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Abstract: In container sea–rail combined transport, the railway yard in an automated container
terminal (RYACT) is the link in the whole logistics transportation process, and its operation and
scheduling efficiency directly affect the efficiency of logistics. To improve the equipment scheduling
efficiency of an RYACT, this study examines the “RYACT–train” cooperative optimization problem
in the mode of “unloading before loading” for train containers. A mixed-integer programming
model with the objective of minimizing the maximum completion time of automated rail-mounted
gantry crane (ARMG) tasks is established. An adaptive large neighborhood search (ALNS) algorithm
and random search algorithm (RSA) are designed to solve the abovementioned problem, and the
feasibility of the model and algorithm is verified by experiments. At the same time, the target value
and calculation time of the model and algorithms are compared. The experimental results show that
the model and the proposed algorithms are feasible and can effectively solve the “RYACT–train”
cooperative optimization problem. The model only obtains the optimal solution of the “RYACT–train”
cooperative scheduling problem with no more than 50 tasks within a limited time, and the ALNS
algorithm can solve examples of various scales within a reasonable amount of time. The target value
of the ALNS solution is smaller than that of the RSA solution.

Keywords: automated container terminal; railway yard; automated rail-mounted gantry crane
(ARMG); adaptive large neighborhood search (ALNS)

1. Introduction

With the tangible growth of the “Belt and Road Initiative”, the volume of China’s
sea–rail combined transport has increased year by year, and an increasing number of ports
have begun to pay attention to and expand the construction and development of their
sea–rail combined transport business. At present, the railway center station and dock yard
are separated in most of China’s sea–rail combined transport ports, but this configuration
inevitably increases the operating cost and transfer time of sea–rail combined transport. To
solve the above problems, newly built sea–rail combined transport ports began to adopt
the “sea–rail” operation mode to bring railway lines into the port. For example, the railway
line under construction in the Yuanhai Automated Container Terminal of Xiamen Port
is located in the port area, and the railway yard is adjacent to the dock yard; the trains
directly enter the port area to load and unload containers to the railway central station
yard. The railway central station yard plays an important role as a buffer, and it forms a
good connection between railway and water transport, as well as reducing logistics time
and costs. However, joint dispatch between the port and railway is still time-consuming
and inefficient. Improving the dispatch level can help the port, railway, and logistics
departments improve the utilization rate of the site and save time.
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A container yard can be divided into a front yard and a rear yard, and it can also
be divided into a port general container yard and a railway yard in a sea–rail automated
container terminal. Because of the long railway line, an RYACT has the characteristics
of a long length and a low container storage height. Therefore, it is different from other
rear yards in terms of mechanical scheduling. The mechanical scheduling efficiency of
the railway central station has a direct impact on the departure time of trains and ships in
the port. Improving the mechanical scheduling level of this link is of great significance to
improving the status of container ports in sea–rail combined transportation. Through a
literature review, we found that yard scheduling, ship scheduling, and joint scheduling
between yards and ships in automated container terminals have attracted the attention
of many scholars. However, there are few studies on scheduling optimization between
trains and RYACTs in sea–rail combined transportation. Railways and ports are important
connecting points for sea–rail combined transportation, and their joint scheduling efficiency
affects the efficiency of the entire logistics chain. This study examines the “RYACT–train”
collaborative optimization problem in the mode of “unloading before loading” for train
containers in an automated container terminal’s railway central station. Furthermore, a
mixed-integer programming model is established, and an ALNS algorithm is designed to
solve the approximate optimal solution of the problem. Finally, the ALNS algorithm is
compared with the model and the RSA in terms of computational performance and solution
results. The experiment results show that the designed ALNS algorithm can be used to
solve the “ARMG–train” cooperative optimization problem. The remainder of this paper is
organized as follows: Section 2 provides a comprehensive review of the relevant literature.
The problem is described and modeled in Section 3. The algorithm is designed in Section 4.
Section 5 provides a series of computational experiments and shows the relevant results,
and conclusions are drawn in Section 6.

2. Literature Review

As an interface of shipping and land transportation, container terminals play an
important role in the global supply chain [1]. The operation process of container terminals
includes the loading and unloading of vessels at the wharf front, horizontal transportation
between the wharf front and the yard and between the yard and the yard, and the stacking
and palletizing of goods in the yard. The loading and unloading of vessels are carried out by
quay cranes (QCs). Horizontal transport machinery includes an automated guided vehicle
(AGV) or an autonomous straddle carrier, and stacking machinery usually comprises a yard
crane (YC), an ARMG, or an automatic stacking crane (ASC). Many scholars have conducted
research on the mechanical scheduling of automated container terminals. The scheduling
of a single machine, the joint scheduling of multiple machines, the space allocation of a
storage yard, and the charging scheduling have been widely examined by scholars.

Regarding a single mechanical scheduling problem, Vallada et al. [2] and Iris et al. [3] re-
searched the QC scheduling problem. Iris et al. [3] presented an adaptive large-neighborhood-
based heuristic framework to solve the weekly berth and quay crane assignment problem.
References [4–6] studied the YC scheduling problem, and Chu et al. [4] studied the man-
agement of three yard cranes in two adjacent container blocks in line. Gharehgozli et al. [5]
researched the problems of both stacking and lifting tasks in a container yard. Hu et al. [6]
considered the delayed trans-shipment of containers caused by the heterogeneous pe-
riodicities of vessels. References [7–10] researched the ASC scheduling problem, while
Gao et al. [8] developed a virtual container yard that was synced with a physical con-
tainer yard in an automated container terminal digital twin system for observation and
validation. Reference [10] explored the influences of the locations of handshake areas.
References [11–15] studied the AGV scheduling problem. Wang et al. [13] investigated
the AGV dispatching and routing problem with multiple bidirectional paths to generate
conflict-free routes. Drungilas et al. [15] proposed an AGV speed control algorithm based
on deep reinforcement learning to optimize the energy consumption of container trans-
portation. Cai et al. [16] presented a rescheduling combination of new and unexecuted jobs
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policy and compared the scheduling of long-term autonomous straddle carriers under the
uncertainty of new job arrivals by using a multi-objective cost function. Yang et al. [17]
studied the flexible allocation of yard space using unilateral cantilever rail-mounted gantry
cranes and established a mixed-integer quadratic programming model with the objective
of minimizing the total AGV transportation cost and the penalty cost of unmet demand.

Regarding the joint scheduling of machinery, Lau et al. [18] proposed a heuristic
method called the multi-layer genetic algorithm to obtain a near-optimal solution to the
integrated scheduling problem, including QCs, AGVs, and YCs. Shouwen et al. [19]
considered the integrated scheduling problem of QCs, AGVs, and ASCs and the conflict-
free path planning problem of AGVs. Considering the bidirectional flow caused by the
synchronous loading and unloading operation mode, Zhuang et al. [20] examined the
integrated scheduling of double-trolley quay cranes, AGVs, and ARMGs. Liu et al. [21]
analyzed the yard crane, AGV, and truck scheduling problem based on a U-shaped yard
layout and established a bi-level programming model with the goal of achieving the
minimum completion time and minimum total waiting time. Skaf et al. [22] solved the
scheduling problem for a single quay crane and multiple yard trucks in the port of Tripoli,
Lebanon. Considering the transport of the direct, buffer, and hybrid modes, Wang et al. [23]
established three continuous time integer programming models for the scheduling of ASCs
and AGVs. Aiming to increase terminal efficiency through the coordination of multiple
sub-operations, Zhang et al. [24] focused on the integrated optimization of AGVs and
double yard cranes in automated container terminals. Cao et al. [25] regarded the joint
scheduling problem of yard trucks and YCs as a two-stage flexible flow shop to establish
mixed-integer programming with the minimum loading operation time.

There are many studies on the mechanical scheduling of automated container terminals.
Some studies have examined the charging management of automated container terminals, but
few have focused on the equipment scheduling of RYACTs. References [26–28] researched
the storage space allocation problem in a container terminal. Xiang et al. [29] analyzed
an automated container terminal considering battery management. Some scholars have
conducted research on the operation of automated container terminals for sea–rail combined
transportation. Considering that the rail gantry crane, intelligent guided vehicle, and
double-cantilever rail crane usually work in groups, Li et al. [30] introduced a cluster
scheduling method applied in a U-shaped automated terminal and attempted to improve
the efficiency of automated terminal and the sea–rail intermodal transport. Yang et al. [31]
addressed the cooperative scheduling challenges of rail gantry cranes, YCs, and AGVs in
the loading and unloading mode in a sea–rail automated container terminal. Liu et al. [21]
optimized the yard crane scheduling problem, AGV task assignment problem, and AGV
path planning problem simultaneously. Niu et al. [32] optimized the dispatch efficiency
of quay cranes, automatic double cantilevers, intelligent guided transport vehicles, and
external trucks of a U-shaped automatic terminal from the aspect of reducing energy
consumption. These studies focus on the machine scheduling problem within ports or
between ports and external vehicles in sea–rail combined transport, but they do not pay
attention to the scheduling problem between the railway yards and trains in automated
container terminals.

In summary, the scheduling of a single machine, the joint scheduling of multiple
machines, storage yard space allocation, charging scheduling, and other topics of automated
container terminals have attracted extensive attention from scholars, but there are few
studies on the equipment scheduling of RYACTs. In particular, there is almost a gap in
the research on the “RYACT–train” cooperative optimization problem. Therefore, this
study attempts to fill this gap and examines the “RYACT–train” cooperative optimization
problem in the “unloading before loading” mode of train containers in an RYACT. The main
contributions are as follows: 1. For the “RYACT–train” cooperative optimization problem,
a mixed-integer programming model with the objective of minimizing the maximum
completion time of ARMG tasks is constructed. 2. The designed ALNS algorithm can be
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used to solve cooperative optimization problems in RYACTs, and it takes less time to obtain
a near-optimal solution and to complete tasks for ARMG than the RSA.

3. Model Establishment

In this section, we present a mixed-integer programming model for the “RYACT–train”
cooperative optimization problem.

3.1. Problem Description

The loading and unloading process of a train in an RYACT is shown in Figure 1, and it
includes the following: (1) The unloading operation: an empty ARMG moves to the top
of the container carriage of a train to grab a container. Then, the ARMG is driven to the
target bay in the RYACT. Finally, the ARMG trolley moves to the target row to release the
container, thereby completing the task. (2) The loading operation: an empty ARMG drives
to the container storage location in the RYACT to grab a container. Then, the ARMG is
driven to the position of the target carriage. Finally, the ARMG trolley places the container
on top of the carriage, thereby completing the task.
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Figure 1. ARMG loading/unloading of a train in an RYACT.

3.2. Assumption

In an RYACT, multiple ARMGs run on the same track and work together on the
incoming train. When scheduling the container tasks assigned to multiple ARMGs, mutual
interference should be avoided. According to the freight plan of the incoming train, the
same operation volume rule can be used to predetermine the job assignment of each ARMG,
which can reduce the maximum job completion time and the complexity of scheduling.
However, at the same time, the scheduling plan of multiple ARMGs is still subject to
interference. To improve the operation efficiency of a railway central station, the objective
of this problem is to minimize the maximum completion time of all tasks during ARMG
operation. Without the loss of generality, the following assumptions can be made:

(1) Overturning activity is not considered when an ARMG moves containers in the
RYACT.

(2) To avoid interference between loading and unloading, the operation mode of unload-
ing before loading is adopted.

(3) The horizontal moving speed of ARMG carts remains unchanged.
(4) In the RYACT (or train), the operation time required for an ARMG to grab a container

is equal to that required to release a container.
(5) The container tasks for each ARMG are known.
(6) To ensure the safety of the container handling operation, the cart does not move

during the movement of the ARMG trolley.

3.3. Mathematical Model Formulation

A mixed-integer programming model is used for ARMG scheduling in an RYACT. As
previously mentioned, the goal is to minimize the maximum completion time for all tasks.
The main operational decisions are made to determine when and in what order an ARMG
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loads and unloads containers on a train. Tables 1 and 2 present the notations related to
this problem.

Table 1. Sets and parameters.

Sets/Parameters Definitions

S Set of ARMGs, indexed by s
IL
s Set of ARMG s tasks for loading containers, indexed by i and j

IU
s Set of ARMG s tasks for unloading containers, indexed by i and j
Is Set of ARMG s tasks for loading and unloading containers, indexed by i and j Is = IL

s ∪ IU
s

I Set of all tasks; I =
⋃

s∈S Is;

IO
s

Set of tasks for loading and unloading containers; IO
s = Is ∪ {O}, where {O} represents the

virtual start task and can be similarly defined in ILO
s and IUO

s

IF
s

Set of tasks for loading and unloading containers; IF
s = Is ∪ {F}, where {F} represents the

virtual start task and can be similarly defined in ILF
s and IUF

s

C
Set of tasks that may conflict with job tasks of adjacent ARMG, thereinto (i, j) ∈ C, which
indicates that, if an ARMG carries out container task i at the same time that another ARMG
carries out container task j, then the two ARMGs will interfere with each other

Ai The ARMG assigned to task i(
αi, α′j

) The conflict of tasks (i, j) ∈ C between the nodes selected in the middle of the moment;
when its value is 0, it is the middle time of ARMG operation in the RYACT, and, when it is 1,
it is the middle time of ARMG operation in the train carriage(

βi, β′j

) The middle of the moment to avoid the conflict of tasks (i, j) ∈ C; when its value is 0, it
refers to the middle moment of the starting position, and, when it is 1, it refers to the middle
moment of the ending position

2TB
i The operation time required for the ARMG to grab/release a container in the RYACT

2TR
i The operation time required for the ARMG to grab/release a container on the train

TS
i Time required in operation task i for the ARMG to grab/release a container on the train

T Int
ij The minimum time interval between ARMG container tasks i and j

TET
ij

The time taken by the ARMG to move from the end position of container task i to the start
position of container task j

TG
i The moving time of the sprig trolley when the ARMG completes task i

Mn A positive number that is large enough, n ∈ {1, 2, . . . , 5}

Table 2. Decision variables.

Variables Definitions

xij If the value is 1, it indicates that the ARMG starts container task j immediately after
completing container task i; otherwise, it is 0.

zij If the value is 1, it indicates that interference task (i, j) ∈ C the task i is completed before
task j; otherwise, it is 0.

tS
i The start time of task i, which is a real variable.

tE
i The end time of the task i, which is a real variable.

tM
i The middle of the moment to grab or release a container for ARMG operating conflict task i.

If it is in railway yard, it can be calculated via tS
i + TB

i ; if it is on the train, it can be
calculated via tE

i − TR
i , which is a real variable.
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3.4. Mathematical Model

According to the above descriptions and the settings of the parameters and decision
variables, the following mathematical model [M1] is constructed:

[M1] f Min = min
(

max
i∈I

tE
i

)
(1)

s.t.
tS
i ≥ T0 + TET

Oi , ∀i ∈ IU
s , s ∈ S (2)

∑i∈IUF
s

xO,i = 1, ∀s ∈ S (3)
∑i∈IUO

s
xi,F = 1, ∀s ∈ S (4)

∑i∈IUO
s ,i ̸=j xij = ∑i∈IUF

s ,i ̸=j xji = 1, ∀j ∈ IU
s , s ∈ S (5)

∑i∈IU
s

∑j∈IL
s

xij = 1, ∀i ∈ IU
s , j ∈ IL

s , s ∈ S (6)
tS

j ≥ tE
i + TET

ij , ∀i ∈ IU
s , j ∈ IL

s , s ∈ S (7)
∑i∈ILO

s
xO,i = 1, ∀s ∈ S (8)

∑i∈ILF
s

xi,F = 1, ∀s ∈ S (9)
∑i∈ILO ,i ̸=j xij = ∑i∈ILF ,i ̸=j xji = 1, ∀j ∈ IL

s , s ∈ S (10)
tS

j ≥ tE
i + TET

ij + M1
(
xij − 1

)
, ∀i, j ∈ Is, i ̸= j, s ∈ S (11)

tE
i ≥ tS

i + TS
i , ∀i ∈ Is, s ∈ S (12)

zij + zji = 1, ∀(i, j) ∈ C (13)
tM
i = (1− αi)

(
tS
i + TB

i
)
+ αi

(
tE
i − TR

i − 0.5βiT
G
i
)

tM
j =

(
1− α′j

)(
tS

j + TB
j

)
+ α′j

(
tE

j − TR
j − 0.5β′jT

G
j

)
tM

j − tM
i ≥ T Int

ij zij + M2
(
zij − 1

) , ∀(i, j) ∈ C (14)

xij, zij ∈ {0, 1}, ∀i, j ∈ I (15)
tS
i , tE

i , tM
i ≥ 0, ∀i ∈ I (16)

The objective function is shown in Equation (1), which is used to minimize the max-
imum completion time of the tasks. Formulas (2)–(6) are the constraints of the ARMG
unloading task phase. Formula (2) is used to limit the start time of the initial task of
the ARMG unloading operation, where T0 = 0. Formulas (3) and (4) indicate that the
ARMG unloading operation starts with a virtual start task and ends with a virtual end
task, respectively. Formula (5) is used to limit task j ∈ IU

s flow balancing for ARMG tasks.
Formula (6) is used to restrict the ARMG to complete the unloading task first and the
loading task later. The constraints of the ARMG loading task phase include the following:
Formula (7) is used to limit the start time of the initial task of the ARMG loading operation,
and Equations (8) and (9) indicate that the ARMG loading operation starts with a virtual
start task and ends with a virtual end task, respectively. Formula (10) is used to limit task
j ∈ IL

s ARMG flow balancing for ARMG tasks. When the ARMG is continuously working
on tasks i and j, Formula (11) is used to determine the relationship between the ARMG
end time for task i and the ARMG start time for task j. Formula (12) is used to determine
the relationship between the start time and the end time of ARMG task i. Formula (13)
represents the order in which any two tasks, i and j, should be completed. Formula (14)
is used to avoid interference between adjacent ARMGs. Formulas (15) and (16) limit the
ranges of the variable values.

4. Proposed Algorithms

From the above model, the ARMG scheduling problem can be regarded as an extension
of the vehicle routing problem, which is an NP problem. To solve medium- and large-scale
examples of this problem, this study adopts a heuristic algorithm that can be solved quickly—
the ALNS algorithm. The ALNS algorithm was first proposed by Ropke and Pisinger [33],
and it has been widely used to solve various VRPs in recent years ([34–37]). Zhang et al. [38]
used ALNS to solve the multi-objective optimization problem of synchromodal transport.
Wu et al. [39] used ALNS to solve the multi-allocation hub location routing problem for
the design of an intra-city express service system. Li et al. [40] used a hybrid ALNS to
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solve the large-scale heterogeneous container loading problem. Wang et al. compared
the results of ALNS with the model when solving the tugboat scheduling problem [41].
Compared with other algorithms, ALNS has the characteristics of self-adaptability and
multi-neighborhood search, has a good effect on the solving speed and the solving result,
and has rarely been applied in the optimization of machinery scheduling. This study
attempts to verify the performance of the ALNS algorithm in terms of the “RYACT–train”
cooperative optimization problem through experiments. In this section, we design an
ALNS algorithm to obtain an approximate optimal solution to the problem, and we finally
compare ALNS with the model and the RSA in terms of computational performance and
solution results.

4.1. Encoding Method

As can be seen in the decision content of the problem, in this study, the relative order of
ARMG tasks is encoded using the sequential encoding method, and it is called the ARMG
task sequence, where the encoded value represents the task number and the position of the
value represents the task order. According to the requirements of ARMG job assignment
and unloading before loading, each task subsequence can be predetermined, as shown
in Figure 2. An ARMG can work according to its task subsequence, and, when there is
interference between tasks, the priority of its job tasks can be determined according to its
job sequence. Since the start and finish positions of tasks are not the same, each task carried
out by an ARMG has two critical time nodes—the start time (tS

i ) and the end time (tE
i ).

According to the mathematical model constructed above, the time node of the task can be
calculated using Equations (2), (7) and (14), and the time node obtained here is the earliest
feasible operating time (for example, the earliest start time and the earliest finish time).
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4.2. RSA

A fixed number of iterations is set in the RSA, and a new ARMG task sequence is
randomly generated in each iteration. This task sequence is simulated to calculate the time
required for ARMG tasks, and the maximum completion time of all ARMG tasks is taken
as the score value of this sequence. The optimal sequence is determined by comparing the
current sequence score with the current minimum score. Finally, the stopping algorithm
is set according to the stopping condition of the number of iterations, and the minimum
result is returned. The result contains the score value for the encoding and the time nodes
(start time and end time) for the ARMG tasks. The steps are shown in Table 3.
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Table 3. RSA steps.

Step 1 Input parameter: S, I, IL
s , IU

s , Is, IO
s , IF

s , C, Ai, 2TB
i , 2TR

i , TS
i , T Int

ij , TET
ij , TG

i ;

Set the maximum number of iterations NMax;
Step 2 Initialize the data:

set iteration number n = 1;
The score of the n sequence fn;
Initialize the minimum score f bestand the corresponding Zbest;

Step 3 While n ≤ NMax

Step 3.1 Randomly generate a sequence Z of ARMG tasks;
Step 3.2 According to tasks assignment IL

s and IU
s , the task subsequence Xs of each ARMG is determined.

Step 3.3 Calculate the earliest start and end time
{

tES
i , tEE

i , ∀i ∈ I
}

of the ARMG task according to the calculation
method in mathematical model

{
tES
i , tEE

i , ∀i ∈ I
}

;
Step 3.4 Determine the score of the task sequence fn = max

i∈I

{
tEE
i

}
;

Step 3.5 n← n + 1 ;
Step 3.6 If fn < f best, there is f best = fn and Zbest = Z, otherwise, go to Step 3.1;

End while
Step 4 Calculate

{
tS
i , tE

i , ∀i ∈ I
}

according to the optimal sequence Zbest;
f ← f best ;

Step 5 Return f , tS
i , tE

i

4.3. ALNS Algorithm

Based on the given initial ARMG task sequence, ALNS is designed to adjust the
task sequence, the neighborhood transformation is implemented adaptively by setting the
neighborhood search operator, a new sequence with a better target value is generated based
on the given coding evaluation method, the ARMG task sequence is iteratively optimized,
and the completion time and scheduling schedule are returned. The initial ALNS solution
is generated by the RSA with a given number of iterations. The encoding method adopts
the integer encoding method shown in Figure 2, and the steps of the decoding method are
shown in Table 4.

Table 4. The decoding method steps of integer encoding for ALNS.

Step 1 Input data: integer encoding Z
Initialize the data:
Task location number nZ = 1
The start time of the virtual task tS

O = tE
O = 0

Step 2 Generate the task subsequence Xs for each ARMG according to the code Z and the task assignment (IL
s and IU

s )
Step 3.1 While nZ < |I|
Step 3.2 Determine the insert task i
Step 3.3 Calculate the earliest start and end times

{
tES
i , tEE

i
}

for ARMG task i according to the method described in
Section 3.1

Step 3.4 nZ ← nZ + 1
End while

Step 4 Determine the score of the task sequence f = max
i∈I

{
tEE
i

}
, and the time node of the task tS

i ← tES
i and tE

i ← tEE
i

Step 5 Return f , tS
i , tE

i

The neighborhood search operators include (A) single-point reinsertion, (B) fragment
reinsertion, (C) local reverse order, (D) two-point exchange, (E) fore-and-aft interchange,
and (F) regeneration.

The stopping conditions of this algorithm include the following: First, the maximum
number of iterations (NG) is set, and, when the iteration number of the algorithm reaches
this value, the algorithm will stop and return the output result. Second, the maximum
number of iterations (NSt) is set, and the optimal value remains unchanged. When the
number of iterations in which the optimal value remains unchanged reaches this value, the
algorithm will stop and return the output result.
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ALNS can adaptively select a neighborhood search operator in each iteration to
generate a new neighborhood code to improve the current solution. The steps of ALNS are
shown in Table 5.

Table 5. ALNS steps.

Step 1 Input data: S, I, IL
s , IU

s , Is, IO
s , IF

s , C, Ai, 2TB
i , 2TR

i , TS
i , T Int

ij , TET
ij , TG

i ;
Set algorithm parameters:
The number of solutions generated per iteration: NP;
Maximum number of iterations NG;
The maximum number of iterations with the same optimal value NSt;

Step 2 The initial solution Z is generated by RSA, and its score f0 is calculated;
Step 3 Initialize the data:

Set iteration number n = 1;
The score fnm and sequence Znm of the m code of the n iteration
Optimal score f best and corresponding sequence Zbest

Step 4 While n ≤ NG

Step 4.1 Determine the list of domain search operators;
Step 4.2 Search the neighborhood of Zbest to generate NP new encodings Znm, ∀m ∈

{
1, . . . , NP};

Step 4.3 For m ∈
{

1, . . . , NP}
Step 4.3.1 Calculate score fnm of Znm according to Table 3;

End for

Step 4.4 Determine the optimal score f best ← min

{
f best, min

m∈{1,...,NP}
{ fnm}

}
and corresponding sequence Zbest;

End while
Step 5 Calculate

{
tS
i , tE

i , ∀i ∈ I
}

according to the optimal sequence Zbest;
f ← f best ;

Step 6 Return f , tS
i , tE

i

5. Experiment and Result Analysis

To evaluate the feasibility and computational performance of the model and algorithm
in this study, two experiments are designed. The technical parameters of an ARMG are
shown in Table 6, and the initial parameter settings of ALNS are given in Table 7.

Table 6. The technical parameters of ARMG.

Parameters Value

ARMG cart moving speed 0.56 m/s
ARMG trolley moving speed 2 m/s

The amount of time ARMG spends on vertical
operations in the yard (2TB

i ) 80 s

The amount of time ARMG spends on vertical
operations on the train (2TR

i ) 100 s

Table 7. Initial parameter settings of ALNS.

Parameter Value

The number of solutions per generation (NP) 24
Maximum number of iterations (NG) 600

The maximum number of iterations in which the
minimum solution remains unchanged (NSt) 100

Operator class (|R|) 6
The initial value of the operator weight (wr) 50
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5.1. Experimental Design

Experiment 1: Verify the feasibility of the model and algorithm

The specific steps of this experiment are as follows: (1) The number of ARMG and
container tasks (S × I) is set to 2 × 15, and the input parameters are set according to
the initial data set. (2) The model solution time is limited to 1200 s. (3) The model is
solved, and the RSA is run according to the given ARMG task sequence to obtain the
experimental results.

Experiment 2: Compare the optimality and computation time of the model [2-1] and
the algorithm

The specific steps of this experiment are as follows: (1) The number of tasks is set to
10, 12, . . ., 50, 60, . . ., 160 to generate corresponding examples. (2) The iteration number
of the RSA is NMax = 103. (3) The parameters in ALNS are set according to Table 5.
(4) For each example, the model [M1] is solved, and the RSA and ALNS algorithm are run
to obtain the experimental results.

5.2. Result Analysis

In experiment 1, the target value of the model to solve a given example is 2251.88 s, and
the ARMG operation process corresponding to the result is shown in Figure 3. According
to the given ARMG task sequence, the target value of the RSA to solve the given example
is 2735.66 s, and the ARMG task process corresponding to the result is shown in Figure 4.
It can be seen in Figures 3 and 4 that many tasks assigned to each ARMG do not cause
conflict. There is no interference between multiple ARMGs; thus, the ARMG operation
process meets the operation requirements of train unloading before loading. Therefore, the
proposed model [M1] and algorithm are feasible and can be used to make scheduling plans
for the equipment in an RYACT.
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To compare the computational performance of the model, the RSA, and the ALNS
algorithm, the target value and computation time of the three methods were compared in
experiment 2, and the results are shown in Table 8. Firstly, the model [M1] shows excellent
computational performance in small- and medium-sized examples. For example, in the
case of no more than 60 tasks, the model can obtain the result quickly in a limited time.
In the case of the number of tasks being from 60 to 90, the solution time of the model
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exceeds the 1200 s set in the experiment, so only feasible solutions can be obtained within
1200 s. Secondly, the RSA can quickly solve examples of various scales, but the target
value obtained by the RSA is greater than or equal to the target value obtained by the
other two methods, so the optimization of the solution results is poor. Finally, the solving
speed of ALNS is less than 8 s, and it can quickly solve examples of various scales and
has excellent computational performance. The target value obtained by ALNS is larger
than that obtained by the model, but the gap is not large. In the small- and medium-sized
example of no more than 90 tasks, the solved target value is less than 6% compared with
the target value of the model. Moreover, its multiple solution convergence is good. Figure 5
shows the results of multiple ALNS solution examples. As can be seen in Figure 5, there is
not much difference between the upper limit, lower limit, upper quartile, lower quartile,
and median of each group of results, and the convergence of the target value of multiple
solutions is good.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 4. Results of RSA in experiment 1. 

To compare the computational performance of the model, the RSA, and the ALNS 
algorithm, the target value and computation time of the three methods were compared in 
experiment 2, and the results are shown in Table 8. Firstly, the model [M1] shows excellent 
computational performance in small- and medium-sized examples. For example, in the 
case of no more than 60 tasks, the model can obtain the result quickly in a limited time. In 
the case of the number of tasks being from 60 to 90, the solution time of the model exceeds 
the 1200 s set in the experiment, so only feasible solutions can be obtained within 1200 s. 
Secondly, the RSA can quickly solve examples of various scales, but the target value ob-
tained by the RSA is greater than or equal to the target value obtained by the other two 
methods, so the optimization of the solution results is poor. Finally, the solving speed of 
ALNS is less than 8 s, and it can quickly solve examples of various scales and has excellent 
computational performance. The target value obtained by ALNS is larger than that ob-
tained by the model, but the gap is not large. In the small- and medium-sized example of 
no more than 90 tasks, the solved target value is less than 6% compared with the target 
value of the model. Moreover, its multiple solution convergence is good. Figure 5 shows 
the results of multiple ALNS solution examples. As can be seen in Figure 5, there is not 
much difference between the upper limit, lower limit, upper quartile, lower quartile, and 
median of each group of results, and the convergence of the target value of multiple solu-
tions is good. 

Th
e 

ta
rg

et
 v

al
ue

（
s）

position（m）
0 50 100 150 200 250 300 350 400 450 500

0

500

1000

1500

2000

2500

𝑓 = 2735.66s

U:7

U:8

U:4

U:3

L:15

L:14

L:10

L:11

U:1

U:6

U:2

U:5

L:9

L:13

L:12

Figure 4. Results of RSA in experiment 1.

Table 8. The computational performance of [M1], RSA, and ALNS.

Number
of Tasks

[M1] RSA ALNS

fMIP Gap a Cpu fRSA Gap a Cpu fMin fMean b Cpu

10 1878.54 0.00 0.10 1878.54 0.00 <0.01 1878.54 1878.54 3.02
12 1986.96 0.00 0.05 1986.96 0.00 <0.01 1986.96 1986.96 3.22
14 2049.12 0.00 0.05 2049.12 0.00 <0.01 2049.12 2049.12 2.84
16 2475.43 0.00 0.12 2475.43 0.00 <0.01 2475.43 2478.07 2.86
18 2612.16 0.00 0.27 2656.45 1.70 <0.01 2612.16 2620.24 3.29
20 2830.07 0.00 1.07 3130.36 10.61 <0.01 2830.07 2867.49 2.68
22 2105.69 0.00 1.78 2130.69 1.19 <0.01 2105.69 2110.97 3.36
24 2155.51 0.00 0.87 2284.17 5.97 <0.01 2155.51 2165.71 2.72
26 2413.94 0.00 1.33 2552.51 5.74 <0.01 2413.94 2468.51 2.73
28 2621.93 0.00 19.82 2726.21 3.98 <0.01 2621.93 2651.93 2.80
30 2691.53 0.00 1.01 2978.81 10.67 <0.01 2691.53 2762.16 3.87
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Table 8. Cont.

Number
of Tasks

[M1] RSA ALNS

fMIP Gap a Cpu fRSA Gap a Cpu fMin fMean b Cpu

32 2151.26 0.00 0.45 2273.40 5.68 <0.01 2151.26 2152.58 4.02
34 2252.36 0.00 0.64 2412.36 7.10 <0.01 2252.36 2298.24 4.24
36 2387.88 0.00 0.63 2582.88 8.17 <0.01 2387.88 2399.74 4.39
38 2627.73 0.00 147.15 2712.16 3.21 <0.01 2627.73 2640.80 4.79
40 2615.44 0.00 64.27 2810.44 7.46 <0.01 2615.44 2661.64 4.57
42 2180.71 0.00 0.74 2247.14 3.05 <0.01 2180.71 2186.28 4.42
44 2236.34 −1.03 61.14 2474.91 9.53 <0.01 2259.65 2340.62 4.83
46 2357.44 0.00 145.45 2465.14 4.57 <0.01 2357.44 2361.30 4.24
48 2400.13 0.00 5.41 2576.76 7.36 <0.01 2400.13 2429.35 4.65
50 2510.53 0.00 5.33 2695.39 7.36 <0.01 2510.53 2536.04 5.14
60 3553.20 −0.12 1200.11 4166.77 17.13 <0.01 3557.49 3690.65 4.89
70 3978.53 −2.26 1133.98 5063.13 24.38 <0.01 4070.67 4362.10 5.22
80 4478.54 −5.73 1203.72 5847.83 20.98 <0.01 4750.69 4993.32 6.27
90 5376.27 −3.83 1231.24 6477.87 15.87 <0.01 5590.56 5751.43 5.94

100 — — 7059.66 17.48 <0.01 6009.37 6291.13 5.68
110 — — 8002.13 17.11 <0.01 6833.24 7046.66 6.77
120 — — 8793.97 15.99 <0.01 7581.89 7724.49 8.25
130 — — 9644.81 20.17 <0.01 8025.91 8389.71 8.12
140 — — 10,098.89 17.16 <0.01 8620.06 8999.28 7.61
150 — — 10,892.59 15.04 <0.01 9468.16 9818.32 8.56
160 — — 11,716.71 18.28 <0.01 9906.03 10,384.06 7.96

a This value is calculated as follows: Gap = ( f (Θ)− f (ALNS))/ f (ALNS)× 100%, where Θ represents model
[M1] and RSA; b the calculation time of RSA does not exceed 0.01 s.
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6. Conclusions

This study examines how to dispatch multiple ARMGs to simultaneously load/unload
incoming trains in an RYACT, and it establishes a mixed-integer programming model
with the aim of minimizing the maximum completion time of work tasks. According to
the decision content and constraints of the model, an RSA and an ALNS algorithm are
designed to solve the problem quickly. Through experimental verification, the following
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conclusions are obtained: The proposed model and algorithms are feasible and can solve
the “RYACT–train” cooperative optimization problem. The proposed ALNS algorithm
can quickly solve examples of various scales. Compared with the RSA, the target value of
the solution is smaller, and the calculation performance is better. The model only obtains
the optimal solution of the cooperative scheduling problem with no more than 50 tasks
within a limited time. Although the algorithm can effectively solve this problem, with an
increase in container freight volume, a large railway station in an automated container
terminal will inevitably need to handle more trains; mechanical scheduling will become
more complicated, and more problems related to the optimization of mechanical operation
efficiency will be encountered, such as the operation sequence of arriving trains and the
selection of the train operation mode. Other methods can be explored, such as digital twin
technology, and these are valuable research directions for us to investigate in the future.
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