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Abstract: Unmanned surface vehicles (USVs) have garnered significant attention across various
application fields. A sufficiently accurate kinetic model is essential for achieving high-performance
navigation and control of USVs. However, time-varying unobservable internal states and external
disturbances pose challenges in accurately modeling the USV’s kinetics, and existing methods face
difficulties in accurately estimating unknown time-varying disturbances online while ensuring precise
mechanism modeling. To address this issue, a novel grey-box modeling method based on incremental
learning and mechanisms (GBM-ILM) is proposed. Its union structure combines the advantages of
both incremental learning networks and physical mechanisms for estimating the USV’s full kinetics.
Depending on the linear parameter-varying (LPV) mechanism, it not only adheres to physical laws
but also calculates the unstructured model errors. An incremental learning network is implemented
to continuously refine model errors, by accounting for the USV’s time-varying characteristics and
iteratively updating the network parameters and structures to adapt to different USV states and
environmental disturbances. To validate this method, we developed the ‘Salmon’ USV and conducted
identification experiments in a lake. Compared to tests of other state-of-the-art methods, our method
has better adaptability, with 46.34%, 14.86%, and 6.87% accuracy improvements when estimating the
USV’s forward, turning, and sideslip dynamic model, respectively.

Keywords: unmanned surface vehicle; kinetic model; model error; incremental learning; time-varying
disturbance

1. Introduction

Unmanned surface vehicles (USVs) have garnered considerable attention over the past few
decades [1,2]. Thanks to their advantages of inherent security, autonomy, and programmability,
they have been applied in different types of scenarios, such as transportation [3], environmen-
tal monitoring [4,5], marine resource exploration [6,7], disaster rescuing [8], and marine
reconnaissance [9,10]. In engineering applications, the stable navigation control of USVs
is vitally important, and the cornerstone of effective navigation control in USVs is a reli-
able kinetic model [11,12]. However, developing such a model is fraught with challenges
stemming from three aspects: the complex underlying physical mechanisms, numerous
convoluted hydrodynamic derivatives, and unpredictable external influences. The compli-
cated hydrodynamic principles and numerous coefficients reflect the USV system’s strong
nonlinearities and coupling between steering and speed. These factors are strongly coupled
to the system dynamics, particularly during USV maneuvers, making it difficult to formu-
late an accurate, structured model. Additionally, the broad spectrum of USV applications
introduces further complexities in modeling, particularly to the internal and external parts
of the USV. For example, during water-sampling missions, shifts in the USV’s centre of
gravity and balance directly make a marked impact on its motion dynamics. Similarly,
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variables such as wind, waves, and currents are not only unpredictable but also difficult
to measure, particularly in marine reconnaissance missions that extend from day to night.
Given these challenges, a sufficiently accurate yet straightforward control-oriented kinetic
model, along with the identification of accurate parameters, remains a key problem in the
field of USV control and planning theory [13].

1.1. Contributions

The primary contribution of this study lies in the presentation of the novel grey-box
modeling method based on incremental learning and mechanism (GBM-ILM) for USVs.
The study revolves around the following summarized ideas:

(1) In contrast to the existing modeling literature, the novel modeling framework of
the proposed GBM-ILM can combine the advantages of both incremental learning networks
and physical mechanisms. It leverages the LPV mechanism to capture the fundamental
laws governing the USV’s kinetics. An incremental learning network is embedded to
compensate for inaccuracies and unmodeled parts in the mechanism model caused by
unknown, time-varying disturbances. Introducing the incremental learning network, the
GBM-ILM can constantly adapt to new environments and situations by increasing network
nodes and updating the parameters of the network based on whether the incoming data
are new or already learned. As a result, a more precise USV kinetic model can be quickly
estimated to adapt to the different states subsequently.

(2) To validate this novel modeling method, we have independently developed the
‘Salmon’ USV experimental platform and conducted groups of system identification experi-
ments in a lake. The USV is equipped with a high-precision integrated navigation system
and an automated control system, to guarantee the authenticity, precision, and number
of experimental data samples. The efficacy of the method was verified by comparing its
performance with other typical and state-of-the-art modeling methods.

1.2. Outline

This study provides a comprehensive overview of the GBM-ILM method, which
combines an incremental learning network with a physical mechanism model for learning
the USV’s kinetic model. The remainder of the article is structured as follows: Section 2
introduces the related works on USV kinetic modeling. Section 3 details the GBM-ILM
method, based on the physical mechanism and incremental learning network, to capture the
USV’s kinetics. In Section 4, we introduce the self-developed USV experimental platform
and outline the system identification experiments. Section 5 presents a thorough analysis
and discussion of the experimental results, comparing the accuracy and effectiveness
with other typical modeling methods. Finally, Section 6 provides the conclusions and
summarizes key findings.

2. Related Works

Generally, approaches to system dynamics modeling can be categorized into three
types. The first is white-box modeling, also known as a knowledge-driven model, which is
shown in Figure 1(1), where the model’s structure is perfectly delineated based on prior
knowledge and physical principles. Here, the reference models rely on well-understood
and explicitly defined ‘standard’ equations, and the model parameters are obtained by
identification algorithms. The second is black-box modeling, also known as a data-driven
model, which is shown in Figure 1(2), where the systems do not necessarily offer explicit
‘standard’ equations to describe system dynamics. These models are often stochastic
and estimated by multiple learning algorithms. The third is grey-box modeling, com-
bining white-box and black-box modeling, which is shown in Figure 1(3,4). In grey-box
modeling, its hybrid structure explores the functional relationships between the input,
output, and estimated values (derived from the white-box model) by employing the
black-box model [14,15].
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White-box modeling has been rapidly researched and widely used for a long time.
In this approach, models are meticulously crafted based on known kinematic and kinetic
theories. These models account for a range of factors affecting a USV, such as hydrodynamic
forces, control forces, and environmental disturbances. Notable models in this category
include the first-order Nomoto model [16], the Abkowitz model [17], a mathematical
maneuvering model [18], the Manoeuvring Modeling Group (MMG) model [19], and a six
degree-of-freedom (six-DOF) nonlinear kinetics model and its deformation models [20,21].
The structures of these models are well-defined, and unknown parameters can be obtained
by various system identification methods. One of the most popular parameter identification
methods is the Kalman filter (KF) [22,23] and its variants, such as the extended Kalman
filter (EKF) [24,25] and the unscented Kalman filter (UKF) [26–28]. Another popular
method for parameter identification is the least squares (LS) method [29–32]. White-box
models are typically derived from expert knowledge; however, partial studies tend to
oversimplify specific dynamic properties or assume that the USV system operates under
time-invariant conditions (in calm waters) [14,33]. Furthermore, the model’s effectiveness
is often constrained by the researchers’ limited prior physical knowledge of the USV’s
dynamic characteristics, as well as their observational capacity during maneuvering. These
limitations can compromise the model’s accuracy and adaptability to changes in both
internal states and external environmental factors, such as payload variations, structural
changes, wind, waves, and currents [34].

Black-box modeling is an approach for systems whose structures and mechanisms are
completely unknown. This method establishes an optimal mapping relationship between
input and output data, bypassing the need for any prior physical knowledge of the explicit
mathematical model that reflects the system’s dynamic characteristics. Artificial neural net-
works (ANNs) are commonly employed in black-box modeling [35,36], such as two-layer
fully connected neural networks [37], three-layer feedforward neural networks with Cheby-
shev orthogonal basis functions [38], generalized ellipsoidal basis function fuzzy neural
networks [39], long short-term memory (LSTM) [40], recursive neural networks [41], and
deep learning networks [42]. These architectures aim to map the dynamic relationship be-
tween input state variables and output variables such as hydrodynamic force and moment,
identifying nonlinear functions in the process. Another prevalent technology in this domain
is the kernel-based method, which relies on statistical approaches. This technique maps
training data into a high-dimensional feature space using a kernel trick, circumventing the
need for physical insight into the system [43]. By doing so, it more effectively captures
the nonlinear relationship between input and output data. In the kernel-based methods,
support vector machines (SVMs) and the Gaussian process (GP) have attracted widespread
interest. SVMs have been used in various studies [44–46]; additionally, a variant of SVM,
known as the least square support vector machine (LSSVM) [47], aimed to minimize both
the empirical risk (i.e., estimation error in the training data) and structural risk (i.e., model
complexity) [48–52]. In contrast, GP regression operates as a Bayesian learning method
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rooted in kernel functions. Unlike SVMs, which generally excel in limited sample scenarios,
the GP provides an intuitive confidence interval for output results, thus offering insights
into their reliability. The model produced through GP regression is probabilistic; thus, it
has both universality and solvability. The GP has been used in various studies [53–58].
However, these kernel-based modeling approaches often lack a strong theoretical under-
pinning, due to the absence of rational physical laws [56,57]. In practical applications
involving USVs, the model’s performance is subject to significant uncertainties. This is
because both the state of the USV system and the external environmental factors are contin-
ually changing, leading to outdated data, exceeding of the model’s applicability, or a loss
in efficacy [59].

Contrary to white-box and black-box modeling, grey-box modeling can synthesize
the advantages of both approaches, by not only optimizing the identification coefficients
of complex systems but also fully accounting for the mechanism of USV maneuvering. In
parallel grey-box modeling, Wang et al. [15] introduced a grey-box model based on a SVM,
utilizing a third-order Taylor expansion as an alternative to the MMG and Abkowitz model
structures. However, this model overlooked hydrodynamic coefficients and suffered from
extended computation times. Similarly, Mei et al. [60] proposed a grey-box framework
for modeling ship maneuvering using an MMG model, random forest (RF), and a SVM.
They employed fewer free-running model test data and utilized the SVM technique to
identify the MMG model parameters through a tightly coupled approach. Chen et al. [61]
advanced a four-DOF grey-box model for ship maneuvering based on the MMG model and
LSSVM. However, their focus remained solely on the kinetics of the USV, identifying only
the relationship between established white-box models and black-box methods. Reference
model parameters can be dynamically adjusted using black-box techniques, although
these are susceptible to large errors in changeable experimental environments. In serial
grey-box modeling, our previous research combined a linear parameter-varying (LPV)
model with the UKF to estimate the kinetic model of the USV. The limitation here is that
the UKF parameters had to be predetermined and that the model error was assumed to
be noise-driven [62]. Thus, the model had poor adaptability to datasets from different
times or mutable environments. A critical research focus in grey-box modeling for USVs
is the need for models to adapt to changing environmental conditions and system states
in real-time. This is crucial to rationally divide the white and black parts and avoid the
existing problems of both models.

The major publications in recent years within the USV modeling research field are
listed in Table 1. Based on the analysis of the above-mentioned literature, simplified
mechanism models decrease accuracy due to their omission of uncertainty, while data-
driven network models result in errors out of their scope. Additionally, models derived
from offline experimental data struggle to adapt to dynamic environments. This is because
the offline data are time-invariant and fail to capture changes in the state of the USV,
leading to limitations in the models’ generalizability and adaptability. Therefore, there is
an urgent need for an intelligent method that can dynamically and accurately estimate the
USV kinetic model online, while considering uncertainties and changes in both the internal
USV systems and the external environment.

Table 1. Major relevant research on USV kinetic modeling in recent years.

References Model Algorithm Mode

Sonnenburg and Woolsey (2013) [12] White-box LS Offline

Luo et al. (2014) [44] Black-box SVM Offline

Zhang et al. (2015) [29] White-box LS Offline

Xu and Guedes Soares (2016) [48] Black-box LSSVM Offline

Han et al. (2017) [62] Grey-box LPV + UKF Online

Ariza Ramirez et al. (2018) [53] Black-box GP Offline
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Table 1. Cont.

References Model Algorithm Mode

Woo et al. (2018) [42] Black-box LSTM-ANN Offline

Mei et al. (2019) [60] Grey-box MMG + RF Offline

Xu et al. (2020) [52] Black-box LSSVM Online

Zhu et al. (2020) [49] Black-box LSSVM Offline

Dimitrov et al. (2021) [40] Black-box LSTM-ANN Offline

Alexandersson et al. (2022) [25] White-box EKF Online

Chen et al. (2022) [61] Grey-box MMG + LSSVM Offline

Shen et al. (2022) [27] White-box UKF Online

Wang et al. (2022) [23] White-box GP Online

Xue et al. (2022) [56] Black-box GP Online

Yue et al. (2022) [22] White-box KF Online

Liu et al. (2023) [58] Black-box GP Offline

Inspired by previous studies, this study introduces a novel grey-box modeling method
that combines incremental learning with a mechanism model. This approach actively
calculates model errors in real-time, identifying them as unmodeled parts. Simultaneously,
to ensure adaptability to time-varying environmental conditions and USV states, it fits these
model errors using an incremental learning network, which can continuously update both
its structure and parameters by iteratively incorporating new data. This compensates for the
shortcomings of the mechanism model and improves the overall modeling accuracy. The
heart of the incremental learning network is the kernel recursive least squares with approx-
imate linear dependency (KRLS-ALD) algorithm [63]. This algorithm solves the nonlinear
inseparability problem by projecting input data into the reproducing kernel Hilbert space.
This enables the establishment of a quick and accurate online model adaptable to changing
conditions. The approximate linear dependency (ALD) formula can determine whether the
input data are new to the incremental learning network model [64]. In summary, this study
not only makes the USV kinetic model interpretable but also determines the boundaries for
model errors. Building on this foundation, it estimates and compensates for model error
using incremental learning, thereby enhancing the precision of USV dynamic modeling.
The main parameters in the article are explained in Table 2.

Table 2. The nomenclature of main parameters in this article.

Parameters Definition Parameters Definition

(xg, yg) USV’s gravity center m Mass of the USV [kg]

u, v, r Velocities of surge, sway, and yaw rate [m/s; rad/s] xδ
Longitudinal moment from center to pivot

point
ψ Course angle [rad] β Sideslip angle [rad]
δ Rudder angle [rad] T Resultant thrust force [N]

.
u,

.
v,

.
r Acceleration of the surge, sway, and yaw motions [m/s2; rad/s2] X∑, Y∑, N∑ Resultant forces and torque exerted on USV [N]

Izz Yaw moment of inertia with Z-axis [kg·m2] θ(t) LPV parameter value
w Weight matrix Φ(x) Mapping function

xi . . . xt State input yi . . . yt Prediction output
δt ALD condition σ Kernel width

k(x·x) Kernel function Kt Kernel matrix

3. The Grey-Box Modelling-Incremental Learning and Mechanism (GBM-ILM) Method

We propose the GBM-ILM method with a novel hybrid modeling framework, outlined
in Figure 2, which aims to guarantee both the physical rationality and accuracy of the
USV kinetic model. The flow graph of this modified active modeling and incremental
learning network based on KRLS-ALD is divided into two parts. In Part I, we introduce
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a modified active modeling framework, where a structured model is fixed, building on
previous research in Section 3.1. The onboard computer and operator can relay desired
commands to drive the practical USV system. Simultaneously, multiple sensors attached
to the USV continuously measure real-time position and attitude data, the mechanism
model also estimates an idealized USV state obtained, and the unforeseeable model error is
calculated in this framework, as described in Section 3.2.1. Part II delves into the KRLS-ALD
network model, which fits and estimates the model error from Part I. The parameters and
structure of this network model are designed to be incrementally updated, as described
in Section 3.2.2. This network model can update its structure and parameters by learning
new kinds of data from changeable environments and USV states. The dotted line of each
color describes how training and testing datasets are transferred from the active modeling
framework to the network model. This method provides the USV states, USV control
commands, and model errors as input data, with the model error serving as the target data
for network training. The input dataset comprises either a set of synchronous values or a
series of consecutive historical moments, as described in Section 3.2.3. With the training
of this network model, its ability to predict the model error is gradually enhanced; this
incremental learning strategy thrives even with limited samples, unlike other traditional
machine learning theories, which rely on large sample sizes. As both the USV system
and its environment change, the amount of data increases, and the network model keeps
constantly updating.
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3.1. Unmanned Surface Vehicle (USV) Mechanism Model

Generally, USV kinetics are commonly defined as surge, sway, heave, roll, yaw, and
pitch, as enacted by the Society of Naval Architects and Marine Engineers (SNAME). In this
study, to streamline our analysis, we focus solely on three-DOF—surge, sway, and yaw—to
describe the USV’s horizontal planar motion, neglect heave, roll, and pitch motions; the
USV coordinate frames are illustrated in Figure 3.
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is the USV body coordinate frame, V is the USV’s resultant velocity. The nomenclature of main
parameters is listed in Table 2, as is the nomenclature used below.

3.1.1. Basics of Unmanned Surface Vehicle Modeling

According to [21], the detailed three-DOF kinetic model for a USV is as follows:
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(1)

On the USV, external forces are divided into two sections: hydrodynamic forces and
thrust forces. The resultant forces in the surge, sway, and yaw are dependent on the USV
motion states, the forces, and torque produced by the thruster. These can be described
using the following equations:

X∑ = Xhydro + Xctrl + Xdis
Y∑ = Yhydro + Yctrl + Ydis
N∑ = Nhydro + Nctrl + Ndis

(2)

where Xhydro, Yhydro, and Nhydro are hydrodynamic forces, while Xctrl, Yctrl, and Nctrl
are thrust forces. The resisting forces and torque can be represented using polynomial
equations [65], which are given in Appendix A. Generally, USVs are designed with lateral
symmetry, by letting yg = 0, v = [u, v, r]T, and substituting Equation (2) into Equation (1)
allows us to rewrite Equation (1) as follows:

M
.
v = N(v)v + Fctrl (3)

where M =


m− X .

u 0 0

0 m−Y.
v mxg −Y.

r

0 mxg − N .
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r

 , N(v) =
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−mr Y|v|v|v|+ Yv Y|v|r |vr |+ Yr

mxgr N|v|v|v|+ Nv N|v|r |vr |+ Nr

 .

Obviously, the thrust force equations are derived as follows:

Fctrl = [Xctrl Yctrl Nctrl]
T = [T cos δ− T sin δ Txδ sin δ]T (4)

Thrust T is a function of the forward velocity u(u > 0) and propeller speed δn [20],
as follows:

T = b1|δn|δn + b2|δn|u = k1ε2/3 + k2ε1/3u (5)

where ε is the propeller throttle value, and b1, b2, k1, and k2 are constants.
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3.1.2. Thrust and Steering Models

This section introduces two prominent linear models. In many existing studies, a
linearized model serves as an approximation to describe the dynamics of the USV system.
In the forward motion condition, we assumed that the yaw rate r = 0, the sway velocity
v = 0, and the forward velocity u = u0 [62]. Equation (3) can be linearized as follows:

M
.
v = N1v + Fctrl (6)

where N1 is a reduced matrix that replaces N(v), as follows:

N1 =

X|u|u|ur|+ Xu 0 0
0 Yv Yr −mu0
0 Nv Nr −mxgu0

 (7)

It is worth noting that the surge motion can generally be decoupled from the sway–yaw
subsystem when the forward speed remains constant or changes within a limited range.
Thus, Equation (6) can be readily linearized in its perturbed form as follows:

∆
.
u = a∆u + b∆T (8)[ .

v
.
r

]
=

[
a11 a12
a21 a22

][
v
r

]
+

[
b1
b2

]
Tδ (9)

where ∆u = u− u0, ∆T = T − T0, and T0 is the constant thrust force of the USV; other
coefficients, namely aij(i = 1, 2; j = 1, 2) and bk(k = 1, 2), are given in Appendix B.

The Nomoto model can be described as follows:

r(s)δ−1(s) = Kr(T3s + 1)[(T1s + 1)T2s + 1]−1 (10)

where T1T2= 1/(a11a22 − a12a21) , T1 + T2 = −(a11 + a22)/(a11a22 − a12a21) , T3 = b2/(a21b1 − a11b2) , and
Kr = [(a21b1 − a11b2)T0]/(a11a22 − a12a21) .

The relationship between δ and r can be described as a simple function [16], as follows:

r(s)δ−1(s) = Kr[(T1 + T2 − T3)s + 1]−1 (11)

When the USV’s heading suffers minor perturbations, the sideslip angle β 6= 0. As-
suming that the forward velocity remains unchanged and the yaw perturbations are small,
the resultant thrust F∑ acts in the direction opposite to the resultant velocity V. Under
these assumptions, the dynamics of sway are formulated as m

.
v + mur = −F∑ sin β. Letting

u = V cos β and v = V sin β, we obtain the following:

Tβ

.
β + β = −Kβr (12)

where Tβ = mV/F∑ and Kβ = mV/F∑. By combining Equations (11) and (12), a fully
linearized steering model is obtained, as follows:[ .

β
.
r

]
=

[
−1/Tβ −1

0 −1/Tr

][
β
r

]
+

[
0

Kr/Tr

]
δ (13)

Equation (13) is known as the linear model (Nomoto), considering sideslip motion.

3.1.3. Linear Parameter-Varying Model

According to the existing literature [66], an LPV system is usually defined as a linear
system with state-space representations that depend on some external variable θ(t). The
system can be described by the following equation:

.
v = A[θ(t)]v + B[θ(t)]u (14)
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where the scheduling variable θ(t) is a priori unknown but can be measured online. If the
function θ(t) contains states from the state vector v, then Equation (14) is called an LPV
model [67]. In other words, LPV systems consist of an indexed collection of linear systems,
where the indexing parameter is endogenous, as it depends on the system’s state.

The nonlinear model of the USV system, as shown in Equation (6), includes many
parameters that are strongly coupled and difficult to identify through real-world experi-
ments. Extracting the nonlinear structure of the USV system for conversion into an LPV
form proves difficult. In this section, we re-analyze Equation (6), to show that it can be
transferred into the following LPV format:

.
v = A(v)v + Bu (15)

where A(v) = M−1N(v), u = T[sin δ cos δ]T, and B = M−1
[

0
1
−1
0

xδ

0

]T

.

The LPV model structure represents an alternative formulation of the physical
system model for the considered hydrodynamics of the USV. Its key advantage lies
in presenting the nonlinear system structure in a form akin to a special type of linear
structure, offering the following two benefits: (1) its parameters can be identified us-
ing linear algorithms, thereby yielding a nonlinear mathematical model, and (2) well-
established linear control synthesis techniques can be applied and adapted to achieve
satisfactory performance.

3.2. Incremental Learning Model
3.2.1. Modified Active Modeling Framework

While three-DOF kinetic models offer a certain level of insight, achieving precise pa-
rameter values remains challenging, due to their time-varying characteristics and
the inherent uncertainty involved. To address these issues, this study employs an ac-
tive modeling technique to estimate the model error, treating the unstructured factors
in the USV system. The active modeling framework regards these unstructured models
as unknown disturbances, obtaining them through an online estimator. Numerous stud-
ies validate the effectiveness of active modeling in real-world system control. The main
idea of the active modeling technique is the description of a system, using the following
system equation:

.
x = f(x, u) + ∆f (16)

where x is the state of the system; u is the input of the system; f is the nonlinear structured
model function; and ∆f is the model error vector, which includes all the factors of the
unstructured model mismatch (i.e., model imprecision and external disturbances) and may
relate to the system state x or even the control input.

In this framework, Equation (16) is combined with a predefined structured model
and unstructured model errors to describe the dynamic characteristics of the system under
control. The structured model serves as the foundation for designing a nominal controller,
while the estimated model error can be combined with adaptive schemes to improve the
closed-loop performance of that controller. To obtain the model error, we rewrite the system
Equation (15) to conform to the state-space format of Equation (16), as follows:

.
v = Av + Bu + ∆v (17)

where v is the system state vector, Av + Bu represents the structured system dynamics as
shown in Equations (15), and ∆v is the model error.
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3.2.2. Kernel Recursive Least Squares–Approximate Linear Dependency (KRLS–ALD)
Algorithms

In the context of the incremental learning method, we employed a simplified form of the
RLS algorithm to minimize the sum of the squared errors at each time step [63], as follows:

L(w) =
t

∑
i=1

(f(xi)− yi)
2 = ‖ΦT

t w− yt‖
2

(18)

where xi = (x1, . . . , xt)
T is the USV state input, and yt = (y1, . . . , yt)

T is the prediction
vector. The kernel function is utilized as k(x, d) = 〈φ(x), φ(d)〉 = k(‖x− d‖), wherein
d is the central vector of the network, φ(·) maps x into a higher-dimensional Hilbert space,
and Φt = [φ(x1), . . . , φ(xt)], within considering the residual component vector.

Typically, we would minimize Equation (18) with respect to w and to obtain
wt = argminw‖ΦT

t w− yt‖
2
= (ΦT

t )
†yt, where (·)† denotes the pseudo-inverse. The classi-

cal RLS algorithm, as described by [68], leverages the matrix inversion lemma to minimize the
loss L(w) online, eliminating the need to recompute the matrix (ΦT

t )
† at each step.

It is worth noting that the feature space could have very high dimensionality, which
makes matrix manipulations computationally intensive, especially for matrices such as Φt.
However, as can be easily verified, the optimal weight vector can be expressed in a more
tractable form, as follows:

wt =
t

∑
i=1

αiφ(xi) = Φtα (19)

where α =(α1, . . . , αt)
T. Substituting this into Equation (18) and altering the notation, we

obtain the following equation:
L(α) = ‖Ktα− yt‖

2 (20)

where Kt = k(xt, xt). The optimal solution to Equation (20) is given in Appendix C.
In order to adapt to dynamic changes in network structure, we integrate ALD criterion

into the kernel recursive least squares (KRLS) algorithm [64]. For the approximate linear
dependency (ALD) formula [69], assuming that the USV obtains xt, and dictionary is Dt−1,
the number of nodes is mt−1.

δt = ktt − kT
t−1(xt)k−1

t−1kt−1(xt) ≤ µ (21)

We consider one of two scenarios in an online scenario at each time step, as follows:

(1) φ(xt) is the ALD on Dt−1, i.e., δt ≤ µ and at = K̃
−1
t−1k̃t−1(xt). In this case,

Dt = Dt−1, mt = mt−1 + 1, and K̃t = K̃t−1.
(2) δt > µ, and, therefore, φ(xt) is not ALD on Dt−1. xt is added to the dictionary,

i.e., Dt = Dt−1 ∪ {xt}, mt = mt−1 + 1, and K̃t grows accordingly.
The KRLS update equations derived are given in Appendix D.
For the final equality, we use aT

t K̃t−1 = k̃t−1(xt)
T. The network prediction output

about state xt can be normalized as follows:

yt+1 = wtKt(xt) (22)

3.2.3. Model Error Prediction

In this GBM-ILM method, the network can estimate model errors by means of iterative
prediction. As shown in Figure 4, firstly, at time t, the input data are obtained from
the active modeling framework; it predicts xe at time t + 1 using the network model in
the inner loop. Secondly, in the same step, the network iteratively predicts xe for the
next time step until it reaches time t + n. Finally, the actual value at time t + 1 serves to
adjust the network. Using this flow, the network model can predict model errors in future
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time, thereby estimating the entire USV’s kinetic model, which can be put into navigation
and control.
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Through Equation (22), the model error prediction function is undertaken as follows:

yt+1 = wtKt(xt, xt−1, xt−2 . . . , xt−m) (23)

where xi = [ui vi ri Ti δi xei]
T, i = t, t − 1, . . . , t − m, and the input data include USV’s

state (u, v, r), control input (T, δ), and model error xe, which all come from the system
identification experiments on the USV platform, as described in Section 4.

4. Unmanned Surface Vehicle System Model Identification

To verify the effectiveness and accuracy of our proposed GBM-ILM method in USV
kinetic modeling, a real-world USV equipped with accurate state measurement capabilities
is essential. Additionally, it is imperative to collect a large amount of field experiment data
under suitable water conditions. These data will be utilized for real-time model estimation
and prediction through the incremental learning network.

4.1. Unmanned Surface Vehicle Platform Setup

Our research group—the Autonomous Robot Group, State Key Laboratory of Robotics,
Shenyang Institute of Automation, Chinese Academy of Sciences (SIA, CAS)—has devel-
oped the ‘Salmon’ USV experimental platform. The main parameters of this USV are shown
in Table 3.

Table 3. Main characteristic parameters of ‘Salmon’ USV.

Mass Length Breadth Height Minimum Turning Radius

70 kg 2.6 m 0.8 m 0.7 m 1.5 m

Built with a modular design, each subsystem is responsible for different working tasks;
the developed USV experimental platform is shown in Figure 5. The hardware system
mainly comprises six main subsystems: (1) onboard computer, (2) navigation, (3) remote
controller, (4) power battery, (5) communication, and (6) propulsion.
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The USV’s hardware architecture is described in Figure 6.
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For the accuracy of the location and navigation data within the system identification
dataset, we installed a specialized navigation subsystem on the USV. This subsystem is
designed to continuously measure the USV’s spatial position, including both location and
orientation. To achieve this, we equipped the USV platform with a NAV982 Global Naviga-
tion Satellite System Inertial Navigation System (GNSS/INS) integrated navigation module
along with two Global Position System (GPS) antennas. This module offers horizontal
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position accuracy within 0.5 m and vertical position accuracy within 0.8 m. It rapidly
delivers raw navigation and location information at a 20 Hz frequency to the onboard
computer, enabling precise navigation during system identification missions in open water
areas. The key performance parameters for the NAV982 GNSS/INS integrated navigation
module are listed in Table 4.

Table 4. Main parameters of navigation system.

Horizontal Position Accuracy Vertical Position Accuracy Velocity Accuracy Course Accuracy Pitch/Roll Accuracy Sampling Frequency

0.5 m 0.8 m 0.007 m/s 0.1◦ 0.2◦ 20 Hz

To ensure precise navigation capabilities for the USV in open water areas, we designed
multiple control strategies for the hardware system, all running within the Ubuntu oper-
ating system on the USV’s computer subsystem. Following the modular, multithreaded
design ideology, the software system is organized into the following four main parts: (1) the
tasks module, which defines detailed action plans for each identification task; (2) the control
module, which serves as the highest level of the software structure; (3) the communication
module, which is responsible for linking sensors, controllers, and equipment; and (4) the
devices module, which includes both navigation and control hardware. The software
structure of the developed USV is graphically described in Figure 7.
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4.2. Unmanned Surface Vehicle System Identification Experiments
4.2.1. Identification Experiments Process

To minimize external influence, we conducted identification experiments at the Shui
Fu Temple Lake. The experimental conditions were carefully selected, as follows: (1) the
water depth is 5–25 m, more than eight times the depth of the USV’s mean draught; (2) the
wind conditions are rated as two on the Beaufort scale, and the wave height is classified
as a sea state degree of one; and (3) the current is uniform throughout the testing area.
Notably, while we aimed for the calmest water conditions for our experiments, the USV
was designed to operate in conditions up to a sea state degree of two, currents up to
2 m/s, and winds classified as less than three on the Beaufort scale. We carried out two sets
of experiments to identify the model parameters. Figure 8 shows the conditions of the
identification experiment of the USV platform.

(1) Linear experiment: for thrust model identification, the USV responded to a refer-
ence throttle while maintaining a fixed rudder angle; ε changes and δ = 0. Under these
ideal conditions, the rudder was set to zero, allowing the USV to navigate along a straight
path without external disturbance. The throttle input was a step signal, with its maximum
value limited to 60% of the full throttle range.



J. Mar. Sci. Eng. 2024, 12, 627 14 of 27

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 28 
 

 

experiments to identify the model parameters. Figure 8 shows the conditions of the iden-

tification experiment of the USV platform. 

 

Figure 8. USV identification experiments. 

(1) Linear experiment: for thrust model identification, the USV responded to a refer-

ence thro�le while maintaining a fixed rudder angle;   changes and 0  . Under these 

ideal conditions, the rudder was set to zero, allowing the USV to navigate along a straight 

path without external disturbance. The thro�le input was a step signal, with its maximum 

value limited to 60% of the full thro�le range. 

(2) Zigzag experiment: for full-state USV model identification, we varied the rudder 

angle while keeping the thro�le fixed at    30%, 60%, and 100% of its full range and   

changing. Various USV parameters, including rudder angle  , thro�le  , forward ve-

locity u , sideslip velocity v , and turn rate r , were captured using onboard sensors. The 

rudder was operated repetitively more than five times during these tests, and data were 

measured every 5 milliseconds for comprehensive analysis. Figure 9 shows part of the 

identification experimental data of the USV platform’s state. 

  

(a) (b) 

Figure 9. USV identification experiments data results. (a) Linear experiment; (b) zigzag experiment 

( %30  ). 

  

Figure 8. USV identification experiments.

(2) Zigzag experiment: for full-state USV model identification, we varied the rudder
angle while keeping the throttle fixed at ε = 30%, 60%, and 100% of its full range and
δ changing. Various USV parameters, including rudder angle δ, throttle ε, forward velocity
u, sideslip velocity v, and turn rate r, were captured using onboard sensors. The rudder
was operated repetitively more than five times during these tests, and data were measured
every 5 milliseconds for comprehensive analysis. Figure 9 shows part of the identification
experimental data of the USV platform’s state.
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Figure 9. USV identification experiments data results. (a) Linear experiment; (b) zigzag experiment
(ε = 30%).

4.2.2. Model Identification

The linear systems defined by Equations (8), (9) and (13) can be discretized directly in
the following form [70]:

x[k] = Adx[k− 1] + Bdu[k− 1]
z[k] = x[k] + η[k]

(24)

where Ad = eTsA; Bd =
∫ Ts

0 eAtdtB; A and B are the system dynamics and input matrices
for the original continuous system, respectively; η is the noise uncorrelated with the input
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u; Ts is the sampling period; and Ts = 0.05 second (s) in the experiment. Model parameters
can be derived directly using the LS algorithm, as follows:

θ̂ = ZHT(HHT)
−1

(25)

where θ = [AdBd] ; Z = [z[2]z[3] . . . z[N]] ; and H =
[
z[1]z[2] . . . z[N − 1] u[1]u[2] . . . u[N − 1]

]T
.

The explicit expression of the model can be deduced from Equation (15). The thrust
model is obtained as follows: u[k + 1] = ad

11u[k] + ad
12|u[k]|u[k] + bd

11T. For the LPV model,
we obtain the following:

u[k + 1] = ad
11u[k] + ad

12|u[k]|u[k] + ad
13v[k]r[k] + ad

14r2[k] + T̃[k] cos δ[k]
v[k + 1] = ad

21u[k]r[k] + ad
22v[k] + ad

23|v[k]|v[k] + ad
24r[k] + ad

25|r[k]|r[k] + (b21/b11)T̃[k] sin δ[k]
r[k + 1] = ad

31u[k]r[k] + ad
32v[k] + ad

33|v[k]|v[k] + ad
34r[k] + ad

35|r[k]|r[k] + (b31/b11)T̃[k] sin δ[k]
(26)

where the remaining coefficients can be identified by the LS method in Section 5.1.

5. Unmanned Surface Vehicle Experiment Results and Discussion

After the development of the USV experimental platform and a series of system
parameters identification experiments in the lake, we obtained enough experimental data
to validate the proposed GBM-ILM method applied in the USV kinetic modeling, mainly
by plotting line graphs for the modeling process, and bar graphs and violin graphs for
the model errors. Section 5.1 describes the mechanism model parameters identification,
Section 5.2 describes the network model parameters selection, Section 5.3 mainly describes
the modeling process and compares the results of multiple methods, and Section 5.4 focus
on the analysis and discussion of the experimental results.

5.1. Mechanism Model Parameters Identification

In linear experiments, the USV’s rudder angle was set to zero, and the throttle alternated
between 60% and 0% of the full throttle using a rectangular waveform. In zigzag experiments,
the throttle was set to 30%, and the rudder angle followed a sawtooth wave with an amplitude
of π/3. According to the linear model and LPV model (Sections 3.1.2 and 3.1.3), the identified
parameters are given in Table 5 and Table 6, respectively.

Table 5. Parameters of linearization model.

Parameters in forward dynamic
a b

−0.3165 1

Parameters in turning and sideslip dynamics
A B[

0.9856 0.0271
−0.0028 0.9818

] [
−0.2613
0.8044

]

Table 6. Parameters of LPV model.

Parameters of forward dynamics
a11 a12 a13 a14

1.005 −0.0052 −0.0695 −0.0259

Parameters in sideslip dynamics
a21 a22 a23 a24 a25 a26

0.0383 0.9631 0.0731 −0.0384 0.0259 −0.4395

Parameters in turning dynamics
a31 a32 a33 a34 a35 a36

−0.0118 0.0043 −0.0283 1.0134 −0.0379 0.9089
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5.2. Network Model Hyperparameter Selection

The kernel width and ALD coefficient are essential to the network model performance.
We identified the optimal values for these hyperparameters through a series of crosscheck
experiments, by comparing the weighted mean square error (MSE) values across different
dynamics, as shown in Figure 10. The detailed values of kernel width and ALD are shown
in Table 7.
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Table 7. Parameters of network model.

Network Coefficient
Dynamic Models

Forward Turning Sideslip

Kernel 0.4316 0.9562 0.5263
ALD 0.0358 0.1132 0.1905

5.3. Modeling Process

Recent research has introduced various modeling methods. In our study, we com-
pared five other typical or state-of-the-art methods with our proposed GBM-ILM method,
including white-box modeling (the linear model [16] and the LPV model [62]); black-box
modeling (the pure KRLS method (our research process) and the pure LSSVM method [49]);
and grey-box modeling (the LPV model combined with the LSSVM method [61]). Through
theoretical analysis, we found that white-box modeling, which includes both the linear and
LPV models, relies strictly on the physical laws governing USVs, but ignores time-varying
disturbances. Black-box modeling, including the KRLS and LSSVM methods, are solely
data-driven and may exceed the error bounds set by physical laws. Grey-box modeling,
specifically the LPV model combined with the LSSVM method, strikes a balance between
physical mechanisms and convenience; however, it is insensitive to new datasets that fall
outside of its training distribution. The training and testing processes for the modeling are
described in Sections 5.3.1 and 5.3.2.

5.3.1. Training Process

During the training process, we first selected 1000 groups of data to train the network
model offline. This raw training data were sourced from practical USV model identification
experiments. With data sampling and a control period of 0.05 s for the USV, the frequency
for kinetic model estimation was set at 0.5 s (10 steps). Two kinds of steps (1 and 10) can
express the accuracy and predictive capacity of these modeling methods. Subsequent
figures showcase the estimation results for Steps 1 and 10 in different dynamics. In each
figure, the left subfigure represents the dynamic model estimation, and the right subfigure
represents the model error of dynamic model estimation. In these figures, the magnification
of part details can help to perform comparisons of each method.



J. Mar. Sci. Eng. 2024, 12, 627 17 of 27

The results of the kinetic modeling (forward velocity, turning rate, and sideslip velocity
dynamics) during the training process are shown in Figures 11–13. The various modeling
methods are color-coded for clarity: the proposed GBM-ILM is represented as a red dotted
line, the grey-box method (LPV with LSSVM) is represented as a green solid line, the black-
box method (pure KRLS) is represented as a yellow dotted line, another black-box method
(pure LSSVM) is represented as a purple dotted line, and the white-box methods (LPV and
linear mechanism) are represented as solid blue and dark blue dotted lines, respectively.
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These figures clearly show that the red dotted and green solid lines, representing the
grey-box methods, have a smaller modeling error than other methods. They are closer to the
real-world model, indicating a superior performance in USV kinetic modeling, compared
to white-box and black-box methods. Through the calculation of the root mean square
error (RMSE) and standard deviation (SD), more intuitive comparison results are shown in
Figure 14, and the detailed values are listed in Table 8. The GBM-ILM is marginally weaker
than the ‘LPV+LSSVM’ method, but better than the other four methods based on predicting
the forward velocity, turn rate, and sideslip velocity at the 1-step interval. At the 10-step
prediction level, GBM-ILM notably outperformed all other methods. To further verify the
online predictive capacity of the proposed GBM-ILM, additional discussion and analysis
on the testing process are presented.
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Table 8. RMSE and SD of modeling errors in training.

Dynamic Models Step Number
Modeling Methods

Linear LPV LSSVM KRLS LPV+LSSVM GBM-ILM

RMSE

Forward velocity 1 step 0.0087 0.0032 0.0258 0.0257 5.9636 × 10−4 7.0466 × 10−4

10 steps 0.0796 0.0302 0.0691 0.0696 0.0040 0.0021

Turning rate 1 step 0.0065 0.0063 0.0313 0.0311 0.0017 0.0030
10 steps 0.0353 0.0337 0.0574 0.0584 0.0068 0.0037

Sideslip velocity 1 step 0.0048 0.0050 0.0272 0.0271 0.0013 0.0025
10 steps 0.0308 0.0245 0.0665 0.0669 0.0048 0.0040

SD

Forward velocity 1 step 0.0064 0.0032 0.0258 0.0258 5.9666 × 10−4 7.0501 × 10−4

10 steps 0.0579 0.0300 0.0692 0.0696 0.0040 0.0021

Turning rate 1 step 0.0064 0.0062 0.0312 0.0311 0.0017 0.0030
10 steps 0.0337 0.0319 0.0571 0.0581 0.0068 0.0037

Sideslip velocity 1 step 0.0048 0.0050 0.0272 0.0271 0.0013 0.0025
10 steps 0.0306 0.0241 0.0665 0.0669 0.0048 0.0040

5.3.2. Testing Process

During the testing process, we used online experiments to test the network model
using incremental data as the input; 1500 groups of data were selected to verify the
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effectiveness, accuracy, and adaptability of the proposed method. The testing data were
in a different distribution than the training data, because of the changeable environment
and USV experimental states. With data sampling and control periods of 0.05 s for the USV,
the frequency for kinetic model estimation was set at 0.5 s (10 steps). Subsequent figures
showcase the estimation results for Steps 1 and 10 in different dynamics. Two kinds of steps
(1 and 10) can express the accuracy and predictive capacity of these modeling methods.
In each figure, the left subfigure represents the dynamic model estimation, and the right
subfigure represents the model error of dynamic model estimation. In these figures, the
magnification of part details can help us to perform comparisons of each method.

The results from the kinetic modeling process, comprising the forward velocity, turn
rate, and sideslip velocity dynamics, are shown in Figures 15–17. As in the training process
figures, various methods are represented by distinct line styles; the GBM-ILM method, the
LPV with LSSVM method, the KRLS method, the LSSVM method, the LPV model, and the
linear model are represented by a red dotted line, a solid green line, a yellow dotted line,
a purple dotted line, a blue solid line, and a dark blue dotted line, respectively. A close
examination of these figures reveals the superior performance of our GBM-ILM method
compared to the other five methods.
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The more intuitive comparison results of RMSE and SD are shown in Figure 18,
and the detailed values are listed in Table 9. The proposed GBM-ILM demonstrates
several significant advantages over other white-box, black-box, and grey-box methods
in predicting forward velocity, turn rate, and sideslip velocity dynamics, at both 1-step
and 10-step intervals. Compared to the LPV with LSSVM method (which performs best
among the typical and state-of-the-art methods) from tests at 1-step, the GBM-ILM method
improves by 46.34%, 14.86%, and 6.87% in accuracy when estimating the USV’s forward,
turning, and sideslip dynamic models, respectively. Unlike other methods, which are
limited by model error bias due to irregularities in the USV state, the GBM-ILM provides
a model compensation process and an incremental learning process for new data that
enhances convergence with the real system model. This becomes particularly evident
when environmental changes exceed the scope of training data, causing a decline in model
adaptability. As the environment changes, the GBM-ILM can effectively reconcile new
incoming data with previously learned data. It can regulate the network model structure
and parameters, continually updating the predictive model to reduce environmental impact
and adapt to the changing environment.
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Table 9. RMSE and SD of modeling errors in testing.

Dynamic Models Step Number
Modeling Methods

Linear LPV LSSVM KRLS LPV+LSSVM GBM-ILM

RMSE

Forward velocity 1 step 0.0075 0.0041 0.0327 0.0310 0.0064 0.0022
10 steps 0.0691 0.0358 0.0920 0.1120 0.0340 0.0046

Turning rate 1 step 0.0074 0.0075 0.0362 0.0364 0.0089 0.0063
10 steps 0.0396 0.0413 0.0680 0.0810 0.0403 0.0083

Sideslip velocity 1 step 0.0131 0.0131 0.0269 0.0282 0.0202 0.0122
10 steps 0.0411 0.0376 0.1097 0.1511 0.0428 0.0101

SD

Forward velocity 1 step 0.0073 0.0038 0.0327 0.0310 0.0038 0.0022
10 steps 0.0670 0.0329 0.0915 0.1093 0.0328 0.0046

Turning rate 1 step 0.0072 0.0074 0.0362 0.0364 0.0074 0.0054
10 steps 0.0373 0.0392 0.0679 0.0804 0.0385 0.0082

Sideslip velocity 1 step 0.0130 0.0130 0.0269 0.0282 0.0130 0.0119
10 steps 0.0408 0.0368 0.1090 0.1468 0.0367 0.0093

The comparison results between training and testing are listed in Table 10. The RMSE
and SD of the test data exhibit two to four times more errors than the training data. The
error ratios of the test data are 0.11%, 1.26%, and 3.05% of USV model states for the forward,
turning, and sideslip dynamics, respectively. They are all within theoretical control.

Table 10. RMSE and SD comparison between testing and training by GBM-ILM method.

RMSE

Dynamic models Forward velocity Turning rate Sideslip velocity
Step number 1 step 10 steps 1 step 10 steps 1 step 10 steps

GBM-ILM
Training 7.0466 × 10−4 0.0021 0.0030 0.0037 0.0025 0.0040
Testing 0.0022 0.0046 0.0063 0.0083 0.0122 0.0101

SD

Dynamic models Forward velocity Turning rate Sideslip velocity
Step number 1 step 10 steps 1 step 10 steps 1 step 10 steps

GBM-ILM
Training 7.0501 × 10−4 0.0021 0.0030 0.0037 0.0025 0.0040
Testing 0.0022 0.0046 0.0054 0.0082 0.0119 0.0093

5.4. Analysis and Discussion

Figure 19 provides a violin plot analysis of the model errors for different methods
under two kinds of periods; it mainly expresses the median and distribution range of all
modeling errors. During training, the GBM-ILM is better than white-box and black-box
models, but it is marginally weaker than the LPV with LSSVM method when comparing
the distribution of model errors, at both 1-step and 10-step intervals. During testing, the
GBM-ILM outshone the other five methods in terms of both modeling accuracy and stability
for predictions at 1-step and 10-step intervals.

In our experiments for online model identification and prediction, we evaluated the
ability of the proposed GBM-ILM to estimate the USV kinetic model, including both its
physical mechanisms and changeable states. Figure 20 illustrates this process, taking the
1-step model prediction as an example. For the forward velocity, turning rate, and sideslip
velocity dynamics, the number of model nodes ranged from 239 to 410, 299 to 505, and 427
to 738, respectively. Each figure is divided into two main parts: the top part represents the
dynamic state of the kinetic model, while the lower part shows the growth of the network
model nodes. The red solid line represents the model error, while the blue circles represent
incoming data for the predictive model. Initially, all the incoming data were new to the
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trained predictive network. As the network adapted to these data patterns, its structure and
parameters evolved. Specifically, when the network encountered unfamiliar data patterns
(marked by the blue circles), it responded by expanding its structure, and increasing the
number of nodes. This dynamic adjustment enabled the incremental learning network to
constantly estimate new data patterns and adapt to fluctuating environmental conditions
and USV states, enhancing its adaptability.
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Upon analyzing the experimental results, we observe that the proposed GBM-ILM’s
performance in 1-step prediction is superior to the other four methods, namely, the linear
model, the LPV model, the LSSVM method, and the KRLS method, but marginally less
effective than the LPV with LSSVM method. This discrepancy arises because GBM-ILM
intentionally sacrifices partial fitting accuracy to increase its adaptability through incre-
mental learning. However, for predictions at a 10-step interval, GBM-ILM outperforms all
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five alternative methods. Given that the USV samples data at a frequency of 20 Hz, these
10-step predictions (spanning 0.5 s) provide better model accuracy, which is crucial for the
effective planning and control of the USV.

6. Conclusions

In this article, we introduced GBM-ILM, a grey-box modeling method that combines
incremental learning with a mechanism model to accurately identify a USV kinetic model.
This combination obtains physically plausible kinetic models while also offering a more
feasible and accurate estimation of the unknown components of the kinetic model. As a
simplified three-DOF LPV planar model developed to describe the planar dynamics of the
USV, it features a simple structure that adeptly approximates the nonlinear hydrodynamic
behaviors. To address discrepancies between the LPV model and the real system, we
devised an active modeling framework that provides online estimation for the unstructured
components of the model. Furthermore, the GBM-ILM utilizes the KRLS-ALD algorithm to
incrementally estimate and predict residual errors in the kinetic model.

The efficacy of our resulting model was thoroughly evaluated through tests on a
real USV system. For this, our research group developed a specialized ‘Salmon’ USV
experimental platform and conducted identification tests in a reservoir under conditions
classified as a sea state degree of two. Experimental data were meticulously selected for
both the input and output data, enabling us to show the superior performance of our
approach in predicting the kinetic model online, in comparison to other typical modeling
methods. Compared to the LPV with LSSVM method (which performs best among the
typical and state-of-the-art methods) from tests at 1-step, the GBM-ILM method improves
by 46.34%, 14.86%, and 6.87% in accuracy when estimating the USV’s forward, turning, and
sideslip dynamic models, respectively. The error ratios of the test data are 0.11%, 1.26%, and
3.05% of USV model states for the forward, turning, and sideslip dynamics, respectively.

Looking ahead, based on the GBM-ILM proposed in this study, the USV state after
0.5 s would be predicted under the premise of ensuring the model accuracy. Our future
research will focus on the development of USV control systems.
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Appendix A

The resisting forces and torque of the USV can be represented as follows:

X = X .
u

.
u + Xuu + X|u|u|u|u + Xvrvr + Xrrr2 + . . .

Y = Y .
v

.
v + Y.

r
.
r + Yuvuv + Yurur + Y|v|v|v|v + Y|v|r|v|r + . . .

N = N .
v

.
v + N.

r
.
r + Nuvuv + Nurur + N|v|v|v|v + N|v|r|v|r + . . .

where X∗, Y∗, and N∗ are constant hydrodynamic-derivative coefficients; X .
u, Y .

v, and Y.
r are

the added masses; N .
v and N.

r are the added moments of inertia; Xuu is the linear viscous
damping; X|u|u|u|u, Xrrr2, Y|v|v|v|v, and N|v|v|v|v are the quadratic nonlinear uncoupled
damping; and Xvrvr, Yuvuv, Yurur, Y|v|r|v|r, Nuvuv, Nurur, and N|v|r|v|r are quadratic
nonlinear coupling damping terms.

Appendix B

The model coefficients aij(i = 1, 2; j = 1, 2) and bk(k = 1, 2) are given as follows:

a = (Xu + 2X|u|u|u0|)/(m− X .
u), b = 1/(m− X .

u),
∆ = (m−Y .

v)(Izz − N.
r)− (mxg − N .

v)(mxg −Y.
r), a11 =

[
(Izz − N.

r)Yv − (mxg −Y.
r)Nv

]
/∆,

a21 =
[
−(mxg − N .

v)Yv + (m−Y .
v)Nv

]
/∆,

a12 =
[
(Izz − N.

r)(Yr −mu0)− (mxg −Y.
r)× (Nr −mxgu0)

]
/∆,

b1 =
[
−(Izz − N.

r)− (mxg −Y.
r)xδ

]
/∆,

a22 =
[
−(mxg − N .

v)(Yr −mu0) + (m−Y .
v)(Nr −mxgu0)

]
/∆,

b2 =
[
(mxg − N .

v) + (m−Y .
v)xδ

]
/∆.

Appendix C

Theoretically, the optimal solution to Equation (20) is given by αt = K†
t yt, which can

be computed recursively via the classical RLS algorithm. However, this approach presents
three substantial challenges. First, handling large datasets becomes impractical; simply
maintaining K in memory, estimating the coefficient vector α, and evaluating new data
points may be prohibitively costly in both memory space and computational time. Second,
the resulting model’s complexity, indicated by the size of the vector α, which tends to
be densely populated, would be directly proportional to the number of training samples,
causing severe overfitting. Lastly, the eigenvalues of the matrix Kt often decay rapidly to
zero, making its inversion numerically unstable.

To address these issues, we apply the sparsification method, as described in the preceding
section. The basic idea is to use a smaller mt ×mt matrix K̃t, defined above, instead of the full
Kt matrix. With respect to Equation (19), we then have wt = Φtαt ≈ Φ̃tAT

t αt = Φ̃tα̃t, where

α̃t
def
= AT

t αt is a vector of ‘reduced’ coefficients. The loss function is modified as follows: L(ã) =
‖ΦT

t Φ ˜tα̃t − yt‖
2
= ‖AtK̃tα̃− yt‖

2
, and its minimizer is α̃t = (AtK̃t)yt = K̃

−1
t (AT

t At)
−1

AT
t yt.

Appendix D

The KRLS update equations derived are given as follows:

(Case 1) In this case, only A changes between time steps: At =
[
AT

t−1, at

]T
. Therefore,

AT
t At = AT

t−1At +ataT
t and AT

t yt = AT
t−1yt−1 +atyt. Note that K̃t is unchanged. By defining

Pt = (AT
t At)

−1
, the matrix inversion lemma applied to obtain a recursive formula for Pt, as

follows: Pt = Pt−1 − Pt−1ataT
t Pt−1/(1 + atPt−1aT

t ). Defining qt = Pt−1at/(1 + aT
t Pt−1at),

the KRLS update rule for α̃ is as follows:

α̃t = K̃
−1
t PtAT

t yt = K̃
−1
t (Pt−1 − qta

T
t Pt−1)(AT

t−1yt−1 + atyt)

= ãt−1 + K̃
−1
t (Ptatyt − qta

T
t K̃tãt−1) = ãt−1 + K̃

−1
t qt(yt − k̃t−1(xt)

Tãt−1)
,

where the last equality is based on qt = Ptat, and k̃t−1(xt) = K̃tat.
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(Case 2) In this case, Kt 6= Kt−1, but a recursive formula for K̃
−1
t is easily derived,

as follows:

K̃t =

[
K̃t−1 k̃t−1(xt)

K̃t−1(xt)
T ktt

]
⇒ K̃

−1
t =

1
δt

[
δtK̃
−1
t−1 + ataT

t −at
−aT

t 1

]

where at and δt are variables computed during the ALD test prior to updating the dictionary.

The optimal at and ALD condition is: at = K̃
−1
t−1k̃t−1(xt), δt = ktt − k̃t−1(xt)

Tat ≤ µ.
Following the dictionary update, xt becomes a part of Dt; therefore, φ(xt) is exactly

represented by itself. Consequently: At =

[
At−1 0

0 1

]
, AT

t At =

[
AT

t−1At−1 0
0 1

]
, and

Pt = (AT
t At)

−1
=

[
Pt−1 0

0 1

]
, where zero is a vector of zeros of appropriate length. The

KRLS update rule for α̃t is as follows: α̃t = K̃
−1
t (AT

t At)
−1

AT
t yt = K̃

−1
t

[
(AT

t−1At−1)
−1

AT
t−1yt−1 yt

]T

=
[
α̃t−1 − at

δt
(yt − k̃t−1(xt)

Tα̃t−1)
1
δt
(yt − k̃t−1(xt)

Tα̃t−1)
]T

.
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