SUPPLEMENTARY MATERIALS

Here we develop high-frequency asymptotic expansion of the DSR equation. We show that
two-way travel time is governed by a nonlinear eikonal equation while amplitudes obey transport
equation similar to that of classic wave-equation ray method. We start from the true-amplitude DSR
equation obtained in [11] and follow the derivation presented in [10] with some modifications.

According to [11], true-amplitude DSR equation reads
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where we used the same notation as in the main text.

As it is shown in [10], principal symbol of iAg .- from (2) can be recast into
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One may think of symbol vsz/rkf /r appearing in numerator as of application of operator (vs /r axa ) .
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Accordingly, symbol w? — & zvsz/rksz/r in denominator might be interpreted as an inverse operator

S /r(f) Keeping this in mind and recalling Fourier transform property i < iw we write down
expressions for operators i/, and I/, using (2), (S2) and (S3):
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Operator I represents identity. Inserting (S4) into (S1) leads to equation
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As in [10] we proceed with a new function
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allowing us to recast the DSR equation (S5) into its final form:
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We underline that all functions u, g and g,- depend on both x, and x,.. We also note that ¢ is a dummy
variable not appearing outside the integrals in the left-hand-side of the equation.

Asymptotic expansions

We postulate asymptotic ray series expansions:
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When inserted into the DSR equation (S7), they lead to infinite equation involving terms « Fy, Fy, F;
etc. We shall keep only two first ones. Let us develop each member in the left-hand-side of (S7)

separately:
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Hence, asymptotic expansion of whole DSR equation reads
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We set the expressions inside square brackets to be zero independently of each other. Zeroing out
coefficient before Fy will lead to the eikonal equation and that before F,, — to the transport equation.

Auxiliary formulae

Integration with respect to & in (S12) requires expressions for A(S)/ "(§...) and Ai/ "(§..) in
terms of &, Ay and A;. One can obtain them by substituting ray series expansions into (S6). Once again,
we develop both sides of the equation in turn:
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Hence, the following relations hold true:
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A few more expressions will be needed in the sequel. One can verify that
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Now let us consider the coefficient with Fy in (S12). Substituting expression for A(S)/ " from
(S17) we obtain:
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Eikonal equation
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Evaluation of ]f " from (S18) yields the eikonal equation:




ot 1 at\* 1 o1 \2
- 1,2 _ 1,2 S22
0z Vs \/1 vé <ax5> v, \/1 vr <6xr) ' (522)

Transport equation

Transport equation involves more elaborate algebra. First, we recall the coefficient before F,
from (S12) which is set to be zero:
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We gather all terms involving A; and Ai/ " and denote them by C:
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Now we substitute Ai/ " from (S17), yielding:
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Comparing this equation to (S21) it is clear that terms < A; vanish due to the eikonal equation, and,
taking into account (S18) and (S20),
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Expanding ]35 " from (S20) we write down final expression for C:



(S27)

ot 0 T \*
2
Uy 0x, 0, (Vr (axr) >A N Br(Ao)]T
2

3 0
a7\ \?
4(1—v?
< v (axr) >
Now we return to the equation (S23). We insert C in its place and expand remaining
abbreviations By ,-(4o) ]ZS/ " and Af)/ "(1;...). The result reads:
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Developing this equation, we obtain:
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This is the transport equation for the DSR equation. In order to make it more similar to its standard ray
method counterpart, we multiply this equation by % while keeping in mind the eikonal equation (S22):
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We note that
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where we changed order of differentiation —( z ) =— (—T) and once again substituted = from
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the eikonal equation (S22). This enables us to rewrite the transport equation (S30):
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Now we introduce a new vector:
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and write down a derivative of its “horizontal” components:
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Comparing (S34) and (S32) it is clear that transport equation can be written in terms of V ¢z T, namely:
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This equation accomplishes our derivation. For further development see the main text.




