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Abstract: The visual monitoring of ship-engine-room equipment is an essential component of ship-
cabin intelligence. In response to issues such as imbalanced quantities of different categories of engine
room equipment and severe occlusion, this paper presents improvements to YOLOv8-M. Firstly, the
introduction of the SPPFCSPC module enhances the feature extraction capabilities of the backbone
extraction network. Subsequently, improvements are implemented in the neck network to create
GCFPN, facilitating further feature fusion, and introducing the Dynamic Head module, which fuses
the deformable convolution, in the part of the detection head, so as to improve the performance of
the network. Finally, the FOCAL EIOU LOSS is introduced, while mitigating the impact of dataset
imbalance through class-wise data augmentation. In this paper, the ship cabin equipment dataset
and the public dataset MS COCO2017 are evaluated. Compared with YOLOv8-M, the mAP50 of
GCD-YOLOv8 is improved by 2.6% and 0.4%, respectively.

Keywords: ship-cabin intelligence; SPPFCSPC; GCFPN; Dynamic Head; ship-cabin-equipment dataset

1. Introduction

Ship transportation has always occupied a dominant position in world trade and
transportation since the age of navigation. As the main layout of the ship’s main and
auxiliary engines, the engine room is called the “heart of the ship”, and its importance
is self-evident. In the field of ship design and manufacturing, the advancement and
development of ship automation are largely reflected in the increased level of automation
in the engine room. The complexity of the engine room equipment and the reduction in
crew size increase the difficulty of crew operation. Meanwhile, the development of large-
scale and intelligent ships, as well as the gradual widespread application of informational
and intelligent devices in the industrial sector, further determine the significant research
status of intelligent engine rooms.

As an essential component of ship automation, the engine room monitoring and
alarm system is installed in the centralized control room of the ship’s engine room. It
can accurately and reliably monitor the operating conditions of various power equipment
items in the engine room, such as the main and auxiliary engines. Once a fault occurs
in the operating equipment, the system can automatically emit audible and visual alarm
signals and record the alarm information, thereby facilitating the timely detection of
equipment malfunctions and enhancing operational reliability. However, the defects in
a large number of valves and instruments in the engine room can only be identified by
visual inspection to determine whether they are functioning properly, posing significant
challenges for maintenance personnel. Additionally, the lack of timely detection of leaks
and gas leaks poses substantial safety hazards. Therefore, the design of a visual sensor
capable of monitoring engine room equipment and promptly transmitting visual fault
information to the monitoring system is particularly crucial. To design a visual sensor
capable of monitoring engine-room equipment, computer vision technology is needed to
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achieve autonomous recognition without human intervention. This paper mainly utilizes
computer vision technology to monitor and recognize engine room equipment, while
providing potential guidance for subsequent tasks, such as defect detection.

While convolutional neural networks have demonstrated good robustness in many
applications, there is still a long way to go in achieving intelligent object detection and clas-
sification within ship engine rooms. Specifically, the main challenges include the following:

1. Presently, there is limited adoption of visual perception techniques in engine rooms,
and there is a dearth of publicly available datasets specifically designed for engine
room equipment.

2. The engine room houses a diverse array of mechanical equipment in large quantities,
with potentially significant variations in appearance among devices of the same type.
Furthermore, disparate scale discrepancies exist between different devices within the
same environment.

3. The dense layout of equipment within engine rooms, coupled with numerous in-
stances of occlusion between devices, pose significant difficulties in accurately seg-
menting objects from their surroundings.

To tackle the challenges outlined above, this paper introduces an enhanced model
for device detection leveraging YOLOv8-M. By improving upon the detection accuracy of
traditional models, this enhanced approach meets the visual monitoring needs of device
surveillance. The primary contributions of this paper are as follows:

1. In order to tackle the dataset problem for engine room equipment detection, we
leveraged photographs taken by 3D Engine Room teams on real ships. The data
was subjected to screening and augmentation to create a proprietary visual-detection
dataset for engine-room equipment, featuring eight categories including valve, meter,
reservoir, pump, cooler, marine incinerator, button, and compressor.

2. The SPPF module in the backbone network has been replaced with the more powerful
SPPFCSPC module; this makes the benchmark model more adaptable to the multi-
scale feature input of the cabin equipment. The feature extraction part relies on the
feature extraction idea of GFPN to further improve the feature fusion, the generaliza-
tion ability of the model was improved to better adapt to the changing cabin scenarios.
The detection head part introduces the Dynamic Head module, which integrates the
deformable convolution so as to improve the performance of the network, sensitive to
full-scale targets.

3. Meanwhile, in order to solve the data imbalance problem, the original CIOU Loss
is replaced, and the method for replacing it with EIOU Loss, Focal EIOU Loss, and
WIOU Loss was selected for comparison experiments.

The remainder of the paper is structured as follows, Section 2 describes the related
object-detection research and data-collection process; Section 3 introduces the improved
YOLOv8-M based on a multi-angle improved object detection model; Section 4 validates the
model on the COCO dataset and a home-made dataset; and Section 5 includes a conclusion
and discussion section.

2. Related Work
2.1. Object Detection

Object detection plays a pivotal role in numerous computer vision tasks such as in-
stance segmentation [1–4], image captioning [5–8], and object tracking. The rapid evolution
of deep learning technology [9] has played a crucial role in propelling advancements in
object detection, resulting in significant breakthroughs and establishing it as a focal point
of research with unparalleled interest. Object detection finds widespread application in
numerous practical scenarios, including autonomous driving, robot vision, and video
surveillance. To address the real-time demands of object detection, single-stage object
detection methods have emerged, utilizing the “anchor point + correction” methodology to
enable detection. These methods perform only one feed forward network computation,
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which is very fast and can achieve real time results. The YOLO framework, introduced by
Joseph et al. [10] in 2015, presents a fast object detection approach employing a single neural
network to process entire images. By dividing images into regions and simultaneously
predicting bounding boxes and probabilities, YOLO achieves remarkable detection speed.
However, it suffers from reduced localization accuracy, especially for smaller objects. To
address this issue, subsequent versions of YOLO [11–13] and the SSD approach [14] have
prioritized improving accuracy. One noteworthy advancement is YOLOv7 [15], an iteration
following the YOLOv4 team’s work. YOLOv7 outperforms existing object detectors in
terms of both speed (5–160 fps) and accuracy. Released on 10 January 2023, YOLOv8 by
Ultralytics represents an advanced model surpassing its predecessors, including YOLOv5
and YOLOv7, in terms of detection accuracy and speed. Figure 1 illustrates the network
architecture of YOLOv8.
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Figure 1. (a–c) Network structure of YOLOv8 with the initial input feature map size of 640 × 640 × 3.
The detailed structures of the integrated modules are also shown in (d–g) for the detection head, the
C2f module, the CBS module, and the SPPF module, respectively.

Compared with previous generations of YOLO algorithms, YOLOv8 is more worth-
while for the following reasons:

1. Backbone achieves a lighter weight and is easy to deploy and run.
2. Anchor-Free: YOLOv8 abandons the previous Anchor-Base and uses the idea of Anchor-

Free, which can detect arbitrarily shaped objects and is more flexible and efficient.
3. Loss function: YOLOv8 uses VFL Loss as the classification loss and DFL Loss+ CIOU

Loss as the classification loss, which improves the detection accuracy.
4. Sample Matching: YOLOv8 abandons the previous IOU matching or unilateral pro-

portion allocation, and instead uses Task-Aligned Assigner matching to reduce false
matching and effectively improve the stability of the model.

2.2. Data Acquisition

The images within the dataset utilized for object detection models should encompass a
comprehensive representation of the primary equipment and scenes within the engine room.
In this context, initially, the three-dimensional virtual engine room team at the Laboratory
of Marine Engine Automation and Intelligence, Dalian Maritime University, utilized an
authentic engine-room scene and equipment image resources captured on real ships. From
the collection of tens of thousands of photographs, typical images that align with the
demands of real-world scenarios (a total of 1032 photos) were initially screened. During
the screening process, typical photographs showcasing a compact layout of equipment and
dense distribution of pipelines within the engine-room scene were prioritized. Additionally,
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common scenarios like overlapping and occlusion among different devices, unobstructed
individual devices, substantial variations in external dimensions between devices, and
the discrete arrangement of multiple devices were selected. Up to this point, after careful
screening, the original image-sorting work, which comprehensively covers a variety of
actual scenarios, has been basically completed. The dataset consists of a total of eight
types of equipment, namely valve, meter, pump, reservoir, cooler, button, compressor, and
marine incinerator, characterized by dense arrangement and intricate scenes. As depicted
in Figure 2, the dataset exhibits a significant number of occlusions. Furthermore, within the
same equipment category, there are discrepancies in appearance, as indicated in Figure 3.
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Figure 3. Appearance variability of the same device: (a) marine incinerators of different colors and
construction material, (b) compressors with very different appearances, (c) buttons with different
arrangement and material, (d) valves of different colors, (e) compressors with different colors and
construction, (f) meter with different outsourcing material and dial format, and (g) reservoir with
different setups (vertical vs. horizontal) and different size.

These raw images were taken using a Nikon D7100 with 24 million pixels and a Canon
EOS 7D digital camera with 18 million pixels; the output horizontal and vertical resolution
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of the camera was 300 dpi, the resolution of the photo was uniformly 3024 × 4032, and the
ratios of the eight categories of equipment are shown in Figure 4, below. Some categories,
such as the number of marine incinerators and compressors are extremely small, and the
valves and meters outnumber them by more than 10-fold. There is an imbalance in the
data. Some examples of labelled ground-truth images and the process of collecting images
to obtain labels are shown in Figure 5. The numbers for each category are: ’valve’: 2134,
‘meter’: 961, ‘pump’: 485, ‘button’: 271, ‘reservoir’: 266, ‘cooler’: 219, ‘compressor’: 133,
‘marine incinerator’: 68.
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3. Methodology
3.1. Data Augmentation

Data augmentation is a key machine-learning technique that aims to expand training
datasets by generating new data points based on existing samples. The goal is to ensure
that the augmented training data closely resembles the real data distribution, leading to
improved detection accuracy. Moreover, data augmentation encourages the model to learn
more robust features, ultimately enhancing its ability to generalize effectively. However,
the abundance of data enhancement methods also brings challenges, and the selection of
appropriate data enhancement methods requires consideration. In this regard, this study
adopts the method of analyzing the visualization test results of the original dataset, selects
appropriate data enhancement methods for the classification, and implements the following
steps: (1) Obtaining the visualization test results of the original dataset. (2) Counting the
types of omissions and misdetections of each category in the dataset. (3) Analyzing the
reasons for the occurrence of misdetections and omissions, and selecting the appropriate
data enhancement methods.

Based on the bad case analysis, specific data augmentation methods were determined
for each category, as detailed in Table 1: rotation and mirroring augmentation for meter
and reservoir; mosaic augmentation for pump with additional random transformations;
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rotation and mirroring for button; rotation (within 30 degrees) and occlusion for compressor;
horizontal mirroring for marine incinerator, and random augmentation for the remaining
classes. This method effectively addressed some of the data imbalance issues. After
augmentation, the numbers of valve and meter remained relatively high, ranking first and
second, while other categories were almost balanced.

Table 1. Data amplification methods for each category.

Category Method

Valve random
Pump mosaic with others + random
Meter rotate + flip (horizonal/vertical)

Reservoir flip
Cooler random
Button rotate + flip (horizonal/vertical)

Compressor rotate (<30◦) + occlusion
Marine Incinerator flip (horizonal)

The data before and after augmentation are compared, as shown in Figure 6 below;
after augmentation, the number of valves and meters is still larger, ranking first and second,
and the other classes are almost balanced.
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3.2. Proposed Structural Improvements

In order to adapt to the complex scenario in which the ship’s cabin equipment is
located, we improved the YOLOv8-M model to improve the detection accuracy without
significantly increasing the number of parameters, and its network structure is shown in
Figure 7 below.
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3.2.1. Improved Neck

The SPP module was proposed by Kaiming He [16] in 2015 (as shown in Figure 8) to
address two main issues:

1. The problem of image distortion caused by cropping and scaling operations on im-
age regions.

2. The problem of repeated feature extraction by convolutional neural networks for
graph-related features.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 18 
 

 

3.2. Proposed Structural Improvements 
In order to adapt to the complex scenario in which the ship’s cabin equipment is lo-

cated, we improved the YOLOv8-M model to improve the detection accuracy without sig-
nificantly increasing the number of parameters, and its network structure is shown in Fig-
ure 7 below. 

 
Figure 7. Network structure diagram of GCDYOLOv8. 

3.2.1. Improved Neck 
The SPP module was proposed by Kaiming He [16] in 2015 (as shown in Figure 8) to 

address two main issues: 
1. The problem of image distortion caused by cropping and scaling operations on image 

regions. 
2. The problem of repeated feature extraction by convolutional neural networks for 

graph-related features. 

 
Figure 8. SPP structure. 

Different Maxpool layers bring different sensory fields to the network, which are 
used to distinguish and process objects of different sizes. The SPPF module proposed in 
YOLOv5 builds on this foundation and speeds up training by designing tandem-type 
Maxpool layers. YOLOv7 further optimizes SPPF based on SPPF by dividing the back-
bone-extracted features into two parts, one of which was processed by SPP, and the other 
part was processed by conventional convolution to obtain the SPPCSPC structure (as 
shown in Figure 9), which performs better than SPPF; however, the computational and 
parametric quantities are increased a lot. 

SPPFCSPC

Stage1 160×160×128

Stage2 80×80×256

Stage3 40×40×512

Stage4 20×20×1024

Feature
Fusion

Feature
Fusion

Feature
Fusion

Feature
Fusion

Feature
Fusion

Feature
Fusion

Feature
Fusion

Dynamic Head

Dynamic Head

Dynamic Head

Dynamic Head

Backbone GCFPN DYHead

MaxPool2d
K5,s1,p2

MaxPool2d
K9,s1,p4

MaxPool2d
K13,s1,p6

Concat

Figure 8. SPP structure.

Different Maxpool layers bring different sensory fields to the network, which are
used to distinguish and process objects of different sizes. The SPPF module proposed
in YOLOv5 builds on this foundation and speeds up training by designing tandem-type
Maxpool layers. YOLOv7 further optimizes SPPF based on SPPF by dividing the backbone-
extracted features into two parts, one of which was processed by SPP, and the other part
was processed by conventional convolution to obtain the SPPCSPC structure (as shown in
Figure 9), which performs better than SPPF; however, the computational and parametric
quantities are increased a lot.
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For visual detection methods applied to ship cabins, it is important to optimize the
detection speed while simultaneously ensuring the detection accuracy. The SPPFCSPC
module combines the ideas of both the SPPF in the original model and the SPPCSPC pro-
posed in YOLOv7, and the speed is improved while keeping the sensory field unchanged,
and at the same time the accuracy is improved compared with that of the SPPF. Its network
structure is shown in Figure 10 below.
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3.2.2. Improved Neck

The importance of the neck network, which fuses features extracted from the backbone
network to enable the head to detect objects at different scales depending on the resolution,
has been discussed in other works [17–20]. The Feature Pyramid Network (FPN) [17]
has been shown to be an effective method for fusing multi-scale features; however, the
top-down and bottom-up structures rely on the aggregation of features from neighboring
layers, as shown in Figure 11b, with less attention paid to the exchange of information
in the non-neighboring layers. GFPN [18] improves FPN by a novel swarm fusion; as
shown in Figure 11c, its feature extraction part further fuses the semantic information
across neighboring layers, so that the network learns more adequately about the object and
is able to fully exchange high-level semantic information and low-level spatial information.
In this study, guided by this idea, the cross-neighborhood layer information is further fused
to design the GCFPN structure, as shown in Figure 11d.
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3.2.3. Improved Head

DCNs [21] (deformable convolutional networks) are convolutional neural network
modules for object detection and image segmentation, which improve the model’s ability
to model object deformation by introducing the deformable convolution operation, where
the standard convolution samples the regular grid positions of the input feature map. The
operation of deformable convolution is shown in Figure 12 below.
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Where the left side is the input features, the right side is the output features, and the
size of the convolution kernel is 3 × 3, we will map the 3 × 3 region in the input features to
the 1 × 1 in the output features; the problem lies in how to select this 3 × 3 region. The
traditional convolution is the regular shape; the deformable convolution involves adding an
offset, then calculating for each point separately, and then changing the 3 × 3 region in the
selection of each point and extracting some points that may have richer features to improve
the detection effect, and its sampling position can be adaptively adjusted according to
different object scales to capture features more accurately on objects of different scales.
This enhances the model’s ability to perceive objects at different scales and makes it more
applicable to the task of detecting objects at different scales.

During the process of object detection, objects can have different representations (e.g.,
bounding boxes [22], centers [23], and corner points [24]) that have completely different
goals and constraints. Studies [22–26] have focused on solving only one of these problems
in various ways. Dynamic Head [27] is a detection head based on the attention mechanism,
the difference is that the attention function is converted into three sequential attentions,
each focusing on only one angle, in such a way that avoids the implementation of the
attention function with a fully connected layer, reduces the computational overhead, and
the high dimensional features of the tensor can be learned. The implementation of the three
layers of attention is shown in Figure 13 below.
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Figure 13. Dynamic Head Structure.

With the introduction of the Dynamic Head Block, a new scale-aware attention ap-
proach is presented, dynamically blending features from different scales based on their
semantic importance. Subsequently, a spatial-aware attention module, built on the fused
features, is used to emphasize discriminatory regions that consistently appear across vari-
ous spatial locations and feature levels. Deformable convolutions are employed to enhance
sparse attention learning within this module, followed by feature aggregation across lay-
ers at corresponding spatial positions. Task-aware attention is then utilized to facilitate
integrated learning and promote diverse object representations.
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3.2.4. Improved IOU

The original YOLOv8 model uses CIOU Loss [28], which takes into account the
complete intersection between the object frames and introduces a correction factor to more
accurately measure the similarity between the object frames. The computation of the CIOU
Loss Function is more complex compared to the traditional IOU, but this allows the model
to better understand the exact location and shape of the object frames during training, and
it is computed using the following formula:

CIOU = IOU − d2

c2 − αv (1)

where: d is the distance between the centroid of the prediction box and the real box, and c
is the diagonal distance of the smallest outer rectangle. α is calculated as follows:

α =
v

(1 − IOU)v
(2)

v is the correction factor, which is used to further adjust the loss function to take into
account the shape and orientation of the object frame. It is specifically calculated as:

V =
4
(

arctan wG
hG

− arctan wP
hP

)2

π2 (3)

In previous work, experimental results showed that the convergence speed and de-
tection accuracy of the CIOU loss were significantly improved compared to previous loss
functions. However, the v of the last term is still not well defined, which slows down
the convergence speed of the CIOU. To solve this problem, it is particularly important to
choose an appropriate IOU that can both speed up the convergence and balance the dataset
samples. The revised losses [29,30] can only increase gradients of high-quality examples
and cannot suppress the outliers. Meanwhile, the Focal EIOU Loss, which is proposed by
Zhang [31] et al. just meets this need:

LFocal−EIOU = IOUγLEIOU (4)

γ is a parameter to control the degree of inhibition of outliers; the EIOU Loss [32] is
defined as follows:

LEIOU = LIOU + Ldis + Lasp

= 1 − IOU +
ρ2(b , bgt)
(Wc)2+(hc)2 +

ρ2(w , wgt)
(Wc)2 +

ρ2(h , hgt)
(hc)2

(5)

We define hw and hc as the width and height of the smallest bounding box that
encompasses both boxes. To compute the loss function, we break it down into three distinct
parts: the IOU loss (LIOU), the distance loss (Ldis), and the aspect loss (Lasp).

In order to verify the superiority of the Focal EIOU Loss, it was tested against the
current generalized Loss for comparison on the ship cabin equipment dataset, and the
results are shown in Table 2.

Table 2. Comparison of detection results for different loss functions introduced by YOLOv8-M.

Metrics mAP50 (%)

CIOU 79.20
EIOU 79.28

WIOU V1 [32] 79.40
WIOU V2 [32] 79.43
WIOU V3 [32] 79.43

Focal EIOU 79.75
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4. Experiment

In this section, the improved YOLOv8 model is applied on the homemade cabin
dataset; firstly, the structure of the dataset will be introduced, secondly, on the public
dataset we compare the other classical models for comparison, and finally, we enter the test
on the homemade dataset to prove that the improvement is effective and can be applied,
and the visualization results are given. The testing process of ship cabin equipment is
shown in Figure 14.
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4.1. Ship Equipment Dataset

In the previous two sections, this paper provides the sample numbers and proportions
of the original dataset, as well as the corresponding augmentation methods. The augmented
dataset is the cabin equipment dataset that we use for experiments, and the ratio of the
training set, validation set, and test set obtained by random division is 7:2:1. According to
the sample distribution graph, it can be seen that there are a large number of small objects
in the dataset and the object equipment to be detected in the dataset is distributed randomly
in the graph, and the scenario is complex. The sample number and size distribution of the
dataset is shown in Figure 15.
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The experimental environment is shown in Table 3.
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Table 3. Experimental platform.

Configuration Specification

Operating System Windows 10

GPU NVIDIA GeForce RTX 3090
(NVIDIA, Sanata Clara, CA, USA)

IDE Visual Studio
Framework PyTorch-1.11.0

Toolkit CUDA11.3

4.2. Model Validation
4.2.1. Evaluation Indicators

Average Precision (AP) represents the mean accuracy level of a model. In multi-class
problems, the mean Average Precision (mAP) is a critical metric in object detection, calcu-
lated by averaging AP values across all categories. The process entails sorting categories
by prediction confidence, computing individual AP scores using accuracy-recall curves,
and then averaging these scores to obtain the final mAP value. A higher mAP indicates the
superior detection performance of the model. Their calculation formulas are as follows:

AP =
∫ 1

0
p(r)dr (6)

mAP =
1
k

k

∑
i=1

APi (7)

Latency refers to the time used by the network to predict an image, FPS is the number
of frames transmitted per second, which is the inverse of Latency, FPS reflects the inference
speed of the model; the larger the FPS, the faster the model runs.

4.2.2. Model Validation on the COCO Dataset

In order to verify the generality and validity of the model improvement, a comparison
test was conducted on the publicly available dataset MS COCO2017, training the GCD-
YOLOv8M with the following parameter settings: batch size = 32, learning rate = 0.01,
epochs = 120, and mixup = 0.8; the optimizer selection SGD, the current generalized object
detection model YOLOX, a multi-model version of YOLOv5, and multi-model versions of
YOLOv7 and YOLOv8 were used. Two parameter metrics are compared: fps and mAP50.
The results show that the performance of the improved model is enhanced, as shown in
Table 4.

Table 4. Comparison of object detection test results on COCO2017 dataset.

Method Input GFLOPs Params (M) Test FPS mAP50 (%)

YOLOX-S 640 26.8 9.0 COCO2017 333 59.3
YOLOX-M 640 73.8 25.3 COCO2017 155 65.6
YOLOX-L 640 155.6 54.2 COCO2017 94 68
YOLOV5-S 640 16.5 7.2 COCO2017 376 56.8
YOLOV5-M 640 49.0 21.2 COCO2017 182 64.1
YOLOV5-L 640 109.1 46.5 COCO2017 113 67.3
YOLOV7 640 104.7 36.9 COCO2017 110 69.7

YOLOV8-S 640 28.6 11.2 COCO2017 311 61.8
YOLOV8-L 640 165.2 43.7 COCO2017 91 69.8
YOLOV8-M 640 78.9 25.9 COCO2017 143 67.2

GCDYOLOV8 640 113.8 37.4 COCO2017 126 67.6
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4.2.3. Ablation Study on Ship Equipment Dataset

In this section, the effectiveness of the improved part is first demonstrated by conduct-
ing ablation experiments on each improved part on the cabin equipment dataset. Secondly,
the effectiveness of the improvement is further verified by comparing the mAP50 of the
improved algorithm with the individual generalized algorithms in the previous section for
each category and overall on the cabin equipment dataset.

In the course of the ablation experiment, the same parameter settings as on the publicly
available dataset are used, and the experiment shows that: (1) The accuracy of GCFPN
with further feature fusion is improved by 0.25% compared to the original GFPN module,
and thereafter the combination experiment with the other modules uses only the GCFPN
module. (2) The improved detector head, feature pyramid, and IOU all have different
degrees of accuracy improvement on the dataset. (3) Finally, the optimized method obtained
a performance of mAP50: 81.8% and mAP50-95: 58.12% on the dataset, which is an
improvement of 2.6% and 0.88% compared to the original baseline model, which proves
that the improved modules effectively enhance the detection of the ship’s cabin equipment,
as shown in Table 5. At the same time, the improved model did not significantly improve the
running time (19.91–23.89 ms), which provides a solid guarantee for the real-time detection.

Table 5. Improved modular ablation experiments on the ship’s cabin equipment dataset.

M Baseline GFPN GCFPN DYHead SPPFCSPC Focal-EIOU Time (ms) mAP50 (%) mAP50-95 (%)

1 YOLOV8-M 19.91 79.20 57.24
2 YOLOV8-M

√
20.82 79.64 57.19

3 YOLOV8-M
√

20.93 79.89 57.60
4 YOLOV8-M

√
21.16 79.54 57.23

5 YOLOV8-M
√

20.23 79.43 57.81
6 YOLOV8-M

√
19.92 79.75 57.50

7 YOLOV8-M
√ √

20.95 80.24 57.94
8 YOLOV8-M

√ √
21.74 80.33 58.02

9 YOLOV8-M
√ √

22.45 80.12 58.04
10 YOLOV8-M

√ √ √
22.57 81.23 58.02

11 YOLOV8-M
√ √ √

21.76 81.62 58.10
12 YOLOV8-M

√ √ √ √
23.89 81.80 58.12

Comparison experiments between the improved GCDYOLOv8 model and other gener-
alized models on the ship’s cabin equipment dataset were conducted to obtain the accuracy
of each category and the overall accuracy of the model. The results show that the detection
accuracy of each category is improved at the expense of a small number of parametric
quantities, which not only enhances the detection accuracy for small objects in the ship’s
cabin, but also improves the detection of full-size equipment in complex scenarios, as
shown in Table 6, and the comparison of PR curves is shown in Figure 16.

Table 6. Comparison experiments between the improved model and the generic model on the ship’s
cabin equipment dataset.

Model

AP50 (%)

FPS mAP50 (%)
Valve Pump Cooler Reservoir Meter Button Compressor Marine

Incinerator

YOLOX-M 76.33 70.16 72.13 71.74 81.35 79.56 87.46 86.20 46.29 78.12
YOLOX-L 77.92 74.05 78.12 75.30 81.80 79.82 88.85 87.61 37.82 80.43

YOLOV5-M 75.53 67.27 71.36 74.74 78.59 80.01 80.55 81.95 48.08 76.25
YOLOV5-L 76.45 69.75 76.24 78.02 80.56 84.48 81.31 83.26 38.36 78.76
YOLOV7 75.57 73.45 80.66 81.84 82.32 80.20 85.85 84.41 49.21 80.54

YOLOV8-L 77.26 74.41 82.09 85.13 84.42 83.55 87.89 91.09 39.85 83.23
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Table 6. Cont.

Model

AP50 (%)

FPS mAP50 (%)
Valve Pump Cooler Reservoir Meter Button Compressor Marine

Incinerator

YOLOV8-M 75.18 66.98 79.98 77.18 82.68 79.68 84.45 87.48 50.23 79.20
GCDYOLOV8 76.83 72.54 81.12 84.04 83.74 81.01 87.32 87.82 41.75 81.80
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The experimental results show that the detection accuracy of GCDYOLOV8 is im-
proved compared with the benchmark model. Although its accuracy is lower than that
of the YOLOV8-L model, the higher FPS indicates that it is more practical in the context
of applications requiring real-time detection. Through experiments, it was found that
GCFPN has a general effect on the large target cases of the Marine Incinerator and reservoir
(possibly due to the large number of feature fusion layers), and the detection effect of
other categories has been effectively improved. Focal-EIOU solves the problem of data
imbalance at its root and is superior in all categories. The combination of DYHead and
SPPFCSPC solves the big target loss problem of GCFPN to some extent. The combination
of all strategies effectively enhances the performance of the baseline model and makes it
more adaptable to the complex cabin environment.

4.2.4. Visualization

To better evaluate the impact of the enhanced model, a more concrete analysis is
required. We randomly selected some images from the ship’s cabin equipment dataset and
used YOLOv8-M and GCDYOLOv8 for inference, respectively, and we set the number of
inference images in each batch to batch = 1, the object confidence threshold for detection to
conf = 0.001, and the IOU threshold was set to 0.6. The inference results are illustrated in
Figure 17 below.
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Complex ship cabin equipment scene graphs are randomly selected in the dataset,
where the pictures in each row are the detection result graphs of the original model and
the improved model in order from left to right. Figure 17a,b shows the improved model’s
better detection ability for small distant objects, Figure 17c,d shows the improved model’s
better detection ability for multiple overlapping objects and small distant objects, which
avoids misjudging the background, Figure 17e,f shows the better detection ability for small
objects, and Figure 17g,h shows the better detection ability for large occluded objects.

5. Conclusions

The study introduces a deep learning method for detecting ship cabin equipment,
with the objective of implementing visual perception technology in ship cabins. To achieve
this, a dataset comprising ship cabin scenes was meticulously created. Additionally, im-
provements were made to the baseline model to better adapt it to complex ship cabin
backgrounds, thereby enhancing the network’s learning capacity. The experimental results
lead to the following conclusions:

1. For the ship cabin equipment dataset with data imbalance, data enhancement can
solve a small portion of the imbalance phenomenon. Focal EIOU can better improve
the model learning ability compared to CIOU used in the original model, and the
mAP50 on the private dataset is improved by 0.55%.

2. The new feature fusion network part GCFPN, which further fuses the information
features of each layer, improves the mAP50 on the private dataset by 0.69% and 0.25%
compared to the FPN and the GFPN of absorbing ideas in the original model.

3. The DyHead module, which introduces deformable convolution operations to en-
hance the model’s ability to model target deformations, and the SPPFCSPC mod-
ule, incorporating the concepts of SPPF from the original model and SPPCSPC
from YOLOV7, achieved mAP50 improvements of 0.34% and 0.23% on the private
dataset, respectively.

4. The new network model GCD-YOLOv8, which combines all the improved modules,
demonstrates improved accuracy compared to YOLOv8-M on both the MS COCO
dataset and the private dataset. The mAP50 has increased by 0.4% and 2.6% re-
spectively. However, the inference time increased by 4 ms, and the FPS decreased
by 9.

The proposed improvement method in this paper can be successfully applied to
the application environment of cabin monitoring. However, there are urgent issues that
need to be addressed: (1) In complex scenarios, despite the multi-level feature fusion
and intelligent detection head enhancing the detection capability for small targets, there
are still extremely small targets that cannot be detected (such as valves and buttons).
(2) For compressors, occasional occurrences of overlapping bounding boxes prevented one
from being identified. (3) The monitoring method proposed in this paper only serves the
purpose of discriminating instrument categories. In order to more intuitively reflect the
environment of cabin equipment, real-time three-dimensional reconstruction of the targets
to be inspected can be used to more clearly detect the status of the equipment. (4) The
dataset used in this paper consists of static images, and it is currently unable to test the
effects of vibration and light changes. In future work, it is necessary to collect relevant
videos in order to better approach the real ship environment.
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