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Abstract: Addressing the limitations of manually extracting features from small maritime target
signals, this paper explores Markov transition fields and convolutional neural networks, proposing a
detection method for small targets based on an improved Markov transition field. Initially, the raw
data undergo a Fourier transform, feature fusion is performed on the series, and a spectrogram is
generated using Markov transition fields to extract radar data features from both the time domain
and frequency domain, providing a more comprehensive data representation for the detector. Then,
the InceptionResnetV2 network is employed as a classifier, setting decision thresholds based on the
softmax layer’s output, thus achieving controllable false alarms in the detection of small maritime
targets. Additionally, transfer learning is introduced to address the issue of sample imbalance.
The IPIX dataset is used for experimental verification. The experimental results show that the
proposed detection method can deeply mine the differences between targets and the maritime clutter
background, demonstrating superior detection performance. When the observation time is set to
1.024 s, the IMIRV2 detector performs best. Cross-validation with different data preprocessing
methods and classification models reveals a significant advantage in the performance of the IMIRV2
detector, especially at low signal-to-noise ratios. Finally, a comparison with the performance of
existing detectors indicates that the proposed method offers certain improvements.

Keywords: sea clutter; target detection; MTF

1. Introduction

Sea clutter, also known as ocean surface clutter or wave clutter, is a type of interference
signal received by radar systems when detecting targets at sea [1]. This signal is primarily
caused by waves, sea surface fluctuations, and other oceanic phenomena. The characteris-
tics of sea clutter typically include randomness, time variability, and non-uniformity [2].
Through research on the detection of small targets at sea, efficient monitoring and rapid
response to maritime targets can be achieved, enabling the timely detection of anomalies
and hazardous events, thereby ensuring the safety of maritime traffic and the protection of
the marine environment. Due to the weak radar returns of small targets, they are difficult
to detect. Traditional detection methods based on statistical characteristics or the energy of
radar returns struggle to maintain high detection accuracy and a low false alarm rate [3],
presenting many challenges to current detection technology.

In the exploration of research advancements in the field of small target detection at
sea, scholars have adopted a variety of methods to overcome the challenges posed by
sea clutter. These challenges include characteristics such as randomness, time variability,
and non-uniformity, especially under low signal-to-noise ratio (SNR) conditions, where
detection accuracy often leaves much to be desired.

In recent years, feature-based approaches have achieved significant breakthroughs in
the field of detecting small targets at sea, such as using time–frequency domain features,
short-time fractional Fourier transform, and the high-dimensional feature generalization
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capability of deep learning, all aimed at enhancing the detection ability of small targets
against sea clutter. Relevant studies are shown in Table 1.

Table 1. Research on Sea Surface Small Target Detection Based on Feature Extraction Methods.

Author(s) Method Characteristics Advantages Disadvantages Reference

Shui et al.
Three-feature
detector in the

time–frequency domain

Selects features including
relative amplitude,

relative Doppler peak
height, and relative

vector entropy

Significantly
improves detection

performance

The detection
accuracy is not

satisfactory under
low signal-to-noise

ratio conditions

[4]

Chen et al.

Detection and extraction
of micro-motion targets

based on short-time
fractional

Fourier transform

Verifies capability of
short-time Fourier

transform in representing
time series features

Enhances the
detection capability

of micro-motion
targets in sea clutter

Challenges in
feature extraction [5]

Shi et al.
Utilization of deep
learning for radar

dynamic target detection

High-dimensional feature
generalization ability

Provides a new
technical approach
for target detection
and identification

against clutter
background

Timeliness of
target detection

can be challenging
[6]

Zhao et al.
Improved four-feature

extraction method using
the FAST algorithm

Uses feature optimization
to enhance feature

distinctiveness

Achieves better
detection results

Difficulties in
feature extraction [7]

As deep learning research continues to advance, convolutional neural networks [8,9]
have been used to classify sea clutter and noise. Through convolutional neural networks
and feature perception technologies, researchers have proposed various image-based
encoding methods to enhance the accuracy and generalization capability of target detection,
as shown in Table 2.

Table 2. Research on Sea Surface Small Target Detection Based on Image Encoding Methods.

Author(s) Method Characteristics Advantages Disadvantages Reference

Xu et al.

Sea surface small target
detection method based
on feature perception of
multi-channel graphs in
the frequency domain

Exploring radar signal
features in the

frequency domain

Can improve the
detection accuracy of

small sea
surface targets

Difficulties in
feature extraction [10]

Shi et al.
Sea surface small target
detection method based

on time–frequency images

Deeply mining the
differences between
targets and clutter

Effectively enhances
the detection

capability of small
maritime targets at low
signal-to-noise ratios

May require complex
data processing

and feature
extraction steps

[11]

However, in these methods, feature extraction is difficult, and the information pro-
vided by image encoding methods for the classification model is limited. To extract features
more effectively, this paper investigates Markov transition fields for processing time series.
Markov transition fields (MTFs) [12] use Markov transition probabilities to preserve the
information relationship between time domains. Zhao [13] chose MTFs for preprocessing
fault sequences and inputting them into a convolutional neural network for classification,
achieving good results. Wang Z [14] compared MTFs with Gram angular fields as two im-
age encoding methods for time series, finding that MTFs had better representation ability
for time series.
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Based on this, this paper proposes a sea surface small target detection method based
on Markov transition fields. Firstly, the raw data undergo a Fourier transform, and feature
fusion is performed on the series. The MTF is used to encode the signal into a two-
dimensional image, and a neural network is used to extract features from the image. Then,
transfer learning is utilized to improve the performance of the deep learning network
model, reduce training costs, and adjust the softmax threshold of the model to achieve
a constant false alarm rate, establishing a classification model for sea clutter signals and
weak target signals. Finally, using the IPIX radar signal as the experimental subject and
comparing the performance of traditional detectors, this paper verifies that the proposed
method can deeply mine the differences between targets and clutter, thereby having better
detection performance.

2. The Theoretical Basis of Data Processing

The first consideration in target detection based on graph features is the conversion of
data into a spectrogram. The effective representation of both time and frequency domain
information in the spectrogram can significantly enhance detector performance. This paper
optimizes the capture of information in the spectrogram through the effective integration of
Markov transition fields and Fourier transform. The paper provides a detailed description
of the optimization and transformation.

2.1. Target Detection Problem Transformation

In practice, sea surface small target detection is commonly divided into single-class
and dual-class problems [15,16]. A single classifier is trained based on pure sea clutter
data, focusing on learning the clutter features, but often neglects the characteristics of the
target signal, leading to limited applicability. In contrast, the use of dual classifiers becomes
key in enhancing detection efficiency and accuracy, especially in scenarios where target
echo samples are scarce and manual feature extraction is overly rigid. Exploring detection
methods that autonomously learn features in an imbalanced sample environment is of
significant value.

Based on this, a binary classification hypothesis is applied to the echoes z(n) received
from N consecutive pulses by the radar [17], which is:{

H0 : z(n) = c(n)
H1 : z(n) = c(n)+s(n)

, (1)

where c(n) is the pure sea clutter, and s(n) is the target returns. When the original observed
data contain only pure sea clutter, that is, there is no observed target, they are judged
as hypothesis H0. When the original observed data include target echoes, indicating the
possible presence of an observed target, they are judged as hypothesis H1. Therefore, the
problem of target detection is transformed into a binary classification.

2.2. The Theoretical Basis of the Improved Markov Transition Field

Markov transition fields (MTFs) [12] are a commonly used method to represent time
series data, offering excellent descriptive capabilities for scale, magnitude, and shape
changes in the data. They can reveal the inherent structure and dynamic changes in sea
clutter data by describing state transition matrices, while also reducing the dimensionality
of the original data and eliminating redundant information, thus enhancing computational
efficiency and accuracy. Given the complexity of sea clutter data, traditional methods often
fall short in capturing their subtle feature information. By integrating MTFs with Fourier
transform, we have overcome this limitation. This approach not only comprehensively
captures radar data characteristics from both the time and frequency domains but also
optimizes the representation of data, significantly enhancing the identification capability
for weak target signals within sea clutter. Through delicately mapping the dynamic
relationship between state transitions and frequency changes, our method reveals target
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characteristics hidden in the complex maritime environment, providing a more efficient
and precise solution for detecting small maritime targets.

Assume that the sea clutter time series is X = {x1, x2, . . . ,xN}, where xn is the nth
(n = 1, 2, . . . ,N, N being the number of sampling points) sampled signal. First, the series
is normalized:

Xnorm =
X − min(X)

max(X)− min(X)
, (2)

and then the Fourier transform is calculated for the processed series:

F(x) = ∑N−1
n=0 xn·e−

i2π
N kn, (3)

F(x) is the result of the Fourier transform.
Then, feature fusion is performed on the series, combining the original time series X

with the magnitude of the Fourier transform |F(X)|:

Xcombined = concat(X, |F(x)|), (4)

based on the values of the fused time series, define Q regions qj (j = 1, 2, . . . , Q), such that
each xn can be mapped to one of the qj. Then, calculate the transition probabilities between
each qj to obtain a Markov transition matrix with dimensions Q × Q:

W=


w11 w12
w21 w22

· · ·
· · ·

w1Q
w2Q

...
. . .

...
wQ1 wQ2 · · · wQQ




P(xi ∈ q1|xi−1 ∈ q1)
P(xi ∈ q2|xi−1 ∈ q1)

· · ·
· · ·

P
(

xi ∈ q1
∣∣xi−1 ∈ qQ

)
P
(

xi ∈ q2
∣∣xi−1 ∈ qQ

)
...

. . .
...

P
(

xi ∈ qQ
∣∣xi−1 ∈ q1

)
· · · P

(
xi ∈ qQ

∣∣xi−1 ∈ qQ
)
, (5)

where wjk(k = 1, 2, . . ., Q) is the probability of a sampled signal in region qk being followed
by a sampled signal in region qj, with wjk = P

(
xi ∈ qj

∣∣xi−1 ∈ qk
)
. Finally, the Markov tran-

sition matrix is expanded by arranging each probability in temporal order, thus generating
an N × N MTF matrix M:

M=


M11 M12 · · · M1N
M21 M22 · · · M2N

...
...

. . .
...

MN1 MN2 · · · MNN




P
(

x1 ∈ qj → x1 ∈ qk
)

P
(

x2 ∈ qj → x1 ∈ qk
) · · ·

· · ·
P
(

x1 ∈ qj → xN ∈ qk
)

P
(

x2 ∈ qj → xN ∈ qk
)

...
. . .

...
P
(

xN ∈ qj → x1 ∈ qk
)

· · · P
(

xn ∈ qj → xN ∈ qk
)
, (6)

where Mhm(h, m = 1, 2, . . ., n) is the transition probability from the region qj, mapped from
xh, to the region qk, mapped from xm, with Mhm = P

(
xh ∈ qj → xm ∈ qk

)
. The elements in

the MTF matrix M range from [0, 1], and through Equation (6), each element’s value in the
matrix can be scaled from 0 to 255, aligning it with the pixel values in an image, thereby
obtaining a two-dimensional image:

I(h, m)= int(255 Mhm), (7)
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where I(h, m) is the pixel value of the image in the hth row and mth column; int(·) is the
rounding function.

2.3. Data Trasformation

After the aforementioned transformation, radar signals can be converted into diago-
nally symmetric feature maps, as shown in Figure 1. This figure illustrates two-dimensional
images formed from IPIX-measured radar data after FT-MTF transformations. As can be
seen from Figure 1, after the transformation, due to the reflective properties of the target
object, the radar echo images containing the target feature specific structural characteristics.
In contrast, pure clutter images may lack such prominent structural features, exhibiting a
more uniform chaotic image characteristic.
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Figure 1. Data transformation based on improved MTF. (a) Transformation of the pure clutter;
(b) Transformation of the pure clutter with target returns.

The two-dimensional images obtained by the aforementioned method effectively
reflect the differences in the time–frequency distribution between pure sea clutter and
target returns, providing assistance for subsequent small target detection on the sea surface.

3. Target Detection Model Based on Improved MTF-InceptionResnetV2

In this research, we have redefined the issue of detecting small targets on the sea
surface, treating it as a binary classification challenge. To address the complex task of de-
scribing the characteristics of sea clutter signals, we introduce a novel detection framework
known as the detector based on improved Markov transition field (IMIRV2). As illustrated
in Figure 2, the architecture of the IMIRV2 detector uniquely integrates an online detection
pathway with an offline training module. This architecture is meticulously designed, incor-
porating data preprocessing, a pretrained model, a classification network, and a strategic
false alarm area decision making component.

Initially, to address the issue of imbalanced sample quantities between the two classes,
the training process involves enriching the training dataset by adding simulated targets
into a pure clutter environment to create synthetic target echoes. Subsequently, slicing
and a sea-clutter-specific FT-MTF processing method are applied to transform the data
into information-rich two-dimensional images. These images, representing clutter and
target categories, are then used to train the classification network, ultimately developing a
pretrained model.

In the detection phase, our method utilizes IPIX radar data, converting one-dimensional
time series into feature-rich FT-MTF two-dimensional images. Before feature extraction
and classification through the deep learning network, a pretrained model is integrated
via transfer learning. This strategic integration aims to overcome the challenges of data
scarcity and initial model performance limitations. The detection process is further refined
by calculating the false alarm rate Pfa and comparing the network’s output prediction value
P with a dynamically adjusted decision threshold θ, ensuring precise optimization of the
threshold. The final output of this process is highly accurate detection results. Each element
of the IMIRV2 framework is meticulously designed, from initial data preparation to the
final decision mechanism.
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Figure 2. Target Detection Model Diagram Based on Improved MTF-InceptionResNetV2.

Below, we will delve into the intricacies of each component, showcasing the innova-
tive techniques and methodological integration that set our work apart from traditional
detection methods.

3.1. Data Preprocessing: Improved Markov Transition Field

In the field of sea surface small target detection, due to the high complexity of sea
clutter, traditional methods face significant challenges in capturing key feature information.
This study proposes a novel FT-MTF method, an improvement of the MTF method com-
bined with Fourier transform technology, aimed at overcoming this difficulty. Our method
thoroughly analyzes the combined effects of state transition probabilities and frequency
features and efficiently expresses these features in the form of two-dimensional images,
with the improved images generated shown in Figure 3.
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Specifically, the FT-MTF method significantly enhances the richness and effectiveness
of feature representation through the following steps:
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1. Expansion of the State Space: As can be seen from Figure 3, by introducing the Fourier
transform, we have expanded the state space of the MTF image to include not only
the state transition information of the original time series data but also the transition
probabilities between these states and the Fourier transform features;

2. Quadrant Feature Analysis: The improved MTF image is divided into four quadrants,
each representing different dynamics of state transitions. This decomposition method
provides a new perspective for understanding and analyzing the behavior of small
targets in sea clutter, significantly enhancing the expressiveness of features;

3. Integrated Feature Representation: The FT-MTF method effectively combines the
frequency features of time series with state transition probabilities to generate two-
dimensional images. This transformation not only preserves the essential informa-
tion of the original data but also enriches the feature set for the IMIRV2 detector
by incorporating the dynamic characteristics of state transitions, providing a more
comprehensive and dynamic feature set;

4. Enhanced Model Recognition Capability: With the images generated by the FT-MTF
method, the IMIRV2 model can more easily identify subtle changes in small targets
within sea clutter. These changes are represented in the images through various
patterns and structures, enabling the model to more effectively learn and distinguish
between sea surface targets and background clutter.

Through these innovations, this study not only provides a new perspective and
method for sea surface small target detection but also significantly improves the accuracy
and efficiency of detection. These technological advancements offer powerful tools for
solving the challenges of detecting small targets in sea clutter and are expected to drive the
development of related technologies and applications.

3.2. Classification Network: InceptionResNetV2 Classifier

To capture multi-scale features from fine to coarse granularity in the improved MTF im-
age data, this study employs Inception-ResNetV2 (IRV2) [18] as the classification network.
It extracts image features through convolutional kernels of various sizes and residual con-
nections. This network structure allows for the extraction and fusion of features at multiple
levels, enhancing the model’s ability to recognize objects of different sizes in images.

InceptionResNetV2, proposed by the Google Brain team in 2016, is a deep con-
volutional neural network architecture that, compared to previous Inception [19] and
ResNet [20] models, possesses a deeper network structure. Deep networks are typically
capable of learning more abstract and complex features, enhancing the model’s representa-
tional capability. Combining features of both Inception and ResNet, InceptionResNetV2 can
capture features at multiple scales (Inception module) and maintain good gradient propa-
gation (ResNet module), thereby improving the model’s feature extraction capabilities. The
specific structure is illustrated in Figure 4.
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Figure 4. InceptionResNetV2 Model Diagram. Figure 4. InceptionResNetV2 Model Diagram.

Considering that most of the data are correlated, introducing transfer learning can
accelerate and optimize the model’s classification accuracy. Based on the FT-MTF images
of sea clutter and target echoes, transfer learning [21] training can extract features from the
images. By fine-tuning the training to adjust the weights of the InceptionResNetV2 model,
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the learning rate is reduced. A validation set from a portion of the training data is used
for further weight adjustment. Transfer learning is trained on the basis of existing deep
network models, reducing training costs and suitable for small datasets. When the data
volume is sufficient and training costs are not a concern, retraining a new model based on
the data can be chosen.

3.3. Controllable False Alarm in the Decision Region

In the context of small target detection on the sea surface, the detection probability
of a classifier while maintaining a consistently low false alarm rate is the criterion for
evaluating the effectiveness of the classifier’s target detection. The detection probability is
the proportion of correctly identified samples among all actual target samples. The false
alarm rate is the proportion of incorrectly identified samples among all actual non-target
samples. To prevent an imbalance in network judgment, the target detection requirement
generally does not exceed a false alarm rate of 10−3.

To address this issue, this paper proposes a detection strategy based on softmax proba-
bility output and employs the Monte Carlo method to determine the decision boundary for
a controllable false alarm rate. In a binary classification scenario, the output of the softmax
reflects the probabilities of belonging to two categories, as shown in Equation (8).

Class 0 : Softmax(Z)0 = eZ0

eZ0+eZ1

Class 1 : Softmax(Z)1 = eZ1

eZ0+eZ1

(8)

Typically, the classification network makes a judgment based on a preset threshold θ
(0.5), as shown by the black line in Figure 5. To handle classification bias in imbalanced
datasets, a different threshold θ (where 0 < θ < 1) is set. The classification decision rule can
be expressed as: {

if P(class 1) ≥ θ, the sample is classified as Class 1
if P(class 1) < θ, the sample is classified as Class 0

, (9)

where P(class 1) is the probability predicted by the model that a sample belongs to Class
1. As shown in Figure 5, by adjusting the decision threshold to the red line, it is possible
to control the number of data classified as “Class 1”, thereby achieving controllable false
alarms in the detection of small targets at sea.
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4. Experimental System and Performance Analysis

This study uses the IPIX [22] database. The IPIX radar data, provided by McMaster
University in Canada, offer valuable resources for the study of sea clutter characteristics
and the detection of weak signals. The IPIX radar operates at a sampling frequency of
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1000 Hz, with a sampling time of 131.072 s, and each range gate is 15 m long. It operates at
grazing angles less than or equal to 1 degree. The experiment utilizes six sets of data, with
specific parameters shown in Table 3.

Table 3. Detailed Description of IPIX Radar Data.

Data Name Target Unit Sub-Target
Unit

Wind
Speed/km·h−1

Wave
Height/m Angle/◦

#17 9 8~11 9 2.2 9
#26 7 6~8 9 1.1 97
#30 7 6~8 19 0.9 98
#54 8 7~10 20 0.7 8

#310 7 6~9 33 0.9 30
#311 7 6~9 33 0.9 40

Table 3 records the parameters of six types of data. To quantitatively measure data
characteristics, the average signal-to-clutter ratio (ASCR) is introduced as an indicator to
distinguish performance indicators under different sea conditions. ASCR is defined as the
ratio of the average power of the target echoes to the power of the clutter echoes. Based on
radar echo data [23,24], the estimation formula is as follows:

ASCR = 10lg[
∑N

i=1

∣∣∣z( 1
H1

)∣∣∣2 − ∑N
i=1

∣∣∣z( 1
H0

)∣∣∣2
∑N

i=1

∣∣∣z( 1
H0

)∣∣∣2
. (10)

Figure 6 shows a comparison chart of the average signal-to-clutter ratio (SCR) for the
six datasets under four types of polarization. It can be observed from the figure that the
average SCR under two cross-polarization methods is generally higher than that under
two co-polarization methods. Additionally, the VV polarization method produces more
Bragg scattering compared to the HH polarization method, resulting in a lower average
SCR for the former. It is clearly evident from Figure 2 that datasets #17, #54, and #311 have
strong target abilities, while datasets #26, #30, and #310 have weaker target echoes, which
are easily drowned out by clutter signals, increasing the difficulty of detection.
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4.1. Data Dimensionality Experiment

In practical tests, when converting radar data into two-dimensional images, select-
ing different data dimensions affects the features contained in the images and thus the
detection performance. To explore the effect of the IMIRV2 detector on sea surface small
target detection with different data dimensions, dataset #54 is selected, and comparative
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experiments are conducted with dimensions of 256, 512, 1024, and 2048, respectively. As
shown in Figure 7, these are the detection probabilities obtained by training the IMIRV2
model with four different data dimensions.

J. Mar. Sci. Eng. 2024, 12, 582 10 of 17 
 

 

4.1. Data Dimensionality Experiment 

In practical tests, when converting radar data into two-dimensional images, selecting 

different data dimensions affects the features contained in the images and thus the detec-

tion performance. To explore the effect of the IMIRV2 detector on sea surface small target 

detection with different data dimensions, dataset #54 is selected, and comparative exper-

iments are conducted with dimensions of 256, 512, 1024, and 2048, respectively. As shown 

in Figure 7, these are the detection probabilities obtained by training the IMIRV2 model 

with four different data dimensions. 

 

Figure 7. Detection Probability under Different Data Dimensionalities. 

From Figure 7, it can be seen that at 256 dimensions, the detection probability is about 

0.907; at 512 dimensions, it increases to about 0.933; at 1024 dimensions, it reaches a peak 

of about 0.971; however, at 2048 dimensions, the detection probability slightly decreases 

to about 0.945. This indicates that after reaching a certain number of dimensions, adding 

more features does not improve detection performance. Therefore, 1024 is chosen as the 

feature dimension for subsequent experiments. 

4.2. Experiments on the Impact of Improved MTF on Detector Performance under Constant False 

Alarm Rate 

To further investigate the specific impact of the improved MTF on the performance 

of sea surface small target detection, this study conducted experiments on measured radar 

data under different sea conditions while maintaining a constant false alarm rate. The 

classification confusion matrix used in the experiments reflects the relationship between 

the actual categories of the samples and the categories predicted by the classifier, includ-

ing four key indicators: true positives (TP), false positives (FP), false negatives (FN), and 

true negatives (TN). In this study, the positive class is defined as the category containing 

target echoes, while the negative class is defined as sea clutter. 

Given that a key objective in sea surface small target detection is to improve detection 

precision while maintaining a false alarm rate of 10−3 , this experiment adopted the 

method described in Section 3.3 to set FN to zero. Therefore, the performance evaluation 

of the detector primarily relies on precision (P = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
). 

4.2.1. The Impact Analysis of Different Preprocessing Methods on Detector Performance 

To explore the impact of different data preprocessing methods on enhancing detector 

performance, the experiment introduced two commonly used methods for encoding time 

series data into images, recurrence plots (RPs) [25] and the Gram angular field (GAF) [26], 

for comparative experiments. They were combined with the Fourier transform (FT) to in-

vestigate the superiority of the proposed data processing methods. 

An RP is a visualization tool that reveals repeating patterns in time series data. The 

process of combining RPs with FT is shown in Figure 8a. The experiment found that, due 

Figure 7. Detection Probability under Different Data Dimensionalities.

From Figure 7, it can be seen that at 256 dimensions, the detection probability is about
0.907; at 512 dimensions, it increases to about 0.933; at 1024 dimensions, it reaches a peak
of about 0.971; however, at 2048 dimensions, the detection probability slightly decreases
to about 0.945. This indicates that after reaching a certain number of dimensions, adding
more features does not improve detection performance. Therefore, 1024 is chosen as the
feature dimension for subsequent experiments.

4.2. Experiments on the Impact of Improved MTF on Detector Performance under Constant False
Alarm Rate

To further investigate the specific impact of the improved MTF on the performance of
sea surface small target detection, this study conducted experiments on measured radar
data under different sea conditions while maintaining a constant false alarm rate. The
classification confusion matrix used in the experiments reflects the relationship between
the actual categories of the samples and the categories predicted by the classifier, including
four key indicators: true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN). In this study, the positive class is defined as the category containing target
echoes, while the negative class is defined as sea clutter.

Given that a key objective in sea surface small target detection is to improve detection
precision while maintaining a false alarm rate of 10−3, this experiment adopted the method
described in Section 3.3 to set FN to zero. Therefore, the performance evaluation of the
detector primarily relies on precision (P = TP

TP+FP ).

4.2.1. The Impact Analysis of Different Preprocessing Methods on Detector Performance

To explore the impact of different data preprocessing methods on enhancing detector
performance, the experiment introduced two commonly used methods for encoding time
series data into images, recurrence plots (RPs) [25] and the Gram angular field (GAF) [26],
for comparative experiments. They were combined with the Fourier transform (FT) to
investigate the superiority of the proposed data processing methods.

An RP is a visualization tool that reveals repeating patterns in time series data. The
process of combining RPs with FT is shown in Figure 8a. The experiment found that,
due to the significant difference in magnitude between FT features and the original data,
simply adding FT features to the original data was not sufficient to change the structure of
the similarity matrix. Therefore, FT features were standardized to the same range as the
original data, ensuring that the FT features were similar in magnitude to the original data,
allowing for better integration of the features. The resulting images are shown in Figure 8b.
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The GAF is a method for converting time series data into images by calculating the
relative angles between points in the time series, thus generating images that express the
dynamics of the time series. Therefore, when combining Fourier transform with GAFs, it is
necessary to convert the amplitude of FFT into relative strength and calculate its angle. The
converted FFT features are then merged with the original time series data to generate image
data. The FT-GAF conversion process and the resulting images are shown in Figure 9.
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Under a constant false alarm rate, comparative experiments were conducted using the
IRV2 model in combination with the previously mentioned preprocessing methods and the
preprocessing method proposed in this paper. To more clearly analyze the experimental
results, two sets of high sea conditions (#54 and #311) and two sets of low sea conditions
(#30 and #310) were selected for the experiments. The results are recorded in Figure 10.

It can be clearly seen from the figure that the methods combined with FT perform
better across all detectors, especially the FT-MTF+IRV2 method, which achieved higher
scores on data from different sea conditions. In low sea conditions, there was a significant
improvement in performance, showing a notable performance advantage.

Before integrating FT features, the best detection performance was achieved using
the MTF preprocessing method, with the detection performance using RP preprocessing
slightly higher than that using GAF. However, after integrating FT features, detectors
using MTF and GAF preprocessing methods saw significant improvements in detection
performance in low sea conditions, while the improvement in detection performance using
RP preprocessing was limited, with detection performance lower than that of the other
two preprocessing methods in all sea conditions. Although the detection performance of
GAF combined with FT features significantly improved, it still did not match the MTF
preprocessing method combined with FT features. The integration of MTF and FT can
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study state changes in dynamic systems, while the combination of GAF and FT is more
suitable for the analysis of periodic features. For the detection of small targets on the sea
surface, the MTF preprocessing method combined with FT features is superior to other
preprocessing methods.
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4.2.2. Analysis of the Impact of Improved MTF on Detector Performance under Different
Classification Networks

To further explore the impact of the improved MTF on detection performance, we
conducted experiments under a constant false alarm rate, employing both MTF and FT-MTF
preprocessing methods with different models such as ResNet, InceptionV3, and IRV2. The
results are recorded in Table 4.

Table 4. Detector Performance Under Different Detectors.

Detectors #30 #54 #310 #311

MTF + ResNet 0.426 0.929 0.558 0.892
FT-MTF + ResNet 0.712 0.951 0.799 0.932

MTF + InceptionV3 0.433 0.932 0.585 0.886
FT-MTF + InceptionV3 0.735 0.956 0.811 0.941

MTF + IRV2 0.490 0.968 0.742 0.949
FT-MTF + IRV2 0.765 0.979 0.942 0.958

Table 4 displays the detection performance under different detectors. By comparing
the performance of each model on different datasets (#30, #54, #310, #311), it was found
that the improvement effect of FT-MTF preprocessing is significant: regardless of the
combination with ResNet, InceptionV3, or IRV2, detectors using FT-MTF preprocessing
significantly outperform those using only MTF across all datasets. Thus, FT-MTF prepro-
cessing effectively enhances the model’s detection capability. Regarding the superiority of
the IRV2 model, compared to ResNet and InceptionV3, the IRV2 model performs better
across all test datasets, whether combined with MTF or FT-MTF. IRV2 can more effectively
process the complex data involved in sea surface small target detection tasks. Regarding
performance differences under different sea states, the performance on datasets #30 and
#310 is generally lower compared to #54 and #311, reflecting the impact of different sea
states on detection performance. More challenging sea states may make target detection
more difficult, but the FT-MTF preprocessing method combined with efficient deep learning
models can significantly mitigate this issue.
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In summary, the analysis of Figure 10 and Table 4 indicates that the method proposed
in this paper can significantly improve the performance of sea surface small target detection,
especially under complex sea conditions.

4.3. Detection Performance Comparison

This section of the experiment uses the IPIX dataset shown in Table 3 to compare the
detection performance of the proposed IMIRV2 detector against three other detectors: the
tri-feature detector [4], the support vector machine (SVM) detector [27], and the Bi-LSTM
detector [28].

At a preset false alarm rate of 10−3, the detection performance of the four detectors
on the IPIX dataset is illustrated in Figure 11. From Figure 11, it can be observed that the
proposed IMIRV2 detector demonstrates good detection performance across all subsets
of the IPIX dataset, while the other three detectors show a significant drop in detection
probability on certain subsets of the IPIX dataset. The experimental results indicate that
the detection performance of the proposed IMIRV2 detector surpasses that of the other
three detectors.

J. Mar. Sci. Eng. 2024, 12, 582 14 of 17 
 

 

(a) (b)

(c) (d)

IMIRV2 Detector Three-Feature Detector SVM Detector Bi-LSTM Detector  

Figure 11. Comparison of detection performance of four types of detectors: (a) Detection perfor-

mance under HH polarization condition, (b) Detection performance under HV polarization condi-

tion, (c) Detection performance under VH polarization condition, (d) Detection performance under 

VV polarization condition. 

4.3.1. Analysis of the Impact of Different Classifiers on Performance 

Deep learning detectors can map data into a high-dimensional space to learn and 

extract the distinctive features between targets and clutter. Compared to clutter, there is a 

smaller difference in target features between the training and test sets, allowing deep 

learning detectors to better learn target features. Therefore, compared to the tri-feature 

detector and the support vector machine (SVM) detector that utilize handcrafted features, 

the other two deep-learning-based detectors overall achieved a higher average detection 

probability. However, this is not absolute; for some subsets, the Bi-LSTM detector’s detec-

tion probability is lower than that of the tri-feature detector and SVM detector. Due to the 

strong time variability of clutter, the clutter distribution in the training and test sets may 

not be entirely consistent, leading to a slightly higher average actual false alarm rate of 

the detectors than the preset false alarm rate. The proposed IMIRV2 detector can effi-

ciently integrate features extracted from various data sources. Compared to other detec-

tors, the IMIRV2 detector has a broader range of detection feature sources and extracts 

target features and clutter features with stronger distinction. Therefore, the proposed 

IMIRV2 detector achieves a higher average detection probability while having a lower 

average actual false alarm rate. 

  

Figure 11. Comparison of detection performance of four types of detectors: (a) Detection performance
under HH polarization condition, (b) Detection performance under HV polarization condition,
(c) Detection performance under VH polarization condition, (d) Detection performance under VV
polarization condition.

4.3.1. Analysis of the Impact of Different Classifiers on Performance

Deep learning detectors can map data into a high-dimensional space to learn and
extract the distinctive features between targets and clutter. Compared to clutter, there is
a smaller difference in target features between the training and test sets, allowing deep
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learning detectors to better learn target features. Therefore, compared to the tri-feature
detector and the support vector machine (SVM) detector that utilize handcrafted features,
the other two deep-learning-based detectors overall achieved a higher average detection
probability. However, this is not absolute; for some subsets, the Bi-LSTM detector’s
detection probability is lower than that of the tri-feature detector and SVM detector. Due
to the strong time variability of clutter, the clutter distribution in the training and test sets
may not be entirely consistent, leading to a slightly higher average actual false alarm rate of
the detectors than the preset false alarm rate. The proposed IMIRV2 detector can efficiently
integrate features extracted from various data sources. Compared to other detectors, the
IMIRV2 detector has a broader range of detection feature sources and extracts target features
and clutter features with stronger distinction. Therefore, the proposed IMIRV2 detector
achieves a higher average detection probability while having a lower average actual false
alarm rate.

4.3.2. Analysis of Detection Performance under Four Polarization Conditions (HH, HV,
VH, VV)

Performance tests were conducted on six selected sets of data under different polar-
ization conditions. There are changes in the average signal-to-clutter ratio (SCR) under
the four polarization types, resulting in differences in detection probabilities. HV and
VH polarization methods have more advantages than HH and VV methods. Figure 11
shows a comparison chart of the detection performance of ten sets of data under four
polarization types. In this figure, the false alarm rate is set to 10−3 and the cumulative
number of pulses N is 1024. It can be seen that the detection performance of HH, HV, and
VH polarization is significantly higher than that of VV polarization. The detection method
proposed in this experiment performs particularly well on HH polarization data and even
slightly exceeds HV and VH polarization in some aspects. Under each polarization method,
compared with the three-feature detector and SVM detector, the IMIRV2 detector shows
significant detection performance improvement. Compared with the Bi-LSTM detector, the
performance of the IMIRV2 detector also has a certain improvement.

4.3.3. Detection Performance Analysis under Different Environments

Comparing the ASCR across various datasets, datasets #17, #54, and #311 are consid-
ered as high sea states, while datasets #26, #30, and #310 are viewed as low sea states. It
can be observed from Figure 11 that, under high sea states, all detectors demonstrate good
detection performance, but the detection performance of IMIRV2 is still superior to other
detectors. Under low sea states, especially when the SCR is low and the Doppler distance
is short (#30), since the target echo is completely masked within the main clutter frequency,
traditional detectors struggle to detect the target, rendering the triple-feature detector
almost inoperative. Meanwhile, the SVM detector and the Bi-LSTM detector also perform
poorly, whereas the proposed detector shows about a 50% performance improvement over
the triple-feature detector and about a 30% improvement over the other two detectors. This
indicates that the proposed IMIRV2 detector surpasses three classic constant false alarm
rate (CFAR) detectors in detection performance under complex sea surface environments.

5. Conclusions

This paper addresses the challenge of characterizing data features against a back-
ground of sea clutter by first applying the MTF method combined with Fourier transform
to the raw data to generate spectrograms. This approach captures the characteristics of
radar data from both the time and frequency domains, thereby providing a more compre-
hensive data representation. The InceptionResNetV2 network is employed as the classifier,
and a predefined decision threshold is set based on the softmax layer’s output to achieve
controlled false alarms in the detection of small targets on the sea surface. To address the
issue of sample imbalance, transfer learning is introduced by training on simulated data to
generate a pretrained model. The IMIRV2 detection method is proposed and validated us-
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ing the IPIX dataset. Experimental results demonstrate that the proposed detection method
exhibits excellent detection performance. When N = 1024, the IMIRV2 detector performs
optimally. Cross-validation with different data preprocessing methods and classification
models reveals that the method proposed in this paper significantly enhances the detection
performance of small targets on the sea surface. Compared to the detection performance of
existing detectors, improvements are observed under all sea conditions, especially in low
sea states, where the proposed detection method performs approximately 30% better than
several existing detection methods. In summary, the IMIRV2 detection method provides
strong detection performance, a simple model, and fast computation, making it suitable for
detecting small targets on the sea surface.

However, there are still some limitations to the proposed detection method in this
article. For example, the spectrograms generated using FT-MTF contain rich spatiotemporal
features. Future research may focus on improving the classification model by incorporating
attention mechanisms to make the model pay more attention to important parts of the input
data, thus enhancing sensitivity to crucial information and improving classification accuracy.
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