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Abstract: Sub-bottom profile data have the potential to characterize sediment properties but are
seldom used for offshore site investigations because of uncertainties in rock-physics models. Deep-
learning techniques appear to be poised to play very important roles in our processing flows for
the interpretation of geophysical data. In this paper, a novel deep learning-based method for this
task is proposed in which a nonlinear mapping between the observed data and sediment types is
learned using a multi-attribute temporal convolution network (MATCN). Firstly, empirical mode
decomposition (EMD) is employed for the original data, and intrinsic mode functions (IMFs) with
multiple time scales are generated. Based on different IMFs, instantaneous frequency (IF) data under
different IMFs can be obtained, while instantaneous phase (IP) and instantaneous amplitude (IA)
data are obtained based on the original data. IF, IA and IP data are called attribute data, and are
highly related to the attenuation, reflection, and interior structure of the sediment. Thus, IA, IF, and
IP are used as the inputs, and a 1D convolutional neural network (CNN) and a time convolution
network (TCN) are used to extract sequential features. Different feature representations are then fused.
Combining cross-entropy loss function and class-edge loss function, the network is encouraged to
produce classified results with more continuous sediment distributions compared with the traditional
loss function. The real-data experiments demonstrate that the proposed MATCN has achieved good
performance with an F measure greater than 70% in all cases, and greater than 80% in most cases.

Keywords: sediment classification; multi-attribute; deep learning; sub-bottom profile; empirical
mode decomposition

1. Introduction

A sub-bottom profiler (SBP) is designed to image underwater sub-bottom sediment
for waterway dredging, marine scientific research, etc. [1–7]. Nowadays, SBP imaging is
widely used as a tool with which to map and interpret changes in sub-bottom reservoirs.
However, the existing use of sub-bottom profilers has remained limited mostly to the
delineation of sub-bottom layers, though remote acoustic classification of the physical prop-
erties of sub-bottom sediments is of paramount interest to the geotechnical and geological
communities [1–5]. Sediment types are still difficult to discern because of uncertainties in
rock-physics models [7]. To manage this problem and improve the classification ability of
SBP data, many researchers are conducting studies in this field through different methods.

Some researchers have attempted to classify the sub-bottom sediment based on
the attribute of the reflection coefficient (RC), as the RC is highly related to acoustic
impedance [8,9]. In fact, sediment classification methods based on the RC are also very
simple and efficient. The first approach, building on Mohamed’s work [8], focuses on
calculating the RC by utilizing the energy of signals reflected from diverse interfaces. This
involves formulating an equation that describes the acoustic energy across multiple layers
in order to determine the RC for each sediment layer interface. Similarly, Plets [9] adopted
the RC as a straightforward and effective means by which to examine the characteristics
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of sub-bottom properties. The RC was determined by taking the ratio of the reflected
wave’s amplitude to that of the incident wave. Despite these developments, sub-bottom
applications face challenges when acquiring reflection coefficients due to the limitations in
existing methods; for example, Mohamed’s method is contingent upon an optimal window
size parameter, which is difficult to ascertain, and Plets’ approach may not be applicable if
multiplicity is absent.

As the reflection coefficient-based method always needs the help of multiple reflec-
tions, it can be invalid when no multiple reflection exists. Because the higher frequencies are
used, as in the case of shallow sub-bottom profiling, attenuation significantly alters the re-
flection response. Thus, the attenuation parameter is rather important for SBP classification.
Initially, the spectral ratio technique, as documented in [10,11], was modified for use with
seismic-reflection data, enabling the direct quantification of compression wave attenuation
in terms of two-way travel time, rather than relying on distance and velocity metrics. Fur-
thermore, Panda [12] constructed an attenuation-based classification model that correlates
the relaxation time of sediments with changes in the instantaneous frequency of acoustic
signals. Stevenson et al. [13] refined LeBlanc’s approach by determining instantaneous
frequency alterations exclusively from the analysis of maximum envelope values.

The above methods all used the Hilbert transform to extract instantaneous frequency
information from Chirp sonar, which has a high time resolution. However, IF is usually
highly polluted by noise, and it is hard to obtain the trend of the shift in instantaneous
frequency [14–16]. Pinson et al. [17] proposed a method by which to obtain quality factor
Q by fitting a curve through iterative regression using the weighted robust least-squares
method. However, the method is more suitable for estimating the physical properties of
sediments between two parallel adjacent interfaces. In conclusion, methods based on IF and
IA data are highly related to physical properties but are not suitable for the classification
of all survey lines because of the limitations associated with noise sensitive and model
conditions. Recently, Li et al. [18] have proposed a reflection signal decomposition method
to obtain better acoustic attenuation parameters for sub-bottom sediment classification,
which decomposes the overlapping reflection into separate reflection sub-signals to avoid
spectrum vibration.

The above methods are based on acoustic attributes; however, they are limited to
these acoustic attributes and a single attribute can hardly reflect well the features of the
sediment. To this end, machine learning and feature engineering methods have been
applied in the field of geophysics to widen the use of features used to classify the sediment.
These methods can find potential relative relationships between the observed data and
the material properties. Yegireddi et al. [19] have proposed a sediment classification
method based on SBP image texture features. Texture can reflect the attributes of sediment
characteristics to some degree; however, the relationship between texture features and
sediment properties is not significant. Additionally, the classified results are based on
patches, thus the resolution of the result is relatively low. A similarity index feature has
been proposed by Gwang et.al [20]. The authors introduced the similarity index (SI) for
the classification of the sea floor from acoustic profiling data. They found that various
sediments can result in distinct waveform characteristics in neighboring received signals,
with the SI serving as a measure for the similarity among these signals. The SI is employed
in order to classify seafloor types but is considered unsuitable for categorizing sub-bottom
sediments. Recently, Zong et al. [21] proposed a novel method based on variational mode
decomposition (VMD) and texture features clustering to classify the sediment, but this
method is time consuming.

On account of its powerful feature extraction and expression abilities, deep learn-
ing has been applied to many fields [22–28], as it shows better feature extraction ability
than traditional machine learning methods. For sediment classification tasks, several so-
lutions have been provided that utilize data-driven learning frameworks. Das et al. [29]
used a 1D convolutional neural network (CNN) to obtain the impedance of seismic data.
Wang et al. [30] used a fully convolutional residual network for seismic impedance in-
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version, as this can effectively predict impedance with high accuracy and it has good
robustness. Li et al. [31] exploited a CNN to generate a model for full wave inversion
optimization. Wang et al. [32,33] proposed a seismic inversion method based on a convo-
lutional neural network with a physical constraint. To obtain better lateral continuity of
the results, a two-dimensional bilateral filtering method was also adopted in their work.
Di and Abubakar [34] adopted a semi-supervised learning framework, into which they
introduced their logging data, in order to estimate acoustic impedance based on 3D seismic
data. The above works show that the deep learning method is data-driven and shows great
potential to get good results.

Deep learning-based methods are robust and can explore underlying relationships
between observed data and physical sediment properties from abundant data. They
also have great potential to obtain the potential relationship between observed data and
the sediment. The traditional method using IF and IA data can also reveal the physical
properties of sub-bottom sediments.

To this end, we proposed a sediment classes prediction method combining a deep
learning network and which took instantaneous attributes into consideration in order to
address the problems that traditional methods have encountered in terms of noise-sensitive
data condition limits. An MATCN was proposed for sediment classification considering
the IA, IF, and IP data classification potentials, which fuse multiple attributes to explore the
latent sediment characteristics. MATCN is constructed by combining 1D CNN with TCN to
better achieve feature extraction. Then the multiple attributes are put into the deep learning
model to predict the sediment types. The paper is organized as follows. In Section 2 the
proposed method is described. The experimental results and discussions are presented in
Sections 3 and 4. Finally, our conclusions are given in Section 5. The flowchart is shown in
Figure 1.
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2. Methods
2.1. Multi-Attribute Inputs

Through the learning of a time convolutional network, using instantaneous attributes
as inputs, we present an MATCN model for sub-bottom sediment classification. The
MATCN model simultaneously uses IA, IF, and IP data [35–39] as inputs and outputs the
classified result. The flowchart of the classification with the MATCN model is depicted in
Figure 2.
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As shown in Figure 1. At first, the original received echo data is processed using
EMD [40]. Then, a set of IMFs can be obtained. Based on the IMFs, the IA, IP, and IF series
are generated. Concatenating IAs of different IMFs, the input IA block is built. The input
IF and IP blocks can be generated in the same manner. The input blocks are subsequently
fed into the feature extraction model. Convolution layers, as well as TCN blocks, constitute
the feature extraction model and extract useful features under different time scales, which
expand the ability to obtain different information [41,42].

Figure 2 illustrates the architecture of the proposed MATCN model. The top-left
corner represents the input IA data of size L × N, while the top-median and top-right
corner represent the input IF and IP data of size L × N, respectively. The 1D convolution
layers follow behind the inputs. After 1D convolution, the TCN networks are used to extract
the temporal characteristics. Then, by concatenating the extracted feature maps of three
different inputs, the result is put into another 1D convolution network. A fully connected
layer is used as the classifier. All of the convolution layers employ 1 × 3 convolution
kernels with a stride equaling 1.

One distinct advantage of this joint instantaneous multi-attribute learning strategy
is that the proposed method explores the potential nonlinear relationship between the
attributes and the sediment types. The proposed MATCN employs edge loss and cross-
entropy loss functions to optimize the model’s trainable parameters to obtain better results.
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2.2. Multi-Attribute Inputs
Multi-Attribute Calculation

Instantaneous attributes have been widely used in seismic data analysis. Since sub-
bottom data is a form of high-resolution seismic data, instantaneous attributes have also
been introduced into sub-bottom data analysis. The instantaneous frequency has a high
relationship with the sediment types. Thus, many sediment property estimation methods
have been developed based on IF information. IF data is highly related to the attenuation
features of the sediment layers.

Except for the IF, which is highly related to the types of the sub-bottom sediment
types, the IA and IP are also important. The energy data, which is derived from the IA data,
can be used to estimate the reflection coefficients. The received and transmitted energy
ratio accounts for energy propagation and its corresponding geometrical and sediment
attenuation losses. The sub-bottom acoustic energy propagation model is also built based
on the IA data, which is highly related to the reflection attributes of the sediment properties.

IP data can describe the interior structure of sediment layers. In low- and moderate-
loss dielectric media, the propagated acoustic signal shows significant changes in its
amplitude spectrum, whereas the phase spectrum changes are regardless. Thus, the IP data
can highlight all of the reflections regardless of the changes of amplitude. Consequently,
the details of interior reflections with low amplitude can be well obtained. In conclusion,
IP data can describe the morphological characters of sediment layers.

Usually, Hilbert transformation is used to obtain analytic signals and instantaneous
attributes. However, to obtain IF data, one must obtain the derivation of IF, which is not
robust to the noise. In fact, over several decades, researchers have been attempting to
exploit the concept of IF derived from analytic signals to construct a robust time–frequency
representation. However, the past applications of the Hilbert transform have been limited
to the narrow band-passed signal. This was so until 1998, when Huang proposed a new
method based on the Hilbert transformation, the key idea of which is the EMD [40]. The
basic approach of the EMD method is to decompose a signal into a collection of intrinsic
IMF that allows well-behaved Hilbert transforms for the computation of instantaneous
frequencies that have physical means. Each IMF contains the local characteristic signal of
the original signal in different time scales. Thus, employing the EMD calculation, a set
of IMFs that can reflect the multi-time scale characteristics of the original signal can be
obtained. IA, IF, and IP data can be obtained which can reflect the multiple time-scale
characteristics of the original signal.

At first the EMD is applied [40].
x(t) is the original signal.
Step 1. Initialization, r1(t) = x(t), i = 1, k = 0;
Step 2. Obtain the nth IMF
(a) Initialization, h1(t) = r1(t)
(b) Find the maximum and minimum of hk(t)
(c) Use cubic spline interpolation to fit the maximum and minimum in order to obtain

the upper and lower envelope e+(t) and e−(t);
(d) Obtain the mean of envelope mk(t);
(e) hk+1(t) = hk(t) − mk(t);

(f) Judge SD = ∑[hk(t)−hk−1(t)]
2

∑[hk−1(t)]
2 ;

Step 3. rk+1(t) = rk(t) − ck+1(t), judge if the residual is constant or monotonic. If yes,
EMD is ended and ck(t) is the IMF. Every IMF is treated as a real part of the complex signal,
and the imaginary part can be obtained after the Hilbert transformation. If an IMF is h(t),
then [35–39]

ĥ(t) = h(t) ∗ 1
πt =

1
π

∫ +∞
−∞

h(τ)
t−τ dτ,

g(t) = h(t) + jĥ(t),

A(t) =
√

h2(t) + ĥ2(t),

(1)
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where ĥ(t) is the transformation result, g(t) is the complex trace, and A(t) is the envelope,
that is, the reflection strength. The instantaneous phase θ(t) can be obtained by

θ(t) = arctan(ĥ(t)/h(t)) (2)

The recorded signal and its transformation result can also be represented as

h(t) = A(t) cos[θ(t)], ĥ(t) = A(t) sin[θ(t)]. (3)

Then, the cosine phase, that is, the cosine of the instantaneous phase can be calculated
as follows:

cos[θ(t)] = h(t)/A(t). (4)

f (t) =
1

2π

d
dt
(θ(t)). (5)

f (t) = (
1

2π
)

y(t) dy∗(t)
dt − y∗(t) dy(t)

dt
y2(t) + y∗2(t)

. (6)

The multi-attributes can be obtained from the above. Then, post-processing is needed
before putting attributes into the deep learning model. Post-processing is used to wipe
out the useless information where the energy of the emitted acoustic wave is too low to
convey any useful information. An SBP image is shown in Figure 3, in which, below the
red line, nearly no significant reflection can be found. The acoustic wave is weak below the
red line and the received signal has a low signal-to-noise ratio (SNR). Thus, the sampling
points below the red line in Figure 3 should be wiped out to improve the performance of
the classification method. The instantaneous attribute values of these sampling points will
be set as zero.
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2.3. One-Dimensional Convolution Layers and TCN Blocks

SBP emits acoustic waves through the water and underwater sediment. Then, the
wave is reflected from the sediment interface, and the transducer continuously receives
the reflections. The received reflections consist of a set of sampling points arranged
by time. Thus, the SBP signal data form a time sequence signal. Like the seismic sig-
nal, the SBP signal can also be formulated through the convolution model, as follows:
s(t) = r(t) × c(t) + n (‘∗’ means convolution). The convolution process indicates that the
wave field at the current time is not affected by its values at future times but at past times.
To classify a series of echo signals is to assign a label to each sampling point in the received
time sequential data, thus echo signal classification is a sequence-to-sequence task.

Considering that the sequential length of a received SBP signal is large, the 1D CNN
is used firstly as a high-feature extractor. Employing a 1D CNN can not only reduce the
dimension of the received signals but also highlight the ability to follow models in terms of
modeling contextual information.

After 1D CNN, a network that is capable of sequentially representing dynamic tempo-
ral behavior, in our case TCN, can be used to process sequential data like an SBP signal.
Lots of methods have been developed for this task. TCN [41,42] is a relatively newly
developed tool for the sequence-to-sequence task. Furthermore, many experiments have
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shown that, despite the theoretical ability of recurrent architectures to capture an infinitely
long history, TCNs exhibit substantially longer memory, and are thus more suitable for
domains in which a long history is required.

The TCN structure is shown in Figure 4. At first, a dilated causal convolution layer is
put after the input. Then a normalization layer and ReLU activation, as well as a dropout
layer is followed. After that, the above structure is repeated. “Causal” refers to convolutions
in which an output at time t is convoluted only with elements from time t and earlier in
the previous layer. The dilation layer is used to achieve a large receptive field and is thus
suitable for long-length series data feature extraction. To apply the aforementioned causal
convolution on sequence tasks, the idea of a residual network is introduced to better train
the model, hence the concept of residual blocks. In this TCN framework, when the number
of channels of the input and the output is different, a 1 × 1 convolution is used.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 20 
 

 

c(t) + n (‘∗’ means convolution). The convolution process indicates that the wave field at 
the current time is not affected by its values at future times but at past times. To classify a 
series of echo signals is to assign a label to each sampling point in the received time se-
quential data, thus echo signal classification is a sequence-to-sequence task.  

Considering that the sequential length of a received SBP signal is large, the 1D CNN 
is used firstly as a high-feature extractor. Employing a 1D CNN can not only reduce the 
dimension of the received signals but also highlight the ability to follow models in terms 
of modeling contextual information.  

After 1D CNN, a network that is capable of sequentially representing dynamic tem-
poral behavior, in our case TCN, can be used to process sequential data like an SBP signal. 
Lots of methods have been developed for this task. TCN [41,42] is a relatively newly de-
veloped tool for the sequence-to-sequence task. Furthermore, many experiments have 
shown that, despite the theoretical ability of recurrent architectures to capture an infinitely 
long history, TCNs exhibit substantially longer memory, and are thus more suitable for 
domains in which a long history is required.  

The TCN structure is shown in Figure 4. At first, a dilated causal convolution layer is 
put after the input. Then a normalization layer and ReLU activation, as well as a dropout 
layer is followed. After that, the above structure is repeated. “Causal” refers to convolu-
tions in which an output at time t is convoluted only with elements from time t and earlier 
in the previous layer. The dilation layer is used to achieve a large receptive field and is 
thus suitable for long-length series data feature extraction. To apply the aforementioned 
causal convolution on sequence tasks, the idea of a residual network is introduced to bet-
ter train the model, hence the concept of residual blocks. In this TCN framework, when 
the number of channels of the input and the output is different, a 1 × 1 convolution is used. 

 
Figure 4. Flowchart of the TCN. 

2.4. Cross Entropy Error Function and Class-Edge Loss Function 
Loss functions form an indispensable module in the supervised learning procedure. 

To optimize the model parameters, a combination of cross-entropy error function and 
class-edge Loss function is utilized in the training process with a back-propagation algo-
rithm. 

Figure 4. Flowchart of the TCN.

2.4. Cross Entropy Error Function and Class-Edge Loss Function

Loss functions form an indispensable module in the supervised learning procedure.
To optimize the model parameters, a combination of cross-entropy error function and class-
edge Loss function is utilized in the training process with a back-propagation algorithm.

Cross entropy error function has been widely used in classification tasks and has been
proven to be effective. Since our task is a sequence-to-sequence classification task, the
cross-entropy error function is also used in this paper.

We use a standard multi-class cross-entropy loss, which is denoted as:

Lseg = −∑
k

∑
p

sk(p) log(sk(p)), (7)

ŝ ∈ RP×K denotes GT class labels in a one-hot form. p is the number of class categories.
K is the number of sampling points of one ping.

3. Experiment and Results

To verify the effectiveness of the proposed method, real-data experiments were per-
formed, as described below. The study area is located in Bohai. During the SBP survey,
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60 survey lines, having a total length of 240 km, were carried out using an Innomar SES
2000 Standard SBP. For this survey, a predetermined set of drill holes was planned, set
to be 8 meters below the seabed’s surface. Analysis of the gathered drilling samples in
the lab has led to a broad classification of the sediment in the area into two rough layers.
The upper layer is primarily composed of sandy mud, while the lower is predominantly
sandy clay, with minor interjections of sandy silt. Sandy mud is marked by its uneven soil
quality and the abundance of coarse sand particles, along with approximately 27.3% clay
content. Sandy clay consists of fine grains generally under 0.005 mm, with a few silty soil
layers. The sandy silt has intermediate grain sizes, ranging from 0.005 to 0.05 mm, and the
soil displays inconsistent quality, with some silt presence. Representative data from the
sedimentary drilling is illustrated in Figure 5.
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3.1. Criterion

To evaluate the classification performance, classic accuracy metrics, such as precision,
recall, and F measure, were used to assess the chosen results. Referring to the confusion
matrix, TP, TN, FP, and FN denote the numbers of true positives, true negatives, false
positives, and false negatives, respectively.

Precision is defined as [43]:

Precise =
TP

TP + FP
(8)

For class A, precision is defined as the ratio of the number of sampling points that are
correctly predicted as A to the number of sampling points that are predicted as A.

The recall is defined as the ratio of the number of sampling points predicted as A to
the total number of sampling points that belong to A.

Recall =
TP

TP + FN
(9)

F-measure is the comprehension of precision and recall and is defined as follows:

F − measure =
2Precise · Recall
Precise + Recall

(10)
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Intersection over union (IoU) is also used. The calculation of IoU is shown as fol-
lows [43]:

IoU =
TP

TP + FN + FP
(11)

3.2. Experiment Setup

We evaluate our method on the data surveyed in Tianjin. The train data set contains
14,900 training time series, while the test data set contains 1000 test time series. There are
24,000 training pings from 6 sediment categories. The sediment categories selected from the
surveyed area are silt mixed with sand, muddy silty clay, and silty clay. Each category has
a 5000 training time series. Our work is based on the sequence data rather than the profile
image, as the image can only reflect the structures of the sediment distribution, while the
physical properties cannot be inferred from the profile. Thus, every single ping is used as a
test or train data. A set consisting of ping data of different survey lines was collected, with
other survey line data being divided among the training, validation and test sets, with all
of the data then used for the model building. Many thousand aspects of train or test data
can be obtained. Our model is trained using the training set and is tested on the validation
set. The length of each time series is 1250.

The training samplings were selected from the pings of the surveying line closest to
the holes, or some surveying lines which are noise-free and in which the sediment types
can be easily determined. According to the holes, the sediment types and the sediment
compositions can be obtained [44,45]. The training set is built as far as possible to include
different sediment types and distributions.

(1) Parameter Settings and Network Training: The Adam solver was adopted as the
gradient descent optimization method. The learning rate γ was initialized to 0.0005. The
proposed network was trained for 20 epochs with a batch size of 15, and, after 5 epochs,
the learning rate was reduced by being multiplied by a descending factor equaling 0.01.
Our proposed method was implemented on the deep learning framework Matlab. All
experiments were performed on a computer with an Intel Core i7-10750H CPU, 16 GB
RAM, and NVIDIA RTX 2060 GPU.

3.3. Method Validation

First, we obtained the instantaneous attributes. The IF, IA and IP data of the 1000th
ping are shown below in Figure 6. The sampling points with high IA value means that the
impedance contrast here is very strong and the sediment density and velocity have large
changes. Figure 6b,c show the IP and IA data of the 1000th ping, respectively. The IP image
and IA image (namely the SBP image, as the SBP image is always built based on IA data)
are built by converting the IP and IA data values into 0~255. The comparison between the
IA image and the IP image is shown in Figure 7. From the IP image, it can be confirmed
that the details of reflections have been highlighted, and that continuous horizons and
some tiny structures can be imaged. IF data is related to the lithology of the sediment, as
has been proven by many researchers, though physical information cannot be discovered
from the IF image directly. Intuitively speaking, IF derived from the first IMF has a high
time scale and can be influenced easily, and IF derived from the third IMF has a low time
scale and is robust against noise. IF series of different IMFs are shown in Figure 6d–f.

Figure 6g shows the 1000th ping data series of this survey line. The predicted result
and the GT are also shown. It can be noted that the sediment types have been classified
well, a continuous sediment boundary was also obtained, and the sediment distribution is
consistent with the ground truth.

Using the proposed method to classify the whole surveying line, the classified results
of all pings are shown in Figure 8, in which different sediment types are signed with
different colors. The red area shows the water column area and other useless areas, the
yellow area shows the silt mixed with sand, the blue area shows the muddy silty clay,
and the green area shows the silty clay area. Different sediment types of this profile are
superimposed on the SBP image. Additionally, the ground truth is superimposed with the
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SBP image in Figure 8. From the result, it can be concluded that the great lateral continuity
of sediment interfaces has been kept and that the classified sediments are highly consistent
with the ground truth.

A phenomenon that should be noted is that the same sediment layer contains more
than one horizon. Different sediment types may have similar horizon distributions. For ex-
ample, the horizon distribution of silt mixed with sand is similar to the horizon distribution
of muddy silty clay. As shown in Figure 8a, there are many parallel horizons inside both
these two sediments. These two sediments can hardly be separated from the characteristics
of only horizon distribution. In this complex situation, we think that the combination of
multiple attributes has played an important role in the accurate sediment classifications.

Moreover, the classified results have been evaluated by the criterion described. The
evaluated results show that the proposed method achieved a value of 80%. The result is
listed in Table 1.
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Table 1. Analysis of the classification performance in Figure 8.

Class Number Precision Recall F-Measure

Water column and
other useless areas 0.86 0.85 0.85

Silt mixed with sand 0.95 0.88 0.91
muddy silty clay 0.98 0.92 0.95

silty clay 0.82 0.97 0.99
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The test class results for the other test line are shown in Figure 9 and the quantitative
indexes are shown in Table 2. This survey line has two types of sediments. The thickness of
the first layer is relatively the same; SBP did not penetrate the second layer completely, and
the second layer showed varying thickness on the SBP image. The vertical distribution of
the two layers is outlined by manual interpretation. The method in this paper achieves the
classification of two layers of sediment well, but there are some deviations in the prediction
results at the boundary between the first layer and the second layer, which is caused by the
small difference in acoustic impedance between the two layers of sediment in some areas.
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Figure 9. Result (2) of the proposed method. (a) The original SBP image, (b) the classified result using
the proposed method, and (c) the ground truth of the proposed method.

Table 2. Analysis of the classification performance in Figure 9.

Class Number Precision Recall F-Measure

Water column and
other useless areas 0.98 0.99 0.98

Silt mixed with sand 0.87 0.88 0.87
muddy silty clay 0.92 0.80 0.86

The data of the third survey line contain three types of sediment. The silty clay is only
present in the middle of the survey line. The overall classification effect of the data is good,
but the classification effect is poor at the boundary between the second type of sediment
and the third sediment, as shown in Figure 10. And the quantitative indexes are shown
in Table 3. We think this is because the echo intensity and signal-to-noise ratio of the SBP
signal decreases with the increase of depth, so that the classification effect of the lower
substratum is worse.
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Figure 10. Result (3) of the proposed method. (a) The original SBP image, (b) the classified result
using the proposed method, and (c) the ground truth of the proposed method. The black box shows
the obvious differences between the proposed method and the ground truth.

Table 3. Analysis of the classification performance in Figure 10.

Class Number Precision Recall F-Measure

Water column and
other useless areas 0.98 0.99 0.99

Silt mixed with sand 0.92 0.91 0.91
muddy silty clay 0.73 0.75 0.74

silty clay 0.82 0.88 0.85

We calculated and listed the IoU of the three survey line data, as shown in Table 4.
Because the algorithm has a good classification of non-layer areas, such as the water area,
which account for a large proportion of the data, the overall IoU accuracy is relatively good.
The time cost is shown in Table 5.

Table 4. IoU of the classification performance.

Experiments IoU

Experimental result in Figure 8 0.80
Experimental result in Figure 9 0.94

Experimental result in Figure 10 0.91

Table 5. The time cost of the classification performance.

Experiments Time

Experimental result in Figure 8 81.78 s
Experimental result in Figure 9 43.77 s

Experimental result in Figure 10 71.78 s
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4. Discussion
4.1. Effectiveness of Multi-Attributes

In this section, the performance of the proposed MATCN algorithm was compared
with the method using only original data. Replacing the multi-attribute input in the
MATCN with the single original data input, we can test the effectiveness of the multi-
attribute input. The sediment distribution does not seem continuous enough. There
are many predicted outliers in the second layer. It can be seen from Figure 11 that the
other methods acquired classification results that appear to include more outliers than the
proposed method. It can be concluded that the competing model based on a single input
performed poorly when compared with the proposed method.
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Figure 11. Result (3) of the proposed method. (a) The original SBP image, (b) the classified result
using the proposed method, (c) the classified result using single input network, and (d) the ground
truth of the proposed method.

The MATCN model adopts a multi-attributes scheme and generally works better than
a model that uses a single input, as shown in Figure 11b,c.

Our MATCN achieves good numerical performance. We attribute this to the combina-
tion of TCN-based and attribute-based classifications.
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4.2. Determination of Red Line

After calculating the multi-attributes, processing is needed before they are input into
the deep learning model. Sampling points located below the manually determined red
line are recognized as useless, and the instantaneous attribute values of these sampling
points will be set as zero. As it is determined manually, bias can be induced when drawing
the red line. Usually, the red line is the lowest boundary of the reflector, and the induced
bias can make the red line higher or lower than the lowest boundary of the reflector. To
analyze the influences of line bias on the final predicted results, two experiments have been
employed. In the first experiment, the determined red line is slightly higher than the low
boundary of the reflector. Figure 12b shows the predicted result when using this red line
to wipe out useless sampling points. The black rectangle in Figure 12 indicates that the
prediction accuracy is not good enough. In the second experiment, the determined red line
is lower than the lowest boundary of the reflector. Figure 12b shows the predicted result
when using this red line to wipe out useless sampling points. The black rectangle indicates
that the proposal has achieved good performance. The analysis above shows that it would
be better to draw the red line a little lower than the low boundary of the reflectors.
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4.3. Comparisons

In this section, the performance of the proposed method is compared with a classification-
based method [46]. This classification method chooses the horizons first. Then, based
on the constraint of the horizons, various features are extracted from the layers, and the
sediment types are classified based on various features. The result of the classification is
shown in Figure 13, and, with the exception of the first layer, it is found that there are a
large number of misclassifications. This is because deep layer echoes are weak, and it is
difficult to extract effective features. Compared with the method in this paper, the effect is
not good. In addition, only unsupervised classification can be achieved, and it is difficult to
determine the sediment types.
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Figure 13. Results using the classification-based method. (a) The classified result of Figure 7, (b) the
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4.4. Limitations and Future Works

It is hard to obtain an accurate sediment boundary as the lateral characteristics have not
been taken into consideration. When the sediment distribution or the reflector distribution
is complex, the performance of the proposed method is worse than in other situations.
Figure 11 shows that the proposed method is robust to noise to some degree; however, it
should be noted that the performances of the proposed method in noise-free situations are
far better than in noisy situations. In addition, overfitting should also be noted. Considering
these limitations, we think a transformer model can be introduced into this sediment
classification task. More efforts in the field of marine sediment classification should be made
to simultaneously consider the latent characteristics of SBP data and the characteristics
of SBP data along pings. Another important future work is the establishment of a train
sampling set, different SBP data in different areas as well as corresponding core-holes
should be employed to build the train data set.

5. Conclusions

In this paper, we present an MATCN for sediment classification in SBP data, consider-
ing the IA, IF, and IP data classification potentials, which fuse multi-attributes to explore
the latent sediment characteristics. The sediment classification task based on sub-bottom
acoustic signal is molded as a time-sequence-to-sequence task and a novel deep learning
model was constructed by combining 1D CNN with TCN to achieve better feature extrac-
tion performance. Then, multi-attributes were put into the deep learning model to predict
the sediment types. Our experiments show that MATCN is an effective architecture that
produces sub-bottom sediment maps.
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In future works, we will combine more prior characteristics in MATCNs with the data-
driven learning framework, such as the latent distribution of the horizons. The transformer
model can also be introduced into this sediment classification task. In addition, we also
plan to apply the deep learning-based method to the data of other water areas and to
attempt to develop this form of method to the direct prediction of particle sizes.
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