Python 3.9. The specific
hardware configuration and software environment used in the experiments are detailed in
Table 2.

Table 2. Experimental hardware configuration and software environments.

Parameters Value

Operating system Windows 11
CPU Intel i7-12700H
GPU Geforce RTX 3060

CUDA 11.7.1
CUDNN 8.6.0

DL framework Tenforflow-2.10.0
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4.2. Expremental Data and Data Perprocessing

The experimental data used in this study were observed by sensors during the navi-
gation of a USV in a class III sea state, including the roll angle, pitch angle, relative wind
speed, relative wind direction, velocity in surge, velocity in sway, and rotation rate. Figure 7
illustrates a subset of raw USV motion data. A total of 10,000 time steps of row data was
sampled and divided into training sets, validation sets, and test sets at a ratio of 7:1:2. And
the statistical characteristics of the whole roll angle and pitch angle raw data are shown in
Table 3. The stationarity test was carried out by an augmented Dickey Fuller (ADF) test.
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Table 3. Statistical characteristics of USV roll angle and pitch angle.

DOF Parameters Values

Roll angle (◦) Maximum 2.2941
Minimum −4.4527

Mean 0.1184
Standard deviation 0.8685

Stationarity Stationary

Pitch angle (◦) Maximum 2.9094
Minimum −0.2825

Mean 1.3854
Standard deviation 0.9197

Stationarity Non-stationary

As depicted in Figure 7, it is evident that the fluctuation range varies across different
motion sequences, indicating significant differences among the data for various motions.
When utilizing raw data for the prediction model, there is a potential risk of overlooking
the main variables and excessively focusing on secondary variables. This can result in lower
accuracy and a potential for becoming stuck in local optima. Thus, it is crucial to normalize
data across different dimensions, ensuring that they are adjusted to the same variation
range. This normalization process is essential for mitigating the impact of variations
between different variables. In this study, raw data were normalized using Equation (19):

xscaled =
xraw − xmin
xmax − xmin

·(rmax − rmin) + rmin (19)
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where xraw and xscaled denote origin data and scaled data, rmax = 1 and rmax = 0 denote
the maximum and minimum values of the interval after scaling, and xmax and xmin denote
the maximum and minimum values of raw data, respectively. Through Equation (19), the
distribution of raw data is transformed to achieve a mean of 0 and a variance of 1.

4.3. Evaluation Metrics

To assess the predictive performance of the model, four performance metrics were
chosen, including mean square error (MSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and R-squared (R2), as described by Equations (20)–(23). Addi-
tionally, the MSE serves as the loss function in this study.

MSE reflects the extent of deviation between predicted values and actual values. When
the model performs well, the predicted values closely align with the true values, resulting
in a smaller MSE value. Due to its sensitivity to data bias, the MSE can evaluate the model’s
prediction performance at both peak and trough values. The calculation formula for the
MSE is as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (20)

The distinction between MAE and MSE lies in MAE reflecting the true error without
squaring, making it an excellent metric for evaluating model prediction performance. Con-
cerning model assessment, a smaller MAE value signifies a superior prediction performance
of the model. The calculation formula is depicted as Equation (21):

MAE =
1
n

n

∑
i=1
|(ŷi − yi)| (21)

MAPE measures the degree of deviation between the predicted values and the actual
values. A lower value of the MAPE indicates a better fit between the predicted value
curve and the true value curve, making it the most straightforward evaluation index. The
calculation formula for the MAPE is as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣×100% (22)

R2 is a metric used to evaluate the quality of fit of a prediction model. It represents
the proportion of the variance in the dependent variable that can be explained by the
independent variables in the model. A higher value of R2, closer to 1, indicates a better fit,
meaning that the model can effectively account for the changes in the dependent variable.
On the other hand, a value closer to 0 suggests that the model fails to explain the variations
in the dependent variable adequately. It is calculated using Equation (23):

R2 =

n
∑

i=1
(yi − yi)

2 −
n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(23)

And, in order to further test the performance of proposed model, promoting mean
square error (PMSE), promoting mean absolute error (PMAE), promoting mean absolute
percentage error (PMAPE), and promoting R-squared (PR2) are also utilized; they are
calculated as Equations (21)–(26):

PMSE =
MSE1 −MSE2

MSE1
× 100% (24)

PMAE =
MAE1 −MAE2

MAE1
× 100% (25)
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PMAPE =
MAPE1 −MAPE2

MAPE1
× 100% (26)

PR2 =
R2

2 − R2
1

R2
1

× 100% (27)

In all the above equations, the number of samples is described as n, the predicted
value of the model output is described as ŷi, the true value is described as yi, and the
average value of the true value is described as yi.

4.4. Experimental Results Analysis

In this section, a variety of models, which are all classic deep learning and machine
learning models in the field of time-series prediction, including TCN, LSTM, GRU, Conv-
LSTM, Bi-LSTM, BIGRU, Bi-Conv-LSTM, RFR, and SVR models, have been selected as
comparison models for roll angle prediction and pitch angle prediction tasks. To ensure a
reliable comparison, the same hyper-parameters optimization method was employed in
the comparison models. The detailed parameter setting is shown in Table 4.

Table 4. Comparison models’ parameter settings.

Model Hyper-Parameters Roll Angle Pitch Angle Optimizer Batch Size Learning Rate Epochs

RFR n_estimators 300 300 - - - -
max_features 4 4 - - - -

SVR kernel function RBF RBF - - - -
epsilon 0.03 0.05 - - - -

C 10 7 - - - -
LSTM number of layers 2 2 Adam 32 0.001 100

units 100 100
GRU number of layers 2 2 Adam 64 0.001 100

units 100 90
Conv-LSTM number of layers 2 2 Adam 64 0.001 100

filters 50 50
kernel size 5 5

Bi-LSTM number of layers 3 2 Adam 64 0.001 100
filters 100 90

Bi-GRU number of layers 2 2 Adam 64 0.001 100
units 100 100

Bi-Conv-LSTM number of layers 2 2 Adam 64 0.001 100
filters 70 70

kernel size 3 3
TCN dilations [1, 2, 4, 8] [1, 2, 4, 8, 16] Adam 64 0.001 100

kernel size 5 9
filters 10 15

Figure 8 illustrates the USV roll angle prediction results of the TBT hybrid model in
a 2000 step timeframe. The real roll angle is represented by a black sloid line, while the
red solid line represents the predicted values generated by the TBT model. As depicted in
Figure 8, the USV roll angle exhibits clear non-stationarity and aperiodic behavior, posing
a significant challenge in accurately capturing the trend of the true values and obtaining
precise predictions. From Figure 8, it can be seen that, due to its specially designed structure,
the TBT hybrid model can adapt well to the non-periodic and non-stationary time-series
characteristics of the roll angle. In the peak and trough regions, the TBT hybrid model is able
to accurately predict the real roll angle. The subgraph in Figure 8 displays the prediction
results from steps in the range of 1750–1990, where the trend of the roll angle differs from
that of most time periods. Remarkably, the TBT model still provides relatively accurate
predictions, even amidst the uncertainty surrounding these changes in the real values. The
ability of the TBT hybrid model to address this uncertainty and offer precise predictions in
challenging circumstances further validates its effectiveness as a prediction model.
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Figure 9 shows the prediction comparison results of different models. It can be ob-
served that all models can generally track the changes in the real roll angle over time.
However, during the continuous change in the true value curve, the GRU model and the
LSTM model inaccurately predicted the changes in the true value, such as during steps in
the range of 600–800. There is a significant error between the predicted value curve and
the true value curve, which indicates that the pure RNN model can capture the temporal
features well, but is unable to capture the spatial features that can enhance the prediction
accuracy simultaneously. Similarly, the TCN model also faces the same issue, which indi-
cates that the TCN model using only convolution operations and a non-recursive mode
still struggles to make accurate predictions in multivariate input scenarios. At the pinnacle
of the roll angle variation, the Conv-LSTM model demonstrates a superior performance
compared to the LSTM and GRU models, as is evident for the interval including steps in
the range of 1750–1850. It can be seen in Figure 9 that, as variants of the LSTM, Conv-LSTM,
GRU: Bi-LSTM, Bi-Conv-LSTM, and Bi-GRU models, their performance does not improve
significantly; this illustrates that a bi-directional structure is not helpful for capturing tem-
poral information more accurately under a multivariate input scenario. For two machine
learning models, the RFR model exhibits the poorest performance at the peak and trough,
particularly during the period of steps in the range of 1750–1850. Meanwhile, during steps
in the range of 1250–1500, the SVR model tends to exhibit pronounced prediction errors
when confronted with rapid changes in the roll angle.

Figure 10 shows the box plots of the prediction errors of various models in the roll angle
prediction task; the prediction errors are calculated as

∣∣∣ypre− ytrue

∣∣∣. Box plots utilize the
interquartile range (IQR) to measure the dispersion of data, where a smaller IQR indicates
a more concentrated data distribution, while a larger IQR signifies a more dispersed data
distribution. The combination of the IQR with the median allows for a clear depiction of
the distribution differences in prediction error data across different models.

It is apparent that the median error of the TBT hybrid model prediction error box plot
is 0.041. In comparison, the medians of the other nine error box plots are 0.029, 0.076, 0.051,
0.046, 0.066, 0.056, 0.060, 0.074, and 0.071. At the same time, the IQR of the TBT hybrid
model prediction error box plot is 0.028, while the IQRs of the other nine error box plots are
0.038, 0.101, 0.050, 0.057, 0.059, 0.038, 0.050, 0.076, and 0.071, indicating that the dispersion
degree of the prediction error of the TBT hybrid model is the smallest. In other words, the
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TBT hybrid model prediction error is more concentrated, which means having a smaller
error variation range and smaller prediction error.
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In Figure 10, the green dots represent the mean value of every box plot; as can be
seen from the diagram, the mean value of the TBT hybrid model prediction error box
plot is 0.044, while the mean values of other box plots are 0.077, 0.111, 0.067, 0.067, 0.074,
0.069, 0.076, 0.090, and 0.088. It is apparent that the mean of the RFR model is out of the
box, due to the fact that the forecast errors in steps 1750–1850 increase the mean of RFR
model’s errors.

Figure 11 displays the prediction results of the USV pitch angle using the TBT hybrid
model. In Figure 11, the real pitch angle is represented by a black solid line, while the
red solid line represents the predicted value. In Figure 11, it is clear that the pitch angle
exhibits clearer periodic characteristics and is more stable when compared with the roll
angle. Therefore, predicting the pitch angle is much less challenging than predicting the
roll angle. As can be seen, the TBT hybrid model can accurately capture the changing trend
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of the true value and closely track the true value with minimal deviation throughout the
prediction process. Especially at the extreme values that are significantly related to the USV
motion attitude, the prediction value rarely shows large deviations from the true value.
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Figure 12 shows the prediction results of different models in predicting the pitch angle.
As depicted in Figure 12, all models generally exhibit the ability to track the changes in the
real pitch angle over time. However, during continuous changes in the true value curve,
the LSTM model performs better than the GRU model; overall, the effects of the LSTM,
GRU, and Conv-LSTM models exhibit similarities in pitch angle prediction tasks. The TCN
model predicts well at peak points; however, there is a notable difference between the TCN
model and the true value curve for trough points. The SVR model continued to struggle
with accurately predicting the pitch angle under rapid changes in the ground truth value at
extreme points. The performance of the RFR model is relatively better, but there is still a
significant deviation between the predicted value and the real value, and the fluctuation
in the real value cannot be accurately predicted. Similarly, for the pitch angle prediction,
the bi-directional architectures of various RNN models did not demonstrate a superior
performance at extreme points in comparison to the unidirectional counterparts.

Figure 13 shows the box plot of the prediction errors of several models for the pitch
angle prediction task. It can be seen that the median of the TBT hybrid model prediction
error box plot is the smallest at 0.007. In contrast, the medians of the other nine error box
plots are 0.013, 0.017, 0.016, 0.015, 0.011, 0.024, 0.017, 0.016, and 0.010. At the same time,
the IQR of the TBT hybrid model prediction error box plot is 0.008, while the IQRs of the
other nine error box plots are 0.019, 0.019, 0.006, 0.011, 0.014, 0.013, 0.008, 0.017, and 0.010.
Despite the IQR of the TBT model not being the smallest, the TBT hybrid model exhibits
the smallest mean and median errors, along with the minimum and maximum error values.
This suggests that the dispersion of prediction errors of the TBT hybrid model is minimized,
demonstrating its superior performance in terms of error distribution. In other words, the
TBT hybrid model prediction error is more concentrated, with a smaller error variation
range and lower prediction error. As can be seen in Figure 10, the mean value of the TBT
hybrid model prediction error box plot is 0.008, while the mean values of the other models
are 0.016, 0.019, 0.016, 0.016, 0.014, 0.023, 0.017, 0.017, and 0.012.
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To further assess the prediction performance of different models, Table 5 displays
different evaluation metrics, including the MSE, MAE, MAPE, and R2.

Additionally, Table 6 illustrates the promotion percentage of the TBT hybrid model in
comparison to other models across different evaluation metrics.

Tables 5 and 6 present the results of the evaluation indices, indicating that the TBT
model outperforms other models in both roll angle and pitch angle prediction tasks. The
proposed TBT hybrid model demonstrates significant advantages across all four evalua-
tion indicators, showcasing improvements of at least 66.67%, 33.88%, 3.56%, and 0.58%
compared to the other nine models on two different tasks. These substantial improve-
ments can be attributed to its capability to simultaneously capture spatial and temporal
features dynamically.

Based on the aforementioned analysis, the TBT hybrid model can effectively capture
the time-series characteristics and spatial relationship of USV motion data, and accurately
fits real data. Through the analysis of the experiment, it can be seen that the TBT hybrid
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model proposed in this study successfully captures the transformation of real motion data.
The prediction effect is more accurate, stable, and dependable compared to the other models,
thereby providing a solid foundation for a further analysis of its safe navigation capabilities.

Table 5. USV motion prediction evaluation index comparison of different models.

DOF Model MSE MAE MAPE R2

Roll angle (◦) RFR 0.0611 0.0771 16.56 0.9273
SVR 0.0285 0.1114 18.96 0.9660

LSTM 0.0096 0.0667 16.61 0.9885
GRU 0.0092 0.0672 17.48 0.9891

Conv-LSTM 0.0084 0.0747 20.37 0.9900
Bi-LSTM 0.0179 0.0719 18.79 0.9787
Bi-GRU 0.0135 0.0758 21.75 0.9839

Bi-Conv-LSTM 0.0216 0.0898 21.27 0.9743
TCN 0.0139 0.0876 19.66 0.9834
TBT 0.0026 0.0441 15.97 0.9969

Pitch angle (◦) RFR 0.0004 0.0163 24.42 0.9824
SVR 0.0005 0.0187 24.75 0.9794

LSTM 0.0003 0.0158 24.66 0.9889
GRU 0.0003 0.0159 28.29 0.9867

Conv-LSTM 0.0003 0.0137 25.70 0.9884
Bi-LSTM 0.0006 0.0230 21.85 0.9749
Bi-GRU 0.0003 0.0167 19.19 0.9875

Bi-Conv-LSTM 0.0004 0.0169 18.62 0.9834
TCN 0.0002 0.0121 24.92 0.9905
TBT 0.0001 0.0079 12.52 0.9962

The numbers in bold in the table represent the maximum and minimum values of the metrics.

Table 6. Prediction promotion percentage comparison of different models.

DOF Model PMSE PMAE PMAPE PR2

Roll angle (◦) RFR 95.74% 42.80% 3.56% 7.51%
SVR 90.88% 60.41% 15.77% 3.2%

LSTM 72.92% 33.88% 3.85% 0.85%
GRU 71.74% 34.37% 8.64% 0.79%

Conv-LSTM 69.05% 40.96% 21.6% 0.70%
Bi-LSTM 85.47% 38.66% 15.01% 1.86%
Bi-GRU 80.74% 41.82% 26.57% 1.32%

Bi-Conv-LSTM 87.96% 50.89% 24.92% 2.32%
TCN 81.29% 49.66% 18.77% 1.37%

Pitch angle (◦) RFR 75.0% 51.53% 48.73% 1.40%
SVR 80.00% 57.75% 49.41% 1.72%

LSTM 66.67% 50.00% 49.23% 0.74%
GRU 66.67% 50.31% 55.74% 0.96%

Conv-LSTM 66.67% 42.34% 51.28% 0.79%
Bi-LSTM 83.33% 65.65% 42.70% 2.18%
Bi-GRU 66.67% 52.69% 34.76% 0.88%

Bi-Conv-LSTM 75.00% 53.25% 32.76% 1.30%
TCN 50.00% 34.71% 49.76% 0.58%

4.5. Ablation Experiments

The purpose of this section is to compare the performance of different variants of
the proposed model; concretely, the ablation experiments were performed to verify the
contributions of the Conv-1D, TPA, and TCN-Bi-LSTM residual models to the improved
outcomes of the TBT model. These experiments were conducted on the same datasets and
environment, including the training and testing of different model variants. Tables 6 and 7
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represent the results of the ablation experiments. The ablation experiments involve the
following variations:

• A1: TBT model without the Conv-1D feature extractor at the end. Use fully connected
layer to directly output predicted values.

• A2: TBT model without the TPA mechanism. Pass the output of the preorder com-
ponents directly to Conv-1D feature extractor and fully connected layer to obtain
predicted values.

• A3: TBT model without the TPA mechanism and Conv-1D feature extractor simul-
taneously. Only the basic TCN-Bi-LSTM residual structure is retained to obtain
predicted values.

• A4: TBT model without the TPA mechanism, Conv-1D feature extractor, or TCN
module simultaneously (i.e., the Bi-LSTM model).

• A5: The whole TBT model proposed in this paper.

Table 7. The results of the ablation experiments.

DOF Model MSE MAE MAPE R2

Roll angle (◦) A1 0.0326 0.0710 16.41 0.9612
A2 0.0129 0.0579 17.99 0.9847
A3 0.0200 0.0721 18.10 0.9762
A4 0.0179 0.0719 18.79 0.9787
A5 0.0026 0.0441 15.97 0.9969

Pitch angle (◦) A1 0.0004 0.0166 16.54 0.9836
A2 0.0004 0.0150 17.66 0.9858
A3 0.0005 0.0180 18.90 0.9810
A4 0.0006 0.0230 21.85 0.9749
A5 0.0001 0.0079 12.52 0.9962

In the ablation experiments, the parameters of each variant model were kept consistent
with the full TBT model, the preprocessed multivariate USV motion data were input into
several models separately, and the values of MSE, MAE, MAPE, R2, and the corresponding
promoting percentage are reported in Tables 7 and 8.

Table 8. The promoting percentage of the ablation experiments.

DOF Model PMSE PMAE PMAPE PR2

Roll angle (◦) A1 92.02% 37.89% 2.68% 3.71%
A2 79.84% 23.83% 11.23% 1.24%
A3 87.00% 38.83% 11.77% 2.12%
A4 85.47% 38.66% 15.01% 1.86%

Pitch angle (◦) A1 75.00% 52.41% 24.30% 1.28%
A2 75.00% 47.33% 29.11% 1.05%
A3 80.00% 56.11% 33.76% 1.55%
A4 83.33% 65.65% 42.70% 2.18%

As shown in Tables 7 and 8, compared with the prediction results of the Bi-LSTM
model (i.e., A4), the prediction accuracy of the TCN-Bi-LSTM residual model (i.e., A3),
which is a combination of the Bi-LSTM model and the TCN, is significantly improved,
with the roll angle and pitch angle prediction results obtaining an improvement of 3.67%
and 13.50% in the key evaluation index, MAPE, respectively. Such an improvement can
be attributed to the incorporation of the TCN as well as the introduction of the residual
structure; the ability of the model to capture temporal features is improved accordingly.
However, the model is still unable to carry out joint spatial-temporal feature extraction for
the multiple coupled USV motion data input into the model, so the improvement in the
prediction accuracy is very limited.
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To further explore the effects of the Conv-1D model on the model’s performance, in
A1, the model replaces the back-end Conv-1D layer with a fully connected layer; from
the experimental results, the model’s performance of removing Conv-1D shows a certain
degree of degradation, and compared with the complete TBT model, there are decreases in
the key evaluation index, MAPE, by 2.76% and 32.11%. In addition, the other evaluation
metrics of A1 are also slightly worse than the other cases, which may be caused by the
fact that the removal of the local feature extraction capability of Conv-1D leads to a certain
degree of decline in the model’s ability to finely perceive the trend of data changes, which
will affect the model’s prediction accuracy near the extreme values, and thus manifests
itself in evaluation metrics, such as the MSE, resulting in the value of these metrics to be
substantially reduced.

In A2, the hidden states derived from the front component of the model are propagated
through subsequent Conv-1D and fully connected layers, resulting in the computation of
the final output. Based on the experimental findings, it is evident that the omission of the
TPA mechanism has a more pronounced impact on the model compared to the exclusion
of Conv-1D concerning the key evaluation metric, MAPE. This leads to the conclusion
that the TPA mechanism plays a more crucial role in enhancing the prediction accuracy
of the model as opposed to Conv-1D. One possible explanation for this observation is
attributed to the TPA mechanism’s ability to capture spatial correlations present in the
data. Furthermore, its adaptive allocation of different weights to individual input features
contributes to reinforcing the model’s ability to characterize relationships among distinct
variables, thereby further improving the accuracy of predictions.

5. Discussion

To address the problem of insufficient accuracy of multivariate predictions caused by
the limitations of traditional and single prediction models in effectively capturing hidden
multidimensional information, this paper proposes a multivariate USV motion data method
based on the TCN-Bi-LSTM-TPA model. Compared with other models in experiments, the
effectiveness of the proposed model is verified.

The experiments conducted in this study can be divided into two aspects. Firstly,
a comprehensive comparison of the model’s performance is carried out using datasets,
including roll and pitch angles. Secondly, the effectiveness of the different components of
the model is explored through ablation experiments.

For the roll angle prediction task, the roll angle data show an irregular trend and an
obvious non-stationarity, making the prediction more difficult. The proposed TBT model
maintains high prediction accuracy, even when the roll angle varies drastically, thanks
to the contribution of the TPA mechanism and Conv-1D at the end of the model, which
extract spatial correlations. This can be seen from the discussion of ablation experiments.
The prediction results of the LSTM and GRU models are similar, and neither of them can
predict accurately at the peak of the true value curve. However, none of the models can
make accurate predictions at the extreme points of the true value curve, as seen from
the MSE values in Table 5. The MSE is particularly sensitive to data changes, providing
insights into the model’s predictive performance during data peaks, where the changes are
most intense. Therefore, to some extent, the MSE can reflect the predictive performance
of the model at the peaks. The Conv-LSTM model applies convolutional operations in
conjunction with LSTM, allowing for the extraction of features from input data through
convolutions before conducting sequence feature extractions. This operation significantly
aids the model in effectively capturing intricate spatiotemporal features inherent in the
input data, resulting in a better MSE score compared to that of the LSTM and GRU models.
For the bi-directional structure models of several RNN models, it can be seen in Table 5
that the bi-directional structure models perform worse than the unidirectional structure
models for several evaluation metrics.

For the pitch angle prediction, the trend of the pitch angle is more regular, which means
it is easier to predict. By studying the predictions of both the roll angle and pitch angle, the
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prediction performance of the TBT hybrid model can be comprehensively demonstrated
for targets with different statistical features. As illustrated in Figure 13, the TBT hybrid
model has the smallest median and mean prediction errors, and the smallest IQR among
the ten models is the LSTM model, which indicates that its prediction errors are the most
concentrated. However, with the combined median and mean prediction errors, the TBT
hybrid model still has the best performance. As with the cross-tilt prediction, for several
deep learning models, the prediction results of the LSTM, GRU, and Conv-LSTM models
do not show significant differences, and the Conv-LSTM model does not outperform the
other two models at the extremes, which may be due to the experimentally selected pitch
angle datum being smoother and having a more pronounced pattern than the troll angle
datum. Therefore, the LSTM model may not present the best performance. This may be due
to the fact that the experimentally selected pitch angle data are smoother and have a more
pronounced pattern than the roll angle data, and thus the prediction performance of the
LSTM and GRU models at the extreme points does not lag behind that of the Conv-LSTM
model too much. From Table 7, it can be seen that the bi-directional structural models
outperform the unidirectional structural models for pitch angle prediction in contrast to
the roll angle prediction. This may depend on the pattern of the input, as models with a
bi-directional structure rely more on contextual information, which may be more effective
for data with broadly similar trends of change.

The bar charts in Figures 14 and 15 show the promoting percentages in the prediction
accuracy of the TBT hybrid model compared to the other nine models on the four evalu-
ation metrics. It is apparent that the results of the proposed TBT model have improved
compared to the other nine models; improvements in the overall accuracy are consistently
concentrated between 0.5% and 96%. Meanwhile, the trends of the four indicators for the
two prediction tasks are basically the same, verifying the validity of the TBT model, and, at
the same time, the specific advantages and disadvantages of each comparative model are
more intuitively represented.
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Figure 15. Promoting percentages of the proposed TBT model for the pitch angle prediction task.

6. Conclusions

USV motion prediction can provide important information for a USV’s attitude control
and safety navigation. A multivariate USV motion prediction method based on a TCN-
Bi-LSTM-TPA (TBT) hybrid model was proposed in this study, which aimed to effectively
capture hidden multidimensional information from multivariate USV motion data in both
temporal and spatial aspects. The main work and conclusions of this paper are summarized
as follows:

1. Based on the TBT hybrid model, two motion attitudes that have a significant impact
on USV status, roll angle, and pitch angle are predicted. Multivariate USV motion
data, including roll angle, pitch angle, relative wind speed, relative wind direction,
velocity in surge, velocity in sway, and rotation rate, are normalized and inputted
into the model separately. The TBT hybrid model utilizes the TCN and Bi-LSTM
models to construct a residual model to extract both the short-term and long-term
temporal dependencies of USV motion data. Simultaneously, the TPA module is
employed to capture spatial features from the multivariate input. Additionally, a
Conv-1D layer is incorporated to further extract local spatial features and enhance the
model’s learning capability.

2. To evaluate the prediction performance of the proposed model, real USV motion
data are used, and a comparison is made with several classic and advanced motion
prediction models, including RFR, SVR, LSTM, GRU, Conv-LSTM, Bi-LSTM, Bi-
GRU, Bi-Conv-LSTM, and TCN. Eight evaluation metrics are utilized to measure the
performances of all the prediction models. The experimental results indicate that
the TBT model exhibits superior prediction accuracy, with an MSE, MAE, MAPE,
and R2 of 0.0026, 0.0441, 15.97%, and 0.9969 for the roll angle prediction, and 0.0001,
0.0079, 12.52, and 0.9969 for the pitch angle prediction, respectively.

3. To verify the effectiveness of the proposed model, ablation experiments are conducted.
The results show that adding a TPA mechanism and Conv-1D layer helps improve
the multivariable prediction performance of the model. This study provides a new
solution for multivariate USV motion prediction.

Considering the extremely short sampling frequency of USV sensors when collecting
motion data, the time available for the USV to make attitude adjustments based on the
prediction results is also limited. Therefore, future research should focus on expanding
the prediction time range while maintaining the prediction accuracy in order to provide a
sufficient response time for USV control based on prediction feedback.



J. Mar. Sci. Eng. 2024, 12, 711 25 of 26

Author Contributions: Conceptualization, Y.W. and H.F.; methodology, Y.W., Z.T. and H.F.; soft-
ware, Y.W. and Z.T.; validation, Y.W. and Z.T.; writing—original draft preparation, Y.W. and Z.T.;
writing—review and editing, Y.W., Z.T. and H.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52271313, and the Innovative Research Foundation of Ship General Performance, grant
number 21822216.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study.

References
1. Takami, T.; Nielsen, U.D.; Jensen, J.J. Real-time deterministic prediction of wave-induced ship responses based on short-time

measurements. Ocean Eng. 2021, 221, 108503. [CrossRef]
2. Chu, Y.; Li, G.; Zhang, H. Incorporation of ship motion prediction into active heave compensation for offshore crane operation. In

Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13
November 2020; pp. 1444–1449.

3. Skulstad, R.; Li, G.Y.; Fossen, T.I.; Vik, B.; Zhang, H.X. A hybrid approach to motion prediction for ship docking—Integration of a
neural network modelinto the ship dynamic model. IEEE Trans. Instrum. Meas. 2021, 70, 2501311. [CrossRef]

4. Nielsen, R.E.; Papageorgiou, D.; Nalpantidis, L.; Jensen, B.T.; Blanke, M. Machine learning enhancement of manoeuvring
prediction for ship Digital Twin using full-scale recordings. Ocean Eng. 2022, 257, 111579. [CrossRef]

5. Chang, B.C. On the parametric rolling of ships using a numerical simulation method. Ocean Eng. 2008, 35, 447–457. [CrossRef]
6. Peng, X.; Dong, H.; Zhang, B. Echo State Network ship motion modeling prediction based on Kalman filter. In Proceedings of the

2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 95–100.
7. Chao, C.; Rong-jun, M.; Ling, C. Doppler interpolation method based on extrapolation and CIC filter. J. Chin. Inert. Technol. 2015,

23, 409–414.
8. Wei, Y.; Chen, Z.; Zhao, C.; Chen, X.; Tu, Y.; Zhang, C. Big multi-step ship motion forecasting using a novel hybrid model based

on real-time decomposition, boosting algorithm and error correction framework. Ocean Eng. 2022, 256, 111471. [CrossRef]
9. Wang, X.; Tong, M.; Du, L. Multi-step Prediction AR Model of Ship Motion Based on Constructing and Correcting Error. In

Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August
2018; pp. 1–4.

10. Ono, T.; Eto, R.; Yamakawa, J.; Murakami, H. Nonlinear Model Predictive Control of a Stewart Platform Motion Stabilizer. In
Proceedings of the AMSE 2020 International Mechanical Engineering Congress and Exposition (AMSE), Virtual Event, 16–19
November 2020; p. V07BT07A029.

11. Wei, Y.; Chen, Z.; Zhao, C.; Tu, Y.; Chen, X.; Yang, R. An ensemble multi-step forecasting model for ship roll motion under
different external conditions: A case study on the South China Sea. Measurement 2022, 201, 111679. [CrossRef]

12. Nie, Z.; Shen, F.; Xu, D.; Li, Q. An EMD-SVR model for short-term prediction of ship motion using mirror symmetry and SVR
algorithms to eliminate EMD boundary effect. Ocean Eng. 2020, 217, 107927. [CrossRef]

13. Wang, J.; Guo, Y.; Wang, Y. A sequential random forest for short-term vessel speed prediction. Ocean Eng. 2022, 248, 110691.
[CrossRef]

14. Fu, H.; Gu, Z.; Wang, H.; Wang, Y. Ship motion prediction based on ConvLSTM and XGBoost variable weight combination model.
In Proceedings of the IEEE OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022; pp. 1–8.

15. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
16. LeCun, Y.; Bottou, L.; Bengio, Y. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.

[CrossRef]
17. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
18. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–26 October 2014.

19. Duan, K.; Huang, F.; Zhang, S.; Shu, Y.; Dong, S.; Liu, M. Prediction of ship following behavior in ice-covered waters in the
Northern Sea Route based on hybrid theory and data-driven approach. Ocean Eng. 2024, 296, 116939. [CrossRef]

20. Gao, N.; Hu, A.; Hou, L.; Chang, X. Real-time ship motion prediction based on adaptive wavelet transform and dynamic neural
network. Ocean Eng. 2023, 280, 114466. [CrossRef]

https://doi.org/10.1016/j.oceaneng.2020.108503
https://doi.org/10.1109/TIM.2020.3018568
https://doi.org/10.1016/j.oceaneng.2022.111579
https://doi.org/10.1016/j.oceaneng.2008.01.008
https://doi.org/10.1016/j.oceaneng.2022.111471
https://doi.org/10.1016/j.measurement.2022.111679
https://doi.org/10.1016/j.oceaneng.2020.107927
https://doi.org/10.1016/j.oceaneng.2022.110691
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1109/5.726791
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.oceaneng.2024.116939
https://doi.org/10.1016/j.oceaneng.2023.114466


J. Mar. Sci. Eng. 2024, 12, 711 26 of 26

21. Zhang, G.; Tan, F.; Wu, Y. Ship motion attitude prediction based on an adaptive dynamic particle swarm optimization algorithm
and bidirectional LSTM neural network. IEEE Access. 2020, 8, 90087–90098. [CrossRef]

22. Wang, Y.; Wang, H.; Zou, D.; Fu, H. Ship roll prediction algorithm based on Bi-LSTM-TPA combined model. J. Mar. Sci. Eng. 2021,
9, 387. [CrossRef]

23. Fu, H.; Gu, Z.; Wang, Y. Ship Pitch Prediction Based on Bi-ConvLSTM-CA Model. J. Mar. Sci. Eng. 2022, 10, 840. [CrossRef]
24. Yang, S.; Chen, S.; Liu, C.; Li, M.; Wang, M.; Wang, J. A Ship Trajectory Prediction Model Based on ECA-BiGRU. In Proceeding of

the 2023 8th International Conference on Big Data Analytics (ICBDA), Harbin, China, 3–5 March 2023; pp. 94–99.
25. Zhang, L.; Feng, X.; Wang, L.; Gong, B.; Ai, J. A hybrid ship-motion prediction model based on CNN–MRNN and IADPSO. Ocean

Eng. 2024, 299, 117428. [CrossRef]
26. Zhang, W.; Wu, P.; Peng, Y.; Liu, D. Roll Motion Prediction of Unmanned Surface Vehicle Based on Coupled CNN and LSTM.

Future Internet 2019, 11, 243. [CrossRef]
27. Wei, Y.; Chen, Z.; Zhao, C.; Chen, X. Deterministic ship roll forecasting model based on multi-objective data fusion and multi-layer

error correction. Appl. Soft Comput. 2023, 132, 109915. [CrossRef]
28. Wang, Y.; Wang, H.; Zhou, B.; Fu, H. Multi-dimensional prediction method based on Bi-LSTMC for ship roll. Ocean Eng. 2021,

242, 110106. [CrossRef]
29. Rashid, M.H.; Zhang, J.; Zhao, M. Real-Time Ship Motion Forecasting Using Deep Learning. In Proceedings of the 2nd

International Conference on Computing and Data Science, Stanford, CA, USA, 28–29 January 2021; pp. 1–5.
30. Li, M.W.; Xu, D.Y.; Geng, J.; Hong, W.C. A ship motion forecasting approach based on empirical mode decomposition method

hybrid deep learning network and quantum butterfly optimization algorithm. Nonlinear Dyn. 2022, 107, 2447–2467. [CrossRef]
31. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.

arXiv 2018, arXiv:1803.01271.
32. Ma, C.; Li, X.; Zhu, L. The Ship Motion Attitude Prediction Based on VMD-TCN Model. In Proceedings of the 2023 IEEE

International Conference on Advanced Robotics and Mechatronics (ICARM), Sanya, China, 8–13 July 2023; pp. 209–214.
33. Zhang, B.; Wang, S.; Deng, L.; Jia, M.; Xu, J. Ship motion attitude prediction model based on IWOA-TCN-Attention. Ocean Eng.

2023, 272, 113911. [CrossRef]
34. Liu, S.; Xu, T.; Du, X.; Zhang, Y.; Wu, J. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-

Golay filter for wind power prediction. Energy Convers. Manag. 2024, 302, 118122. [CrossRef]
35. Zhu, Y.; Chen, S.; Xing, S.; Liu, H.; Liu, Y. Distributed generator configuration calibration method based on TCN-BiGRU-Attention

algorithm. Electr. Power Syst. Res. 2024, 230, 110248. [CrossRef]
36. Zhang, D.; Chen, B.; Zhu, H.; Goh, H.H.; Dong, Y.; Wu, T. Short-term wind power prediction based on two-layer decomposition

and BiTCN-BiLSTM-attention model. Energy 2023, 285, 128762. [CrossRef]
37. Li, M.W.; Geng, J.; Han, D.F.; Zheng, T.J. Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction

and the chaos adaptive efficient FOA. Neurocomputing 2016, 174, 661–680. [CrossRef]
38. Shih, S.Y.; Sun, F.K.; Lee, H.Y. Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 2019, 108,

1421–1441. [CrossRef]
39. He, F.; Liu, T.; Tao, D. Why resnet works? residuals generalize. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5349–5362.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2993909
https://doi.org/10.3390/jmse9040387
https://doi.org/10.3390/jmse10070840
https://doi.org/10.1016/j.oceaneng.2024.117428
https://doi.org/10.3390/fi11110243
https://doi.org/10.1016/j.asoc.2022.109915
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1007/s11071-021-07139-y
https://doi.org/10.1016/j.oceaneng.2023.113911
https://doi.org/10.1016/j.enconman.2024.118122
https://doi.org/10.1016/j.epsr.2024.110248
https://doi.org/10.1016/j.energy.2023.128762
https://doi.org/10.1016/j.neucom.2015.09.089
https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1109/TNNLS.2020.2966319
https://www.ncbi.nlm.nih.gov/pubmed/32031953

	Introduction 
	USV Motion Feature Extraction Structure 
	TCN Nerual Network 
	LSTM and Bi-LSTM Neural Networks 
	Temporal Pattern Attention Mechanism 

	Methodology 
	The Scheme of Predicted Values’ Generation and Model Training 
	The Structure of the TCN-Bi-LSTM-TPA USV Motion Prediction Model 
	Model’s Parameters Setting 

	USV Motion Prediction Experimental Results 
	Experimental Environment 
	Expremental Data and Data Perprocessing 
	Evaluation Metrics 
	Experimental Results Analysis 
	Ablation Experiments 

	Discussion 
	Conclusions 
	References

