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Abstract: The seawater radioactivity sensor based on the NaI(Tl) scintillation crystal detection method
is prone to spectrum drift due to environment temperature changes during actual measurement,
which pose difficulties in the activity analysis of seawater radionuclides. This paper adopts exper-
iment design and analysis methods to study the relationship laws between temperature and peak
position channel address and between gain and the peak position channel address. On the basis of
studying and summarizing the two relationship laws of the NaI(Tl) seawater radioactivity sensor, a
spectrum drift correction method combining gain adjustment and spectrum processing is proposed.
Laboratory air and water environment experiments verify that the peak position channel address
drift after air environment correction does not exceed ±2 channels, and after water environment
correction does not exceed ±1 channel. Long-term verification experiments at the seawater work
site have shown that this correction method can effectively correct the spectrum drift of the NaI(Tl)
seawater radioactivity sensor and meet the requirements of long-term automatic operations at sea for
the measured spectrum.

Keywords: NaI(Tl) seawater radioactivity sensor; spectrum drift; spectrum correction; spectrum
processing; seawater radioactivity monitoring

1. Introduction

The seawater radioactivity sensor developed based on the NaI(Tl) scintillation crystal
detection method has become the main technical means for the in situ automatic monitoring
of marine radioactivity environments due to its advantages of programmed, continuous
observation. The use of seawater radioactivity sensors for the long-term continuous mon-
itoring of seawater radioactivity levels can provide valuable information for seawater
environmental protection [1]. Using full-spectrum analysis technology to analyze the spec-
trum could achieve the automatic identification and the quantitative detection of multiple
radionuclides in seawater [2]. Therefore, the spectrum stabilization performance has be-
come an important topic that provides a guarantee for the validity of measurement data
for spectrum analysis.

Seawater temperature changes during the long-term continuous operation of the ra-
dioactivity sensor affect the NaI(Tl) scintillation crystal, the photomultiplier, and other
electronic components effects [3–5]. Thus, the measured spectrum is affected by environ-
ment temperature changes, which add difficulty and even lead to errors for spectrum
analysis [6]. Therefore, implementing drift correction on the spectrum obtained from the
long-term continuous measurement of the seawater radioactivity sensor is very important.

The current spectrum drift correction methods mainly focus on the radioactivity sensor
used in terrestrial environment measurements and can be divided into two categories.
The first type is according to the reference peak of the spectrum and achieves spectrum
drift correction by adjusting the hardware setting values such as sensor gain [7–9]. The
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advantage of this type is that it can correct the large-scale spectrum drift of the seawater
radioactivity sensor. The second type reprocesses the measured spectrum using algorithms
to obtain the spectrum without drift [10–13]. The advantage of this type is that it does not
need to search for peaks during use, and the long-term continuity of the spectrum is good.

Seawater radioactivity sensors are usually deployed on marine-automated monitoring
platforms such as buoys for long-term continuous measurement [14]. Based on their
working conditions and performance requirements, using only a single type of correction
method cannot effectively achieve the spectrum drift correction of the seawater radioactivity
sensor. Thus, studying more effective and comprehensive correction methods by combining
the two types will achieve better correction results.

This paper conducts temperature experiments on the seawater radioactivity sensor to
study and analyze the relationship laws between temperature and peak position channel
address and between gain and peak position channel address. The effectiveness and
accuracy of the correction method were evaluated through laboratory experiments and
verified in the seawater work site by deploying the seawater radioactivity sensor to an
offshore platform for long-term measurements.

2. Experiment Devices and Methods
2.1. Experiment Devices
2.1.1. Seawater Radioactivity Sensor

The seawater radioactivity sensor based on the NaI(Tl) scintillation crystal detection
method was used in the experiment (structure is shown in Figure 1), which is mainly
composed of the NaI(Tl) scintillation crystal, the photomultiplier, the preamplifier, the
digital multichannel pulse amplitude analyzer, the control module, the power module,
and the interface module [15]. When the gamma ray in the seawater irradiates the NaI(Tl)
scintillation crystal, the crystal emits fluorescence, and the photomultiplier collects the
fluorescence and converts it into pulse voltage, which is amplified and shaped before
entering the digital multichannel pulse amplitude analyzer for analysis to generate the
spectrum. Peaks are generated in the spectrum due to the different counts of a certain
channel in multiple channels. Based on the inherent spectrum characteristic peaks of the
radionuclides, detailed information on the radionuclides in seawater can be obtained by
analyzing the measured spectrum.
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Figure 1. Structure of the seawater radioactivity sensor.

The seawater radioactivity sensor is packaged as a whole in a white cylindrical shell,
which is waterproof, pressure resistant, and corrosion resistant, ensuring that the seawater
radioactivity sensor can work continuously at 200 m underwater. The body of the seawater
radioactivity sensor is connected to the shell with a bolt structural join, and an O-ring is
designed at the seal to improve the high tightness of the shell package. The watertight
connector provides the seawater radioactivity sensor external power and signal accesses.
The measurement condition of minimum detectable activity was the surface seawater off
the Chinese coast. The detailed specifications and parameters of the seawater radioactivity
sensor are shown in Table 1.
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Table 1. Specifications and parameters of the seawater radioactivity sensor.

Parameter Index

Sensor type 3′′ × 3′′ NaI(Tl)
Energy Range Adjustable (Max < 3000 keV)

Energy Resolution <7% (661.6 keV)
Minimum detectable activity ~20 Bq m−3 (in 24 h) (661.6 keV)

Spectroscopy 1024 channels
Operating temperature −5~50 ◦C

Operating voltage 9~18 V DC
Consumption ~2 W

Communication protocol RS485

2.1.2. Temperature Experiment Boxes

Two types of temperature experiment boxes were used in the experiment. The first
type was the air temperature experiment box, which has programming operation functions.
The air temperature experiment box can control the rate of temperature changes, set the
temperature holding time, and adjust the temperature range from −20 ◦C to 100 ◦C. Ex-
periments were conducted on the relationship laws between the temperature and the peak
position channel address and between the gain and the peak position channel address of
the seawater radioactivity sensor in the air temperature experiment box; the two relation-
ship laws were summarized and analyzed, and the spectrum drift correction method was
studied. Then, preliminary verification of the correction method was performed in the air
temperature experiment box.

The second type was the water temperature experiment box with a temperature
adjustment range of −20 ◦C to 80 ◦C. Tap water was injected into the box to simulate the
working environment of seawater bodies, further verifying the effectiveness and accuracy
of the correction method.

2.2. Experiment Methods
2.2.1. Experiment on the Relationship Law between Temperature and Peak Position
Channel Address

Natural radionuclides are ubiquitous in nature, among which the relative contents of
214Bi, 40K, and 208Tl radionuclides are high [16,17], and the three radionuclides can produce
more evident natural characteristic peaks in the spectrum. Therefore, when conducting
the temperature experiment, three natural characteristic peaks of 214Bi (609 keV), 40K
(1461 keV), and 208Tl (2614 keV) were used as references to observe and study the effect of
temperature on the spectrum drift.

The temperature range applied in the experiment was the same as the specified
working temperature range of the radioactivity sensor: −5 ◦C to 50 ◦C. The temperature
gradient was 5 ◦C, and twelve temperature points were set within the temperature range.
The temperature of the air temperature experiment box decreased from 50 ◦C to −5 ◦C,
which is the cooling process, and increased from −5 ◦C to 50 ◦C, which is the heating
process. Each experiment treated the cooling and heating processes as a measurement
cycle to study the drift of the spectrum peak position channel address during different
temperature change tendencies and to more accurately investigate the correction method
for the spectrum drift.

The experiment of each of the twelve temperature points was performed whenever the
temperature in the seawater radioactivity sensor and in the air box controller were equalized
for at least 1 h. To obtain a better-quality spectrum, the single spectrum measurement time
was 20 min. The drift of the spectrum is the result of the overall temperature effect of all
functional modules inside the seawater radioactivity sensor. Therefore, when conducting
temperature experiments, the seawater radioactivity sensor must be placed as a whole in
the air temperature experiment box (shown in Figure 2).
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(left) and the water temperature experiment box (right).

The environment temperature for the energy calibration of the seawater radioactivity
sensor used in this paper was 25 ◦C, so this temperature was the reference temperature
point. The measured spectrum under this temperature condition was used as the reference
spectrum, and the characteristic peak position channel address was used as the reference
peak position channel address.

2.2.2. Experiment on the Relationship Law between Gain and Peak Position
Channel Address

The 40K radionuclide relative content in seawater is high [18], and when the seawater
environment changes, its relative content remains stable without substantial changes [19].
The seawater radioactivity sensor was completely submerged in seawater during use, and
a very noticeable 40K (1461 keV) natural characteristic peak was formed in the measured
spectrum. Therefore, when conducting the gain experiment, 40K (1461 keV) was used as
the characteristic peak for observation and study.

To study the relationship law between gain and the peak position channel address,
the air temperature experiment box was used to conduct gain adjustment experiments at
different temperatures. Similarly, the temperature change range was −5 ◦C to 50 ◦C, the
temperature change gradient was 5 ◦C, and the reference temperature was 25 ◦C. Twelve
temperature points were set within the temperature range. The stabilization time to reach
each temperature point was greater than 1 h, and the measurement time for each spectrum
was 20 min.

When the temperature reached each temperature point, the initial gain was set to
12,000 of the energy calibration. To study the relationship law between gain and peak
position channel address accurately and meticulously, the gain was increased or decreased.
The gain adjustment gradient was 100, and the gain adjustment range was 9000 to 15,000.
Different gain values were used at each temperature point for spectrum measurement to
study the influence of gain on peak position channel address.

3. Experiment Results and Analysis
3.1. Relationship Law between Temperature and Peak Position Channel Address

According to the experiment design of the relationship law between temperature and
peak position channel address mentioned earlier, multiple measurement cycle experiments
were conducted. Considering the validity and representativeness of the experiment data,
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the average peak position channel addresses of 214Bi (609 keV), 40K (1461 keV), and 208Tl
(2614 keV) in each temperature point were taken from multiple measurement cycle exper-
iments. Figure 3 shows the relationship of the 214Bi (609 keV), 40K (1461 keV), and 208Tl
(2614 keV) peak position channel addresses with the temperature changes.
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Figure 3. Relationship of the peak position channel addresses with the temperature changes for 208Tl
(2614 keV) (A), 40K (1461 keV) (B), and 214Bi (609 keV) (C).

Figure 3 shows that the drift of the radionuclide peak position channel address with
temperature is not a simple linear relationship. Analysis shows that, within the temperature
range of −5 ◦C to 50 ◦C, 15 ◦C is the inflection point of the peak position channel address
with temperature changes. That is, before 15 ◦C, the peak position channel address in-
creases with the increase of temperature, and after 15 ◦C, the peak position channel address
decreases with the increase of temperature. The relationship law range of −5 ◦C to 50 ◦C is
the same as in Naumenko et al. [20]; after 20 ◦C, it follows the same relationship law as the
experiment data in Mitra et al. [21]. However, it is different from the linear function rela-
tionship law in Hung et al. [22] and Chen et al. [23]. This outcome is related to factors such
as hardware selection, processing programs, and the software algorithms of radioactivity
sensors and illustrates the complexity of spectrum drift from another perspective.

However, a great similarity exists in the drift of different radionuclide peak position
channel addresses. To explore the relationship law between temperature and different
radionuclide peak position channel address drifts, the effect of temperature changes on the
full-spectrum range was further investigated. Normalization was performed on different
temperature points 214Bi (609 keV), 40K (1461 keV), and 208Tl (2614 keV) peak position
channel addresses, as shown in Figure 4.
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Figure 4. Normalization of the peak position channel address.

Figure 4 shows that the normalized peak position channel address of 214Bi (609 keV),
40K (1461 keV), and 208Tl (2614 keV) have the same trend with temperature changes, and the
three curves overlap. Therefore, the influence of the same temperature change on different
radionuclide peak position channel addresses has the same proportional relationship; that
is, if the value of the peak position channel address is large, and the value of the peak
position changing with the temperature is large, the change of the spectrum channel address
deviation with the temperature is large, and vice versa. This relationship law lays the
foundation for establishing a correction method within the full-spectrum range.

Therefore, if the correction relationship between the peak position of a certain charac-
teristic peak in the spectrum is determined, the peak position drift of multiple characteristic
peaks and all characteristic peaks within the full-spectrum range can be corrected, thereby
correcting all characteristic peaks and the entire spectrum. The theoretical derivation in
Casanovas et al. [24] and the experiment data in Bu et al. [25] and Leroux et al. [26] also
confirm this view, and this correction relationship is independent of the primary or the
quadratic function rule of the peak position channel address drift with temperature.

3.2. Relationship Law between Gain and Peak Position Channel Address

According to the experiment design, multiple groups of repeated experiments were
conducted at the twelve set temperature points. The multiple groups of 40K (1461 keV)
peak position channel address data at the same temperature point were averaged, and the
function relationship between the gain value and the 40K (1461 keV) peak position channel
address was fitted. The results exhibited a good linear function relationship, and the fitting
relationship of all temperature points is shown in Table 2. Although the 40K (1461 keV) peak
position corresponds to different channel addresses at varied temperature points, the ratio
of the change in the 40K (1461 keV) peak position channel address with the variation in gain
value is approximated, that is, the slope k value of the fitting relationship is approximated.
To simplify the correction method, the k value at the reference temperature was used as the
reference value for the relationship between gain and the peak position channel address.

The fitting relationship between the gain values at the reference temperature point of
25 ◦C and the 40K (1461 keV) peak position channel address is shown in Figure 5. A good
linear relationship exists between the gain values and the 40K (1461 keV) peak position
channel address (linear correlation coefficient R2 = 0.9999). When the gain value increases,
the 40K (1461 keV) peak position channel address also increases. When the gain value
decreases, the 40K (1461 keV) peak position channel address decreases. The gain has
the same influence relationship on the full-spectrum range channel address as the 40K
(1461 keV) peak position channel address due to the consistency of the change ratio and
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drift trend of the 214Bi (609 keV), 40K (1461 keV), and 208Tl (2614 keV) peak position channel
addresses and the full-spectrum range channel address.

Table 2. Fitting relationship between gain values and the 40K (1461 keV) average peak position
channel address at different temperature points.

Temperature Point (◦C) Fitting Relation R2 k

−5 Y = 0.03441X + 13.68 0.9999 0.03441
0 Y = 0.03529X + 14.29 0.9999 0.03529
5 Y = 0.03564X + 15.57 0.9999 0.03564

10 Y = 0.03614X + 14.29 0.9999 0.03614
15 Y = 0.03643X + 14.14 0.9999 0.03643
20 Y = 0.03618X + 16.29 0.9999 0.03618
25 Y = 0.03596X + 15.00 0.9999 0.03596
30 Y = 0.03511X + 20.00 0.9999 0.03511
35 Y = 0.03486X + 14.14 0.9999 0.03486
40 Y = 0.03418X + 14.14 0.9999 0.03418
45 Y = 0.03329X + 13.71 0.9999 0.03329
50 Y = 0.03211X + 16.00 0.9999 0.03211
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at the reference temperature point.

4. Correction Algorithm and Process
4.1. Correction Algorithm
4.1.1. Gain Adjustment Part Correction Algorithm

The gain adjustment correction part aims to correct the seawater radioactivity sensor
to the standard operating state, that is, to eliminate the current spectrum drift state. Using
40K (1461 keV) as the reference peak for the gain adjustment correction part, when the
peak position channel address of 40K (1461 keV) is corrected to the reference peak position
channel address, the spectrum at this time is the reference spectrum, and the working state
of the seawater radioactivity sensor is the standard working state.

The deviation of the defined peak position channel address is the difference between
the current measured spectrum peak position channel address and the reference peak
position channel address:

CHD = PES − PER (1)

where CHD is the deviation of the peak position channel address, PES is the peak position
channel address of the current measured spectrum, and PER is the reference peak position
channel address.
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According to the relationship law between the gain and the peak position channel
address of the spectrum, the following can be obtained:

GA D
CHD

=
1
k

(2)

where GAD represents the gain variation, and k is the slope of the relationship law between
the gain and the peak position channel address.

By combining Equations (1) to (2) and the actual change in gain, the correction formula
of the gain adjustment correction part can be obtained:

GAD = −1
k
· (PES − PER) (3)

When GAD is positive, the current gain should increase. When GAD is negative, the
current gain should decrease.

The gain adjustment correction part is aimed at quickly and accurately correcting the
seawater radioactivity sensor to the standard working state after it is turned on or when
it experiences large-scale drift due to abnormal conditions and continuing the spectrum
measurement work.

The correction algorithm of the gain adjustment correction part uses the 40K (1461 keV)
natural characteristic peak formed by a large number of 40K natural radionuclide present
in seawater, which solves the problem of introducing the reference source that can have
adverse effects on the spectrum of seawater. The correction algorithm is suitable for
low-level or extremely low-level radioactivity environments in seawater.

4.1.2. Spectrum Processing Part Correction Algorithm

The previous analysis shows that if the correction relationship of one peak position
channel address is determined, then all of the radionuclide characteristic peaks and the full-
spectrum range can be effectively corrected. Likewise, the spectrum processing correction
part uses the natural characteristic peak of 40K (1461 keV) to establish a correction algorithm.

The drift of the spectrum channel address with temperature has the same proportion
relationship. Therefore, the spectrum with drift can be corrected using the following relationship:

CHTC =
CHT
F(T)

(4)

where CHTC is the spectrum channel address under a certain temperature condition after
correction, CHT is the spectrum channel address under a certain temperature condition
before correction, F(T) is the temperature correction function, and T is the temperature.

The correction function under specific temperature conditions can be expressed as the
ratio between the peak position channel address under that temperature condition and the
reference peak position channel address:

F(T) =
PET
PER

(5)

where PET is the peak position channel address under a certain temperature condition.
The best fit for the temperature experiment data mentioned above, is a cubic polyno-

mial function:
PET
PER

= a + bT + cT2 + dT3 (6)

where a, b, c, and d are the correction coefficients.
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Combining Equations (4) to (6), the correction formula of the spectrum processing
correction part is obtained:

CHTC =
CHT

a + bT + cT2 + dT3 (7)

In actual work, the environment temperature of seawater usually changes slowly. To
ensure that the temperature values used in the spectrum processing correction part are
more accurate and representative, the temperature value can be taken as the average of the
temperature values from the start, middle, and end of a spectrum measurement period:

TM =
1
3
· (TA + TB + TC) (8)

where TM is the average temperature value during the measurement period, TA is the
temperature value at the start time, TB is the temperature value at the middle time, and TC
is the temperature value at the end time.

By using the correction formula of the spectrum processing correction part, the counts
are redistributed on the spectrum channel address, and the peak position channel address,
characteristic peak, and spectrum are corrected. Under specific temperature conditions in
the laboratory, the quantitative relationship between the temperature and the peak position
channel address of the 40K (1461 keV) natural characteristic peak is obtained. The correction
coefficients of the spectrum processing correction part only use the characteristic peak
formed by the natural radionuclide, without the need for any radioactivity standard source.

The correction coefficients in the correction algorithm of the spectrum processing
correction part are calculated through the quantitative relationship and are only related to
the seawater radioactivity sensor itself. After the seawater radioactivity sensor is used in
the work site, the spectrum processing correction part does not require any reference peak
and only needs to obtain the current temperature value of the measurement environment
to correct the spectrum drift, further reducing the complexity of the spectrum analysis.

The seawater radioactivity sensor studied in this paper is based on NaI(Tl) scintillation
crystals, which do not possess radioactivity. When using the seawater radioactivity sensor
based on LaBr3(Ce) or LaCl3(Ce) scintillation crystals, the correction coefficients can be
calculated using the natural characteristic peaks formed by the scintillation crystals that
are self-radioactive [27–29].

4.2. Correction Process

The workflow of the spectrum drift correction method combining gain adjustment
and spectrum processing is shown in Figure 6, which can be described as follows: After the
seawater radioactivity sensor is turned on, the first step is to perform the gain adjustment
correction part, adjust the seawater radioactivity sensor to the standard operating state,
and then start measurement according to the sensor settings. During the continuous
measurement, every period of the spectrum measurement is completed, and the spectrum
processing correction part is performed to obtain the corrected spectrum. The spectrum is
automatically saved and accumulated for analysis.

When the conditions of the gain adjustment correction part are reached, the seawater
radioactivity sensor automatically performs the gain adjustment correction part according
to the settings to correct the seawater radioactivity sensor to the standard operating state
and then continues to perform the spectrum measurement and the spectrum processing
correction part.
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If the conditions of the gain adjustment correction prat are not reached, the seawater
radioactivity sensor does not need to perform the gain adjustment correction prat. The
measurement is kept in the standard operating state, and the spectrum processing correction
part is executed. After the measurement task of the seawater radioactivity sensor is
completed, or when the spectrum needs to be extracted, the accumulated and saved
spectrum can be used to obtain the corrected long-term spectrum to meet the needs of
spectrum analysis.

According to the characteristics of the actual working environment of the seawater
radioactivity sensor, when the seawater radioactivity sensor runs in situ for a long-term,
the conditions of the gain adjustment correction part can generally be set as follows:

(1) The cumulative measurement time of the seawater radioactivity sensor exceeds
seven days.

(2) The seawater radioactivity sensor performs the restart operation.
(3) The seawater radioactivity sensor undergoes considerable changes in the measure-

ment position during use, including displacement changes in the horizontal distance
and vertical depth.

(4) Extreme weather conditions such as strong winds, high waves, and heavy rainfall
occur in the deployment sea area of the seawater radioactivity sensor.

5. Results and Discussion of Correction Method Verification
5.1. Laboratory Verification
5.1.1. Air Environment Correction Method Verification

The air temperature experiment box was used to verify the effectiveness of the pro-
posed correction method preliminarily for the air environment. The experiment steps were
the same as the relationship law between the temperature and the peak position channel
address, and multiple measurement cycle verification experiments were conducted.

Before using the correction method in the air environment, the typical spectrum drift
during the cooling process (Figure 7) and the typical spectrum drift during the heating
process (Figure 8) were obtained. After using the correction method in the air environment,
the typical spectrum drift during the cooling process (Figure 9) and the typical spectrum
drift during the heating process (Figure 10) were acquired.
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Figure 8. Spectrum drift during the heating process in the air environment before correction.
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Figure 9. Spectrum drift during the cooling process in the air environment after correction.
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Figure 10. Spectrum drift during the heating process in the air environment after correction.

Figures 7 and 8 show that before using the correction method, the measured spectrum
of each temperature exhibited substantial drift as compared to the reference spectrum,
whether during the cooling or heating processes. The amplified 40K (1461 keV) and 208Tl
(2614 keV) characteristic peaks show that the spectrum with drift has a considerable devia-
tion in the characteristic peak channel address interval, making identifying radionuclides
difficult. Meanwhile, interference with the characteristic peak channel address interval of
other radionuclides may lead to misjudgment of radionuclide identification, which may
adversely affect the analysis of the spectrum. Additionally, during the long-term operation
of the seawater radioactivity sensor at sea, the long-term spectrum needs to be synthesized.
If the spectrum drifts, it will cause difficulties and reduce the accuracy of the spectrum
synthesis and affect the quantitative analysis of various radionuclides in seawater.

At the low-energy 214Bi (885, 960, and 1120 keV) and middle-energy ends 214Bi (1729,
1764, 2118, and 2204 keV) of the spectrum, the natural characteristic peaks have fewer
counts. Radionuclides cannot be distinguished and identified through the energy calibra-
tion formula due to the existence of the spectrum peak position channel address drifts at
different temperatures.

Figures 9 and 10 show that after using the correction method, the spectrum drift
caused by the temperature changes in the measurement environment during cooling and
heating processes is eliminated, and the spectrum measured under different temperature
conditions coincide with the reference spectrum. For important channel address intervals
in the spectrum analysis, such as the enlarged channel address intervals of 40K (1461 keV)
and 208Tl (2614 keV) in Figures 9 and 10, the coincidence of the spectrum is good. This
result makes the synthesis of long-term measurement more convenient, thereby making the
analytical results of long-term continuous automatic measurement spectrum more accurate.

According to the energy calibration formula of the seawater radioactivity sensor, the
low-energy end 214Bi (609, 885, 960, and 1120 keV) and the middle-energy end 214Bi (1729,
1764, 2118, and 2204 keV) of the spectrum achieve correction for the characteristic peak drift.

To display and analyze the correction results of the spectrum better, Table 3 presents
the situation of the 40K (1461 keV) and 208Tl (2614 keV) peak position channel addresses
with temperature changes after correction. The maximum deviation of the 40K (1461 keV)
peak position channel address does not exceed ±1 channel, and the maximum deviation
of the 208Tl (2614 keV) peak position channel address does not exceed ±2 channels. The
results indicate that the correction method proposed in this paper can effectively correct
the peak position channel address of the two target radionuclides, 40K (1461 keV) and 208Tl
(2614 keV), in the air environment and can effectively correct the drift of the spectrum
within the full-spectrum range.
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Table 3. Comparison of the peak position channel address before and after the use of the correction
method in the air environment.

Temperature
Point (◦C)

Cooling Process Heating Process

Before After Before After
40K 208Tl 40K 208Tl 40K 208Tl 40K 208Tl

−5 380 675 399 711 379 672 401 711
0 392 695 400 712 392 695 400 712
5 396 705 400 712 397 705 400 712

10 403 717 400 712 403 717 401 712
15 404 718 400 712 405 718 401 712
20 403 717 400 712 403 717 401 712
25 400 712 400 712 399 712 400 712
30 394 701 400 713 394 701 401 713
35 388 690 400 713 388 689 400 713
40 379 676 400 713 379 676 400 713
45 370 660 400 713 370 660 401 714
50 359 641 400 713 360 643 401 714

5.1.2. Water Environment Correction Method Verification

The correction method preliminarily verified through the air environment temperature
experiment was written into the seawater radioactivity sensor. To simulate the actual
working environment of seawater bodies better when the seawater radioactivity sensor
was used, a further design experiment was conducted to verify the correction method in
the water environment using the water temperature experiment box. Given the presence of
the freezing point of the tap water injected into the water temperature experiment box, the
temperature variation range was 0 ◦C to 50 ◦C, and other experiment settings and steps were
the same as those in the air temperature experiment box. The seawater radioactivity sensor
was placed as a whole into the water temperature experiment box (shown in Figure 2), and
multiple measurement cycle verification experiments were conducted.

Before using the correction method in the water environment, the typical spectrum
drift during the cooling process (Figure 11) and the typical spectrum drift during the
heating process (Figure 12) were obtained. After using the correction method in the water
environment, the typical spectrum drift during the cooling process (Figure 13) and the
typical spectrum drift during the heating process (Figure 14) were obtained.
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Figure 11. Spectrum drift during the cooling process in the water environment before correction.
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Figure 12. Spectrum drift during the heating process in the water environment before correction.
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Figure 13. Spectrum drift during the cooling process in the water environment after correction.
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Figure 14. Spectrum drift during the heating process in the water environment after correction.
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Figures 11 and 12 show that before using the correction method, the spectrum of
the water environment drifts with temperature changes, whether during the cooling or
heating processes, and the drift situation is similar to that of the air environment. The
reason for the decrease in the spectrum counts in the water environment is the shielding
effect of water bodies and the water temperature experiment box on the external radiation
environments [30].

Figures 13 and 14 show that during the cooling and heating processes of water envi-
ronment, due to the automatic implementation of the correction method, the spectrum drift
caused by the measurement environment temperature changes in the seawater radioactivity
sensor is eliminated. The spectrum measured under different temperature conditions can
overlap with the reference temperature spectrum. For important channel address intervals
of the spectrum analysis, such as the channel address intervals of the two characteristic
peaks 40K (1461 keV) and 208Tl (2614 keV), the overlap of the spectrum is good, which is
convenient for the synthesis work of the long-term measurement cumulative spectrum,
thus making the analysis results of the spectrum obtained from the long-term automatic
continuous measurement of the seawater radioactivity sensor more accurate. The 214Bi (609,
885, 960, and 1120 keV) at the low-energy end and the 214Bi (1729, 1764, 2118, and 2204 keV)
at the middle-energy end of the spectrum achieve characteristic peak drift corrections.

In the verification experiment of the spectrum drift correction method in the water
environment, the peak position channel address corresponding to the two characteristic
peaks of 40K (1461 keV) and 208Tl (2614 keV) in the spectrum measured by the seawater
radioactivity sensor are shown in Table 4. The 40K (1461 keV) peak position channel address
completely eliminates drift, and the maximum drift of the 208Tl (2614 keV) peak position
channel address does not exceed ±1 channel. The results indicate that the correction
method proposed in this paper can effectively correct the peak position channel address of
the two target radionuclides 40K (1461 keV) and 208Tl (2614 keV) in the water environment
and can effectively correct the spectrum drift within the full-spectrum range.

Table 4. Comparison of the peak position channel address before and after the use of the correction
method in the water environment.

Temperature
Point (◦C)

Cooling Process Heating Process

Before After Before After
40K 208Tl 40K 208Tl 40K 208Tl 40K 208Tl

0 391 694 400 711 391 694 400 711
5 397 706 400 711 398 706 400 711

10 402 716 400 712 402 716 400 711
15 405 719 400 712 405 719 400 712
20 404 718 400 712 404 718 400 712
25 400 712 400 712 400 712 400 712
30 393 700 400 712 393 700 400 712
35 389 691 400 713 389 690 400 712
40 379 677 400 713 379 677 400 713
45 369 659 400 713 369 659 400 713
50 358 640 400 713 359 641 400 713

5.2. Seawater Onsite Verification

The seawater radioactivity sensor was deployed to the offshore experiment platform at
the Badaxia Wharf (N 36◦05′, E 120◦30′) in the Yellow Sea, China. The seawater radioactivity
sensor was fixed on a steel frame and sunk into a vertical shaft of the offshore experiment
platform (shown in Figure 15). The depth of the vertical shaft was about 5 m, and the
seawater radioactivity sensor entered the seawater at a depth of about 3 m, with a depth
greater than 2 m from the seabed. This depth considered the effects of cosmic rays and other
radioactive environments such as seabed sediments [31–33], making the measurement of
the seawater radioactivity environment by the seawater radioactivity sensor more accurate.
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Figure 15. Deployment of the seawater radioactivity sensor from the offshore experiment platform.

The reference spectrum was set to the measured spectrum at a temperature of 25 ◦C,
and the reference peak was set to the natural characteristic peak of 40K (1461 keV) formed
by the large number of 40K radionuclide present in the seawater. The working mode of
the seawater radioactivity sensor was set to the continuous automatic measurement mode,
with single-spectrum measurement time of 20 min, and the measured seawater spectrum
before and after each correction was automatically saved.

On 7 October 2022, the seawater radioactivity sensor was successfully deployed to
the offshore experiment platform for the experiment. As of 6 March 2023, the seawater
radioactivity sensor had undergone 151 days of continuous experimentation on the offshore
experiment platform, successfully obtaining a large amount of seawater spectra. The
following section analyzes the measured seawater spectra from two aspects.

5.2.1. Drift Correction under Normal Weather Conditions

Only the characteristic peak of natural radionuclide 40K (1461 keV) can be clearly ob-
served in the measured seawater spectrum due to the deployment location of the seawater
radioactivity sensor, which shields the effects of other radiation environments as much as
possible. Therefore, the correction effect analysis was conducted using the characteristic
peak of 40K (1461 keV) as an example. Temperature changes were slower in the seawa-
ter environment than in the terrestrial air environment. According to the temperature
measurement data, the temperature range of the seawater radioactivity sensor during the
entire experiment was 6.03 ◦C to 21.19 ◦C. According to the data analysis obtained from
the temperature experiments conducted in the laboratory earlier, the drift of the spectrum
is not very severe within this temperature range. Taking 24 h as the cumulative time unit
of the spectrum, the representative spectrum was selected for analysis. The measured
seawater spectrum before correction is shown in Figure 16.

Figure 16 shows the measured seawater spectrum, in late November to early December,
had the greater temperature drops registered from 17.29 ◦C to 10.71 ◦C. However, the drift
of the 40K (1461 keV) peak position channel address with the temperature is not the most
severe. The most severe month of the drift at the 40K (1461 keV) peak position channel
address is from the middle of December to early January, corresponding to the spectra
of B, C, D, and E. The reason for this phenomenon is that the drift law of the seawater
radioactivity sensor is a quadratic function relationship. Although A and B have large
temperature changes, the 40K (1461 keV) peak position channel address drift is small
because A and B are in a slow range of spectrum drift, as is shown in Figure 4 (Section 3.1).
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Although the temperature changes of B, C, D, E, and F are small, the drift of the 40K
(1461 keV) peak position channel address is large because B, C, D, E, and F are in the range
of intense drift changes in the spectrum.
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Figure 16. Measured seawater spectrum before correction.

Figure 17 shows the measured seawater spectrum corrected using combined correction
methods, corresponding to the seawater gamma spectrum in Figure 16. The 40K (1461 keV)
characteristic peaks of spectra A, B, C, D, E, and F eliminate the drift, and they overlap well.
The coincidence of the low-energy end of the spectrum is also better than the uncorrected.
With this good foundation, when long-term measured seawater spectra need to be synthe-
sized, the obtained measured seawater spectra will be more accurate, and the resolution of
characteristic peak will be better.
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Figure 17. Measured seawater spectrum after correction.

5.2.2. Drift Correction under Precipitation Weather Conditions

Precipitation can wash suspended solids of radioactivity in the air and dust can
carry radioactive substances from land into seawater [34–37], leading to an increase in
the background level of seawater radioactivity [38–40]. Precipitation may also affect the
performance of the seawater radioactivity sensor, causing spectrum to drift. During the
deployment of the seawater radioactivity sensor to the offshore experiment platform for
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the experiment, precipitation monitoring was also carried out, and the two recorded
precipitation processes corresponding to the S2 and N2 spectra are shown in Figure 18.
When precipitation occurs, the counts of measured seawater spectra substantially increase,
and the degree of change is positively correlated with the precipitation. Further analysis
shows that the temperatures of S1 and S2, N1 and N2 are almost the same, but due to the
influence of precipitation, the peak position channel addresses of 214Bi (609, 1120, 1729,
1764, 2118, and 2204 keV) undergo substantial drift.
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Figure 18. Measured seawater spectrum affected by precipitation before correction.

In Figure 19, S1, S2, N1, and N2, the corrected spectra are obtained by automatically
using the correction method, corresponding to the spectra in Figure 18. Whether the 40K
(1461 keV) or the 214Bi (609, 1120, 1729, 1764, 2118, and 2204 keV) characteristic peak
increases due to precipitation, the peak position channel address is automatically corrected
back to the position of the reference peak position channel address. Under the same counts,
the coincidence of the measured seawater spectrum is also good. This finding indicates
that the correction method proposed in this paper can correct the spectrum drift within the
full-spectrum range in special working environments such as actual precipitation, and its
effectiveness and stability can meet the requirements of practical applications.
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Figure 19. Measured seawater spectrum affected by precipitation after correction.
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6. Conclusions

This paper studies and discusses the relationship laws between the temperature and
peak position channel address and between the gain and the peak position channel address
of the NaI(Tl) seawater radioactivity sensor through experiment analysis methods. On
this basis, the drift correction method for the NaI(Tl) seawater radioactivity sensor that
combines gain adjustment and spectrum processing is proposed. The following main
conclusions are drawn:

(1) When the environment temperature of the seawater radioactivity sensor changes,
the peak position channel address is the quadratic function of the temperature, and
the inflection point of the peak position channel address change is 15 ◦C. When the
temperature is lower than 15 ◦C, the peak position channel address increases with
the increase of temperature. When the temperature is higher than 15 ◦C, the peak
position channel address decreases with the increase of temperature.

(2) The drift of different radionuclide characteristic peak positions has the same propor-
tion relationship. The larger the value of the peak position channel address is, the
larger the drift amplitude of peak position with the temperature. The smaller the
value of the peak position channel address is, the smaller the drift amplitude of the
peak position with the temperature.

(3) The laboratory verification experiment results show that after using the correction
method, the coincidence of the spectrum at different temperatures is high, and the
maximum number of peak position channel address drifts does not exceed ±2 chan-
nels. The verification experiment shows that the correction method can effectively
correct the drift of the spectrum measured by the seawater radioactivity sensor, and
the effectiveness and accuracy of the correction method can meet the drift correc-
tion requirements.

(4) The long-term experiment results of the seawater work site indicate that the correction
method can correct the drift of the actual working scene and state of the seawater
radioactivity sensor, and the effectiveness and stability of the correction method are
very high.

The highlights of the correction method only use a natural characteristic peak of 40K
(1461 keV) without the need for any reference standard sources or modifications to the
hardware structure of the seawater radioactivity sensor. Compared with traditional correc-
tion methods, the correction method has the advantages of low algorithm complexity and
simple flow configuration. The temperature gradients are more evident when the radioac-
tivity sensor operates in the atmospheric environment as compared to the radioactivity
sensor operation in the marine environment, and thus this study may play a crucial role for
monitoring activities in the atmosphere in order to study air-sea interactions.
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