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Abstract: As the core component of a ship’s engine room, the operation of a marine diesel engine
(MDE) directly affects the economy and safety of the entire vessel. Predicting the future changes in
the status parameters of a MDE helps to understand the operational status, enabling timely warnings
to the engine crew, and to ensure the safe navigation of the vessel. Therefore, this paper combines
the temporal pattern attention mechanism with the bidirectional long short-term memory (BiLSTM)
network to propose a novel trend prediction method for short-term exhaust gas temperature (EGT)
forecasting. First, the Pearson correlation analysis (PCA) is conducted to identify input feature
variables that are strongly correlated with the EGT. Next, the BiLSTM network models input feature
variables such as load, fuel oil pressure, and scavenging air pressure and capture the interrelationships
between different vectors from the hidden layer matrix within the BiLSTM network. This allows
the selection of valuable information across different time steps. Meanwhile, the temporal pattern
attention (TPA) mechanism has the ability to explore complex nonlinear dependencies between different
time steps and series. This assigns appropriate weights to the feature variables within different time
steps of the BiLSTM hidden layer, thereby influencing the input effect. Finally, the improved slime mold
algorithm (ISMA) is utilized to optimize the hyperparameters of the prediction model to achieve the
best level of short-term EGT trend prediction performance based on the ISMA-BiLSTM-TPA model.
The prediction results show that the mean square error, the mean absolute percentage error, the root
mean square error and the coefficient of determination of the model are 0.4284, 0.1076, 0.6545 and 98.2%,
respectively. These values are significantly better than those of other prediction methods, thus fully
validating the stability and accuracy of the model proposed in this paper.

Keywords: ISMA; TPA; BiLSTM; short-term EGT trend prediction; Pearson correlation coefficient
(PCC); MDE

1. Introduction

Since the beginning of the 21st century, the volume of global trade has been con-
tinuously increasing, driving the rapid development of the shipping industry, especially
in the field of ocean shipping [1]. This trend has also spurred the maritime industry to
move towards intelligence, with enhancing the automation and intelligence levels of ships
becoming a focal point [2,3]. As the core power unit in a ship’s engine room, MDEs not only
provide propulsion for ship navigation, but also drive generators to provide continuous
and stable power for the entire ship’s operation [4]. The internal structure of MDEs is
complex and relies on the coordinated operation of multiple subsystems. Any malfunction
can adversely affect their operating performance, resulting in poor working conditions
and reducing overall efficiency. In severe cases, engine shutdowns can occur, damaging
associated equipment, disrupting the normal operation of the vessel, and posing a risk to
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the safety of personnel and property on board [5]. Due to prolonged exposure to harsh
operating environments, MDE components experience severe wear, significantly increasing
the risk of potential malfunctions and failures [6], However, traditional MDE condition
monitoring techniques typically focus on monitoring the thermodynamic parameters of the
engine, such as gas pressure and oil temperature. These parameters only show significant
changes when the malfunction has reached a certain severity [7]. Therefore, traditional
condition monitoring techniques cannot predict the future trend of diesel engine status
changes over a period of time. In contrast, more mature condition monitoring techniques
utilize intelligent algorithms to learn from historical diesel engine operating data. Using
the powerful nonlinear computing capabilities of intelligent algorithms, these techniques
can calculate the trend changes in diesel engine status parameters over a period of time.
By observing the trend changes in the status parameters, early warnings can be issued
to effectively prevent potential failures. Therefore, by studying the condition monitoring
technology of MDE to predict the trend changes in their status parameters, faults can be
detected in a timely manner during the latent period and relevant warnings can be issued.
This not only gives the engine crew enough time to inspect the related equipment, but also
reduces the subsequent maintenance costs and ensures the efficient operation of MDE. This
is of paramount importance in improving the reliability of MDE.

The EGT is an important thermal parameter of MDE. To a certain extent, it can charac-
terize the operating condition of the MDE and the load distribution of each cylinder [8].
Different degrees of variation in the EGT can reflect faults in different subsystems of the
MDE, and the temperature changes relatively slowly with minimal interference from exter-
nal factors [9]. Real-time monitoring and prediction of the EGT can provide insight into the
health status of MDE, ensuring the normal operation of ships [10].

Currently, trend prediction research methods mainly focus on physics-based modeling
and data-driven approaches. Model-based methods require the construction of accurate
physical or mathematical models to describe the operational processes of the research
object [11]. Model-based methods face significant challenges in constructing accurate
models of marine equipment in complex and dynamic environments such as ship engine
rooms. In contrast, data-driven methods avoid the cumbersome modeling process. This
method uses historical data collected by monitoring systems as the research object [12], and
conducts data analysis and processing, and uses relevant intelligent algorithms to establish
trend prediction models, eliminating the influence of complex environmental changes on
the trend of ship equipment status parameters. By establishing a unified standard trend
prediction curve, engineers can assess the status of MDEs in advance by observing the
trend changes in the EGT over a period of time, achieving real-time online monitoring of
ships. In recent years, with the continuous updating and iteration of Internet technology,
related intelligent algorithms have emerged. The data-driven equipment status parameter
trend prediction has attracted widespread attention from industry professionals [13].

Liu et al. analyzed the vibration signals of diesel engines, extracted fitted characteristic
parameters, and successfully established a prediction model for the performance trend of
diesel engines using radial basis function (RBF) neural networks, thereby improving the
prediction accuracy [14]. Cui et al. developed a degradation model for solid oxide fuel cells
(SOFCs) based on the area-specific resistance (ASR) and successfully predicted the full-cycle
degradation trend of SOFCs using the particle filtering algorithm [15]. Wang et al. utilized
the comprehensive degradation index (CDI) in the time-frequency domain and long short-
term memory (LSTM) to construct a trend prediction model for the state of hydropower
units, achieving the prediction of the degradation trend of hydropower units and improving
the prediction accuracy [16]. Theerthagiri et al. utilized the Seasonal ARIMA (SARIMA)
model combined with the weighted average method and feedback error analysis method
to forecast crude oil prices, successfully improving the prediction accuracy and obtaining
a more accurate trend of crude oil price changes [17]. Xu et al. developed a greenhouse
microclimate trend prediction model based on an improved empirical mode decomposition
(IEMD)-optimized informer. By utilizing data from five different environmental factors,
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the model accurately predicts the development trend of environmental factors [18]. Zhao
et al. utilized an improved AO algorithm to optimize the support vector regression (SVR)
prediction model, and achieved the matching of corresponding optimal parameters under
different operating conditions. This allowed for the accurate prediction of the development
trend of various operating state indicators of hydropower units over a certain time scale [19].
Li et al. used the LSTM method to establish a trend prediction model for the wear state
parameters of oil products. They used the prediction results as the test set to establish a
deep belief networks (DBN) prediction model for predicting device power. This method
achieved continuous prediction of the wear state of lubricating oil with objective factors
and was successfully applied to the prediction of power trends of power plant turbines with
subjective factors [20]. Zhang et al. employed an LSTM network to establish a multi-input
multi-output model for predicting the EGT of MDE. They validated the effectiveness of this
model using historical operational data from actual ships [8]. Liu et al. utilized an attention
mechanism and a LSTM network to establish a trend prediction model for the EGT of
MDE. They optimized the LSTM network parameters using the particle swarm algorithm,
thereby improving the accuracy of the prediction model. Additionally, they implemented
fault prediction by analyzing the distribution of residuals between predicted and actual
values [21]. Li et al. used the chaotic bat algorithm to optimize the hyperparameters of
the LightGBM network and established a trend prediction model for the EGT of aircraft
engines. They demonstrated the model’s effectiveness in monitoring the performance of
aircraft engines using historical operational data from a specific aircraft engine [22].

The existing trend prediction research can be divided into two main categories: equip-
ment degradation trend prediction models and real-time equipment status trend prediction
models. Equipment degradation trend prediction methods require the use of operational
data from the entire lifecycle of the equipment as the research object MDEs. Currently,
there is limited research on real-time status monitoring of MDEs, despite their critical role
in ensuring the safe navigation of ships and the safety of crew and property. Therefore,
this paper proposes a trend prediction method based on a BiLSTM-TPA neural network for
short-term EGT trend prediction. Firstly, the PCA method is used to determine the feature
variables with strong correlation to the EGT as the inputs to the model, thereby avoiding
redundant input feature vectors. Then, the BiLSTM network is employed to learn the
internal positive and negative features among the input variables. The TPA mechanism is
integrated to further capture the inherent relationships among the variables under different
sequences and time steps. Finally, the ISMA is used to optimize the hyperparameters of the
BiLSTM-TPA network to obtain the EGT trend. This paper critically reviews the challenges
in predicting the status parameters of MDE-related equipment, highlighting issues such as
insufficient prediction accuracy and inappropriate selection of parameters. In response, it
introduces a novel short-term trend prediction method for the EGT of MDEs, designated as
the ISMA-BiLSTM-TPA. This method effectively addresses the latency issues inherent in
traditional time-series prediction models. Comparative analyses with existing algorithms
demonstrate the superior performance of the proposed method, evidenced by significant
improvements across several metrics. Specifically, the MSE values decreased by 36.9302,
8.0956, 2.9568, 0.7334, 1.1768, and 0.4284; the MAPE values were reduced by 1.0823%,
0.4639%, 0.1679%, 0.084%, 0.1133%, and 0.0158%; the RMSE values saw reductions of
5.6775, 2.2645, 1.1848, 0.4234, 0.6130, and 0.1506; and the R2 values experienced increments
of 16.9%, 11.8%, 9.70%, 7.4%, 5.7%, and 2.4%, respectively. These results not only under-
score the efficacy of the ISMA-BiLSTM-TPA approach in enhancing predictive accuracy but
also its potential in revolutionizing the domain of MDE monitoring and predictive analysis.

The subsequent sections of this paper cover the following content: Section 2 introduces
methods such as Pearson correlation analysis (PCA), BiLSTM model, TPA mechanism, and
the SMA based on reverse learning and hybrid nonlinear inertia weight decay. Section 3
discusses the short-term trend prediction of the EGT of MDE based on the ISMA-BiLSTM-
TPA model, including the evaluation index of the prediction model and experimental setup
configurations. Section 4 introduces the research object and experimental data, organizes
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input feature parameters and experimental data, and sets optimization parameters for the
prediction model. Finally, the analysis and discussion of the short-term EGT trend prediction
results for the 6L34DF type are presented, followed by conclusions in the concluding section.

2. Method
2.1. The PCA Method

PCA is a statistical tool primarily utilized to assess the degree of linear correlation between
two variables. The purpose is to uncover the interrelationships between variables. This method
finds extensive application in scenarios involving data analysis and data dimensionality
reduction [23,24]. In the process of correlation analysis, the PCC serves as a crucial measure
for assessing the correlation between two variables. Assuming the sample size for the relevant
parameters of the EGT is denoted by m, after dimensionless transformation of the original
dataset, the correlation coefficient is calculated as follows in Equation (1):

rxy =

m
∑

i=1
(xi − x)(yi − y)√

m
∑

i=1
(xi − x)

√
m
∑

i=1
(y − y)

(1)

In the equation, rxy is a statistical measure quantifying the degree of linear correlation
between x and y, which used to describe the extent of their association. r ∈ [−1, 1];
x = [x1, x2, · · · , xm], y = [y1, y2, · · · , ym]; x represents the input variable related to the EGT,
and y represents the EGT; x and y represent the mean values of xi and yi, respectively.
When rxy > 0, which indicates a positive correlation between x and y. When rxy < 0, which
indicates a negative correlation between x and y. When rxy = 0, x and y are uncorrelated. If
the absolute value of the correlation coefficient is close to 0, it indicates a weak association
between the variable [25]. Under normal circumstances, the correlation strength of variables
can be evaluated based on the values in Table 1.

Table 1. The evaluation criteria for the Pearson correlation coefficient.

The Range of Values for |r| The Degree of Correlation

0 ≤ |r| < 0.1 Uncorrelated
0.1 ≤ |r| < 0.4 Weak correlation
0.4 ≤ |r| < 0.6 Moderate correlation
0.6 ≤ |r| < 0.8 Strong correlation
0.8 ≤ |r| ≤ 1.0 Very strong correlation

2.2. The BiLSTM Model

The BiLSTM network is derived from the LSTM network and is mainly composed of two
LSTM layers, one in the forward direction and one in the backward direction. LSTM is an
improvement over the recurrent neural network (RNN), effectively addressing the challenges
of long-term dependencies and gradient vanishing faced by traditional RNNs by introducing
specific mechanisms [26]. As one of the recursive neural networks, LSTM utilizes gate units
to regulate the transmission state of information, preserving crucial long-term memory while
suppressing the influence of minor information. The structure is illustrated in Figure 1.

From Figure 1, it can be observed that LSTM is primarily composed of three special
“gate” structures that selectively control the state of the network at each time step, wherein
Ct−1 denotes the effective state stored in the cell at the previous time step; ht−1 denotes
the output of information from the previous time step; xt denotes the input information at
the current time step; ft denotes the forget gate, which determines the degree of forgetting
of information; it denotes the input gate, determining which content participates in the

update of Ct.
∼
Ct denotes the current cell state; Ot determines the output information at

the current time step; tanh denotes the activation function of the network, typically using
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the hyperbolic tangent function when updating cell unit states; σ denotes the sigmoid
activation function used in gate units.
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ft = σ
(

W f [ht−1, xt] + b f

)
(2)

it = σ(Wi[ht−1, xt] + bi) (3)
∼
Ct = tanh(Wc[ht−1, xt] + bc) (4)

Ct = σ

(
ft·Ct−1 + it ⊗

∼
Ct

)
(5)

Ot = σ(Wo[ht−1, xt] + bo) (6)

ht = Ot·tanh(Ct) (7)

In the equation, Wf , Wi, Wc and Wo—weight threshold; b f , bi, bc and bo—bias parameters.
The BiLSTM network processes temporal sequences bidirectionally, integrating bidi-

rectional information into a single output to comprehensively understand the interdepen-
dencies in the time series. This aids in mitigating the issue of early information loss caused
by long sequences, and makes it applicable for predicting short-term trends in the EGT of
MDE. Refer to Figure 2 for the specific architecture.
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2.3. The Temporal Pattern Attention Mechanism

The attention mechanism (AT) plays a significant role in mimicking human attention.
It allows the model to focus on processing information relevant to specific tasks, similar
to how the human brain processes information. This mechanism demonstrates versatile
application potential in various areas such as language processing, image analysis, and
prediction tasks [27–29]. It enables models to deeply utilize crucial information from histor-
ical data, thereby enhancing the ability to recognize and utilize key patterns. Additionally,
it possesses the capability to review information from previous time steps and focus on
task-relevant information, thereby coordinating to generate more accurate output results.
However, classical attention mechanisms primarily focus on weighting individual variables
within each time step, which may not effectively calculate variable weights for complex
nonlinear variables like the EGT of MDE, which are influenced by multiple factors within a
single time step, thereby affecting model performance to some extent. In 2019, Shih and
their team proposed a novel approach called the TPA mechanism based on improving
self-attention mechanisms [30]. The TPA mechanism can capture the interrelations between
multiple variables within the current time step and their cross-correlations with all previous
time series. It employs a scoring function to weight the calculation of each indicator, which
to some extent improves the model’s performance. The ultimate output is derived by
aggregating the calculation results of each indicator. The working principle is illustrated
in Figure 3.
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In this paper, the TPA mechanism is integrated with the BiLSTM network. During the
operation of the combined model, the TPA mechanism utilizes an internal one-dimensional
convolutional neural network (CNN) filter to extract key information from the hidden state
row vector matrix of the BiLSTM network. For processing data related to the EGT of MDE,
the operational procedure of TPA mainly includes the following steps.

Step 1: Set h =
{

hm,(t−ω+1), · · · , hm,t

}
as the input sequence of EGT data related

to MDE for TPA, where ω denotes the size of the data sequence, and m denotes the
dimensionality of the data sequence. C = {C1, C2, . . . , CT} denotes the CNN filter, T
denotes the maximum length of TPA, and let ω = T. It is necessary to maintain the
sequence length the same as the length obtained by TPA. After convolving h and C with
the filter, the corresponding temporal patterns are obtained as follows:

HC
i,j = ∑ω

l=1 hi,(t−ω−1+l) × Cj,T−ω+l (8)

Step 2: Select the sigmoid function as the activation function and define f as the
evaluation function. After calculating the weights, the result is obtained as:

f
(

HC
i , hm,t

)
=

(
HC

i

)T
Waht (9)

αi = sigmoid
(

f
(

HC
i , ht

))
(10)
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In the equation, HC
i denotes the ith row vector of HC, Wa ∈ Rm×k denotes the corre-

sponding weight parameter, αi denotes the weight parameter of HC
i , i = 1, 2, . . ., m. After

weighting αi and HC, and summing them, the attention expression is obtained as:

vt =
m

∑
i=1

αi HC
i (11)

where m denotes the dimensionality of the input feature variables.
The summation of ht and vt after linear mapping yields the predicted value yt−1+△ of

the BiLSTM-TPA model.
yt−1+∆ = Wh′(Whht + Wvvt) (12)

Here, Wh′ , Wh and WV denote the matrix parameter for calculating weights.

2.4. Based on the Backward Learning Mixed Nonlinear Inertial Weight Decay SMA
Optimization Algorithm

In this section, we introduce the reverse learning and the nonlinear inertia weight
decay strategy, which are based on the traditional slime mold algorithm (SMA) optimization.
These strategies aim to strike a balance between the algorithm’s global search and local
development capabilities, thus preventing premature convergence to local optima and
facilitating the rapid discovery of the global optimal position. By applying this optimization
algorithm, the prediction accuracy of the BiLSTM-TPA model is significantly enhanced after
hyperparameter optimization.

2.4.1. The SMA Optimization Algorithm

The SMA is an optimization algorithm derived from observing the behavior of slime
molds as they move and form grid-like structures when searching for food and responding
to environmental stimuli [31]. The algorithm draws inspiration from the adaptive move-
ment strategy of slime mold populations in environments with uneven food distribution
to find the optimal foraging path and solve various optimization problems [32–34]. the
optimization process mainly includes the following three stages:

Stage 1: Approaching Food. Slime mold populations rely on sensing the odor released
by food in the air to search for the location of food. The specific method is detailed
in Equation (12).

Y(t + 1) =
{

Yb(t) + vb·(W·Yrand1(t)− Yrand2(t)), r > p
vc·Y(t), r < p

(13)

In the t-th iteration process, Y(t) denotes the position of the slime mold; Yb(t) indi-
cates the position of the slime mold at the current individual with the best fitness. The
iteration count of the slime mold is denoted by t; r denotes any arbitrary number between
0 and 1. The value of vb is within the range of [−a, a]; vc denotes a linearly decreasing
number between 1 and 0; Yrand1(t) and Yrand2(t) refer to the random positions of two slime
mold individuals.

The equation for updating the maximum limits p and vb, as well as the weight param-
eters and a, are as follows:

p = tanh|S(i)− DF|, i ∈ 1, 2, ···, N (14)

a = arctanh
(

1 − t
tmax

)
(15)

W(Smell Index(i)) =
{

1 + r· log((bF − wF) + 1), condition
1 − r· log((bF − wF) + 1), others

(16)

Smell Index = sort(S) (17)

where DF denotes the current population’s best fitness value; S(i) denotes the fitness value
of an individual slime mold; N denotes the total number of slime molds in the population;
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condition represents the top 1/2 ranking individuals in the slime mold population based
on their S(i) values. The remaining individuals in the population are denoted by others;
tmax denotes the maximum number of iterations; bF denotes the best fitness value attained
by an individual during the current iteration process; WF denotes the best fitness value
attained by an individual during the current iteration process; Sort means to arrange the
population’s fitness values in ascending order; SmellIndex denotes the sequence after
arranging fitness values in order.

Stage 2: Food Encirclement. By simulating the positive and negative feedback regula-
tion of their own position based on the concentration of food within the vein-like structures
inside the slime mold body, they gradually encircle the food. The position updating strategy
is as follows:

Y(t + 1) =


rand(ub − lb) + lb, r < z
Yb(t) + vb(W·Yrand1(t)− Yrand2(t)), r < p
vcY(t), r ≥ p

(18)

where ub and lb, respectively, denote the upper and lower boundary values of the search
area; rand is a random number between 0 and 1 that allows the slime mold to disperse in
any direction; z denotes the switching probability, determining whether the slime mold
population is approaching the search for the optimal individual or continuing to search for
other food sources.

Stage 3: Oscillation Phase. By adjusting the values of W, vb, and vc, the process of the
slime mold population gradually approaching the food source is simulated. During the
approach to the food source, the oscillation frequency of the slime mold population will
increase as the concentration of food rises. vb will oscillate repeatedly within [−a, a] and
gradually approach 0 with an increase in the number of iterations, while vc will oscillate
repeatedly within [−1, 1] and ultimately approach 0.

2.4.2. The Reverse Learning Strategy

The reverse learning strategy [35] compensates for the limitation of the population’s
exploration range during the random initialization stage by increasing the diversity of the
population, thereby improving the quality of the optimal point. The central idea of this
strategy is to evaluate the current population’s solution by generating a reverse solution
during the optimization phase of the slime mold population. By comparing the function
values of the two, the more optimal solution is selectively retained as the starting point for
the next round of iterative calculations. Suppose there exists a point Y = [Y1, Y2, . . . , YM] in
a D-dimensional space. Additionally, yi(i = 1, 2, · · · , M) is randomly distributed within
the interval [e, f ]. The reverse point is denoted as y′i = e + f − yi. Therefore, the calculation
equation for the reverse population can be expressed as:

Y′
i = ub + lb − Yi (19)

In the equation, lb and ub denote the upper and lower boundary values of the search
area; Yi denotes the initial population; Y′

i denotes the reverse t-oriented population.
Thus, after merging the original population and the reverse population to obtain

Y =
(
Yi ∪ Y′

i
)
, the fitness values are calculated and sorted using the principle illustrated in

Figure 4. The top N points are selected as members of the initial population Y.
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2.4.3. The Nonlinear Inertial Weighting Strategy

When borrowing ideas from swarm intelligence optimization algorithms, the initial
random distribution of the slime mold population in the search for food has a certain impact
on the efficiency of global search. During the global and local search phases for food sources,
the inertia weight controls the search efficiency and convergence speed of the SMA to some
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extent. To enhance algorithm accuracy and efficiency, the inertia weight value is increased to
expand the search step of the slime mold population, improving global search capabilities
to prevent premature convergence. In later stages of iteration, gradually reducing the
inertia weight is implemented to reduce the search step, enhancing local search capabilities
and accelerating convergence speed. Therefore, this experiment introduces a nonlinear
inertia weight, which dynamically adjusts the inertia weight nonlinearly with increasing
iteration times. This adjustment aims to balance the exploration and exploitation abilities
among individuals, further optimizing the operational performance of the algorithm [36].

The equation for calculating the nonlinear inertia weight is given by Equation (20):

w = wmax − (wmax − wmin)·
t

tmax
(20)

In the equation, wmax and wmin, respectively, denote the maximum inertia weight
coefficient and the minimum inertia weight coefficient throughout the entire iteration
process; tmax denotes the maximum number of iterations during the slime mold foraging
process; t denotes the current iteration number.

After introducing the nonlinear inertia weight strategy, the position update principle
is as follows:

Y(t + 1) =


rand(ub − lb) + lb, r < z
Yb(t) + w·vb(W·Yrand1(t)− Yrand2(t)), r < p
vc·Y(t), r ≥ p

(21)

3. A Prediction Model of the Short-Term Trend of the EGT

The EGT of MDE is a classic time series, characterized by continuity, volatility, and
randomness in the variation patterns. When predicting short-term EGT trends, the current
temperature value is closely related to the information from preceding and succeeding
time periods. Therefore, this paper adopts the BiLSTM network as the foundational model
for short-term EGT trend prediction to facilitate bidirectional interaction of data. On this
basis, introducing the TPA mechanism helps to capture the interdependencies among
multidimensional variable sequences at different time periods. Additionally, by utilizing
an ISMA to find the optimal hyperparameter configuration in the BiLSTM network, the
prediction model’s overall efficiency and the ability to generalize are significantly improved.

The traditional BiLSTM-TPA prediction model employs an empirical method to con-
duct multiple experiments for adjusting the network model’s hyperparameters, aiming to
achieve the desired prediction accuracy. However, the model (as detailed in Figure 5) has
a complex internal structure, contains numerous hyperparameters. Manually adjusting
hyperparameters through trial and error introduces a significant workload and may impact
the accuracy of prediction results. Therefore, this study introduces the ISMA to optimize
the hyperparameters in the BiLSTM-TPA network, with the complete optimization process
illustrated in Figure 6. The comprehensive algorithm consists of five main modules: input,
ISMA, BiLSTM, TPA, and output. The input module performs data cleaning on the data
collected by the shipboard monitoring system, then selects features related to the EGT
through PCA to be used as the experimental dataset. In the BiLSTM module, decode the
relevant hyperparameters according to the principles of the ISMA to obtain the number
of nodes in each hidden layer, the min-batchsize, and the learning rate. the TPA module
is responsible for weighted processing of the results from the hidden layers. The output
module is responsible for generating the final prediction results, calculating the RMSE
value between the actual and predicted values, and passing it back to the ISMA module as
the fitness value. The ISMA module adjusts the position of the slime mold population based
on the fitness value, achieving population updates and a global optimal search, ultimately
obtaining a set of optimized hyperparameters.
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3.1. Optimization of the BiLSTM-TPA Prediction Model Based on the ISMA

This study incorporates the ISMA for hyperparameter optimization within the BiLSTM
network mode. Initially, establish the value boundaries for the hyperparameters within the
BiLSTM network model. Subsequently, the BiLSTM module decodes the hyperparameters
passed in by the ISMA to obtain and the number of nodes in each hidden layer, the
min-batchsize, learning rate. Following this, the prediction model is trained and learned,
calculating the root mean square error (RMSE) between the predicted EGT values and
actual EGT values. Then, this RMSE value is relayed back to the ISMA module to serve as
a fitness value, allowing the adjustment of the population members’ positions according
to this current fitness value in the pursuit of the global optimal solution. Ultimately, a
set of optimized hyperparameters is obtained. Figure 7 illustrates the ISMA, with the
comprehensive steps for calculation detailed as follows.

• Step 1: Determine the range of values for the hyperparameters of the BiLSTM module.
• Step 2: Initialize parameters for the ISMA, including the search dimension (D), popu-

lation size (N), and maximum number of iterations (tmax). Randomly generate initial
slime mold population individuals, ensuring that the position of each slime mold
individual corresponds to a combination of hyperparameters of the BiLSTM model.

• Step 3: Follow the reverse learning strategy to calculate the reverse solution for the
initial population, and comprehensively evaluate the current solutions and reverse
solutions. By merging the better-fit 50% of current solutions and 50% of reverse
solution individuals, form the initial population for the ISMA.

• Step 4: Determine the initial fitness value of the slime mold population.
• Step 5: Calculate the parameter (a) and the weight (W).
• Step 6: Produce a random number (r) and contrast (r) with parameter (z). Should r be

smaller than z, refresh the position of the individual based on the initial equation in
Equation (21). If not, proceed to adjust p, vb, and vc further Contrast r with parameter
p; should r be lower than p, revise the individual’s location using the second equation
in Equation (21); otherwise, continue with the modification as per the third equation
in Equation (21).

• Step 7: Recalculate the fitness of slime mold population individuals, and update the
global optimum.
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• Step 8: Check if the algorithm meets the termination condition. If it does, output the
global optimum solution, which corresponds to the optimal parameters of the BiLSTM
model. (the number of nodes in each hidden layer, min-batchsize, learning rate); if not,
repeat Steps 5 to 8.
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3.2. The Evaluation Index

The effectiveness of the EGT prediction algorithm for MDE largely depends on the
accuracy of the trend prediction model. The higher the prediction accuracy, the greater
its significance for guiding intelligent operation and maintenance of the ship’s engine
room. To objectively evaluate the accuracy of the prediction results, it is necessary to
establish corresponding evaluation indicators to verify the effectiveness and feasibility
of the proposed experimental method. This paper aims to adopt the mean square error
(MSE), the mean absolute percentage error (MAPE), the coefficient of determination (R2),
and RMSE as the evaluation index for assessing the accuracy of predictions [37,38]. The
specific calculation equations are as follows:
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1
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1
n

n

∑
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yi

∣∣∣∣·100% (23)
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√
1
n

n

∑
i=1

(yi − ŷi)
2 (24)

ER2 = 1 − ∑n
1=1(ŷi − yi)

2

∑n
1=1(yi − yi)

2 (25)

In the equation, y = [y1, y2, . . . , yi] and ŷ = [ŷ1, ŷ2, . . . , ŷi]. It denotes the measured
value sequence of the EGT in the ship-end monitoring system and the output sequence of
the predicted value of the prediction model, respectively.

To verify the effectiveness of the short-term EGT trend prediction method proposed in
this paper, this study introduces several prediction models, including the BiLSTM, BiLSTM-
AT, BiLSTM-TPA, SMA-BiLSTM-AT, ISMA-BiLSTM-AT, and QPSO-BiLSTM-AT, and this
study compared the outcomes of these models with those of the method proposed in
this paper.

3.3. Experimental Configuration

The configuration of the experimental environment is shown in Table 2.

Table 2. Experimental environment configuration table.

Experimental Configuration

Experimental platform Matlab 2022b
Operating system Window11 64-bit

CPU AMD Ryzen 7 6800 H with Radeon Graphics 3.20 GHz
Running memory 16 G
Running language C++

4. Discuss

This study conducts a predictive analysis on the shipboard historical operating data
of the No. 2 dual-fuel engine of a certain liquefied natural gas bunkering vessel from
16 May 2018, to 18 May 2018. The No. 2 engine of this ship is a 6L34DF marine four-
stroke engine produced by Wartsila, and the relevant parameters of this model’s MDE are
shown in Table 3. Thermal parameters related to the EGT are extracted from the shipboard
monitoring system of the 6L34DF. By performing PCA on the extracted thermal parameters,
the original input feature sequence for the predictive model is obtained. The experimental
approach introduced in this document is utilized for the calculation learning of the neural
network model, and the resulting predictions are compared with those of other models to
verify the effectiveness of the experimental method.

Table 3. Engine parameters.

Parameters Values

Engine type Four strokes
Cylinder configuration Inline 6 cylinders

Cylinder bore (mm) 340
Stroke (mm) 400

Compression ratio 12.6
Speed (r/min) 750

Power (kW) 2700
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4.1. Input Feature Selection and Data Preprocessing

Before beginning the input features selection and data preprocessing, it is necessary to
extract the historical operating data from the shipboard monitoring system of the 6L34DF
type MDE. By consulting the relevant literature, input feature parameters related to the
EGT are selected, as shown in Table 4.

Table 4. Feature parameters before correlation analysis.

Parameters Abbreviation

Exhaust Gas Temperature EGT
Exhaust Gas Before T/C Temperature EGTBTC
Exhaust Gas After T/C Temperature EGTATC

Load L
M/E Speed MES

Scavenge Air Temperature SAT
Supercharger Speed SCS

Fuel Oil Pressure FOP
Scavenge Air Pressure SAP
Fuel Oil Temperature FOT

Lubricating Oil Pressure LOP
Oil Filter Inlet and Outlet Pressure Difference OFPD

As is widely known, the EGT of MDE is a continuous dynamic thermodynamic pa-
rameter, influenced by multiple characteristic parameters within the subsystems. Therefore,
when selecting features related to the EGT, their correlation with the EGT should be con-
sidered. However, selecting redundant features with weak correlation to the EGT during
the input feature selection process may increase the model’s complexity, reduce the ability
to adapt to new data, and lead to issues such as overfitting. Based on this, the method
described in Section 2.1 is used to analyze the original dataset, resulting in the calculation
of correlation coefficients between parameters (see Figure 8). According to the results of the
correlation coefficient calculation, selecting feature parameters with absolute values greater
than 0.4 for the prediction model’s input (refer to Table 5), and select 460 sets of data from
these feature parameters for experimental validation. Of these, the first 368 sets are used
for model training, while the remaining 92 sets are used for testing the model. Meanwhile,
to remove the impact of dimensional disparities among various feature parameters on the
model’s predictive accuracy, normalize the input feature sequence of the original dataset to
be between 0 and 1. The normalization calculation equation is shown in Equation (26) [39]:

x′ = a +
x − xmin

xmax − xmin
(b − a) (26)

wherein x′ denotes the normalized data; x, xmax and xmin, respectively, denote the original
data, the maximum value in the original data, and the minimum value in the original data;
a and b stand for the minimum and maximum values after normalization, respectively. In
this experiment, a = −1 and b = 1.

Table 5. Results after correlation analysis.

Parameters Abbreviation

Exhaust Gas Temperature EGT
Exhaust Gas Before T/C Temperature EGTBTC

Load L
Supercharger Speed SCS

Fuel Oil Pressure FOP
Scavenge Air Pressure SAP
Fuel Oil Temperature FOT
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4.2. Optimize Parameter Setting

To enhance the accuracy of the prediction, it is necessary to configure the network
hyperparameters in a reasonable and effective manner before executing the prediction
model. Through in-depth learning of the BiLSTM model, it is recognized that the hy-
perparameters influencing model performance encompass the quantity of layers in the
hidden layer, batch size, quantity of training epochs, number of nodes within the hidden
layer, learning rate, and the size of batch training, among other factors. This experiment
decided to set the number of layers in the hidden layer to two to achieve fitting of arbitrary
functions. Meanwhile, when determining the number of nodes in the hidden layer, it
is necessary to balance different factors. Selecting an excessive number of nodes in the
hidden layer can raise calculation complexity and potentially cause the model to become
ensnared in local optimal solutions. conversely, too few nodes may lead to poor learning
and training effects and weaker overall generalization ability. Therefore, it is necessary
to carefully select the number of hidden layer nodes in the model design to maintain a
balance between calculation efficiency and model performance. The batch size of the model
determines the size into which the input sequence is segmented in the temporal dimension,
and choosing the right batch size is a key factor in optimizing model performance. The
setting of the number of training epochs should also be cautious; too many training epochs
increase the burden on the model, and the batch training size should not be too large to
avoid overfitting. Given the actual data volume, this experiment set the batch training
size to 16. Additionally, as a sensitive parameter, the learning rate determines the iteration
step size of the weights, and the selection requires reasonable setting within a region of
minimal loss. Therefore, this study conducted optimization of the number of nodes in the
hidden layer, min-batchSize, and learning rate in the BiLSTM model using the ISMA, with
the range of parameter settings detailed in Table 6.
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Table 6. Setting of model network parameters range and population parameters.

Parameters Setting Range

numHiddenUnits1 [5, 20]
numHiddenUnits2 [5, 20]

Min-BatchSize [2, 16]
Learning rate [0.001, 0.1]

Dropout Adam
Optimizer 200

Epoch 2
Number of hidden layers Sizepop = 20, Iterations = 15

ISMA optimization algorithm-related parameters Search dimension: dim = 4
Search speed limit [−2, 2]

4.3. Analysis of Short-Term Exhaust Gas Temperature Trend Prediction Results for the 6L34DF

To confirm the effectiveness of the short-term EGT trend prediction model introduced
in this paper, the outcomes of the predictions will be analyzed in detail from the following
three aspects.

4.3.1. Comparative Analysis of the Convergence Characteristics of Combined Model
Optimization Algorithms

To validate the superiority of the ISMA in the hyperparameter search of BiLSTM-TPA,
we introduce Quantum Particle Swarm Optimization (QPSO), Particle Swarm Optimization
(PSO), the Sparrow Search Algorithm (SSA) and SMA optimization algorithms to fine-
tune the hyperparameters of the BiLSTM-AT network, and analyze them as comparative
experiments. In this study, we set the same initial values for the five optimization algorithms
and choose the loss function utilized in the training of the BiLSTM-AT network as the fitness
function to assess the hyperparameter optimization capabilities of the three algorithms.
The results are shown in Figure 9.
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The fitness function curves for the QPSO, SMA, PSO, SSA, and ISMA optimization
algorithms shown in Figure 9 are obtained by averaging the results after multiple hyperpa-
rameter optimization attempts, hence they possess a high level of credibility. By observing
the convergence characteristics of the fitness functions for the three algorithms in the figure,
it is evident that the ISMA successfully escapes the local optimum area after the seventh
iteration, causing the fitness function to reach a state of convergence. The SMA, QPSO, PSO
and SSA optimization algorithms achieve convergence after the 12th, 13th, 12th and 14th
iterations, respectively, and both fall into local optimum areas, exhibiting a slower iteration
speed. A comprehensive analysis indicates that, compared to the other four optimization
algorithms, the ISMA has outstanding hyperparameter optimization performance.

4.3.2. Combination Model Optimization

To assess the efficiency of the ISMA for the hyperparameters of the BiLSTM-TPA
network, update the positions and velocities of the slime molds during each iteration of the
ISMA, and calculate the fitness value under the global optimal value. Through this process,
the optimization results for each hyperparameter and their corresponding fitness values
can be obtained. This section selects the ISMA-BiLSTM-TPA model performing the EGT
trend prediction task in a certain round, where the ISMA optimizes the hyperparameters
of the BiLSTM-TPA network and carries out an in-depth analysis of the optimization
results. According to the optimization results displayed in Figure 10, as the count of ISMA
iterations grows, the fitness value decreases incrementally as the position of the updated
myxomycetes is adjusted, and after six iterations, the fitness value stabilizes, eventually
converging on the optimal solution. The optimization using the ISMA produces optimal
values for the quantity of nodes in the first and second hidden layers, the min-batchsize, and
learning rate. As demonstrated by the results depicts in Figure 10e, the fitness value of the
ISMA begins to converge after the sixth iteration and finally stabilizes at 0.429, indicating a
rapid convergence speed of the ISMA. Figure 10a shows the change in the number of nodes
in the first hidden layer as the number of iterations increases, eventually converging to 20;
Figure 10b depicts the variation in the quantity of nodes in the second hidden layer with
the rise in the number of iterations, eventually converging to 5; Figure 10c displays the
adjustment in the learning rate corresponding to the increment in the number of iterations,
eventually converging to 0.0257; Figure 10d illustrates the evolution of the min-batchsize
with increasing iterations, eventually converging to 2. In summary, the ISMA demonstrates
a rapid convergence speed when optimizing the BiLSTM-TPA prediction model.
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4.3.3. Comparison of Prediction Effects of Combined Models

During the operation of MDEs, the EGT is affected by various factors, exhibiting a
certain degree of fluctuation and significant uncertainty. The BiLSTM-TPA model possesses
both short-term and long-term memory capabilities, and the TPA mechanism effectively
captures the interrelationships between different time steps, thereby improving the model’s
predictive accuracy. Consequently, this study selects BiLSTM as the fundamental frame-
work and introduces the AT mechanism and TPA mechanism. Based on BiLSTM-AT and
BiLSTM-TPA, QPSO, SMA, PSO, SSA and ISMA optimization algorithms are incorporated
to optimize the results of short-term trend prediction for the EGT of MDEs, with the trend
prediction results shown in Figure 11.
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From Figure 11, it can be observed that the single model BiLSTM performs well in
the initial prediction phase, but as time progresses, there is a significant deviation between
the predicted results and the actual values. After introducing the AT mechanism and the
TPA mechanism, although the prediction accuracy has improved, there is still a deviation
phenomenon. This is because BiLSTM adopts a step-by-step prediction method, which
leads to poor prediction performance. By introducing swarm intelligence optimization
algorithms to optimize BiLSTM, the prediction performance of the BiLSTM-AT network is
significantly improved, approaching the actual values. However, when there is a sudden
change in the EGT, there is still a deviation in the prediction. After constructing the
ISMA-BiLSTM-TPA combination model, the ISMA further optimizes the network model
by increasing the number of initial solutions and enhancing the global search capability,
thereby enhancing the stability. Meanwhile, the combination of the TPA mechanism to
capture the features between each time step significantly improves the prediction accuracy
of the model, making the predicted values of the proposed method closer to the actual
values, and achieving the desired prediction effect. Figure 12 shows the prediction results
of the ISMA-BiLSTM-TPA model.
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The analysis of Figure 12 reveals that the EGT trend predictions made using the
ISMA-BiLSTM-TPA model are highly consistent with the actual values in the test dataset.
This result not only indicates the model’s accuracy in forecasting EGT trends but also
reflects its sensitivity and responsiveness to changes in temperature trends. Through this
sensitive reaction capability, the ISMA-BiLSTM-TPA model can effectively capture the
subtle dynamics of temperature changes, providing strong support for temperature trend
prediction. Therefore, the ISMA-BiLSTM-TPA model is not only innovative in theory but
has also shown its significant value in practical applications, offering new approaches and
methods for future applications and research in a broader field.

4.3.4. Comparison of Prediction Accuracy of Combined Models

Table 7 presents the performance evaluation indexes of various models during the
training and testing phases. The analysis of the data in Table 7 reveals that the predictive
performance of all models is generally higher during the training phase than in the testing
phase. Notably, the ISMA-BiLSTM-TPA model demonstrates the best performance both
in the training and testing phases. This section provides a detailed analysis of the perfor-
mance of each prediction model during the testing phase as follows: Compared to other
prediction models, the ISMA-BiLSTM-TPA model shows the most significant reduction in
the MSE metric, with decreases of 36.9302, 8.0956, 2.9568, 0.7334, 1.1488, 1.1704, 1.1768,
and 0.4284, respectively; in terms of MAPE, its values are reduced to 1.0823%, 0.4639%,
0.1679%, 0.084%, 0.0492%, 0.0506%, 0.1133%, and 0.0158%, respectively; the RMSE values
are correspondingly reduced to 5.6775, 2.2645, 1.1848, 0.4234, 0.8438, 0.8822, 0.6130, and
0.1506; simultaneously, the R2 values increased by 16.9%, 11.8%, 9.70%, 7.4%, 6.5%, 7.0%,
5.7%, and 2.4% compared to other models, respectively. This comprehensive analysis
clearly indicates that the ISMA-BiLSTM-TPA model significantly surpasses other compari-
son models in accuracy and predictive performance, highlighting its strong capability and
potential application in handling complex prediction tasks.
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Table 7. Comparison of prediction accuracy.

Dataset Model MSE/◦C MAPE/% RMSE/◦C R2/%

Training

BiLSTM 9.5084 0.6394 3.0427 86.3%
BiLSTM-AT 1.2485 0.2457 2.4637 89.4%

BiLSTM-TPA 1.1529 0.2361 1.6732 90.2%
SMA-BiLSTM-AT 0.9372 0.1402 1.2845 94.7%
PSO-BiLSTM-AT 0.8033 0.1384 1.2483 95.3%
SSA-BiLSTM-AT 0.6055 0.1228 0.3104 95.5%

QPSO-BiLSTM-AT 0.5796 0.1187 0.2826 96.2%
ISMA-BiLSTM-AT 0.2712 0.0453 0.2669 98.9%

ISMA-BiLSTM-TPA 0.0232 0.0392 0.2302 99.6%

Testing

BiLSTM 37.3586 1.1899 6.1122 81.3%
BiLSTM-AT 8.5204 0.5715 2.9190 86.4%

BiLSTM-TPA 3.3852 0.2755 1.8393 88.5%
SMA-BiLSTM-AT 1.1618 0.1716 1.7796 90.8%
PSO-BiLSTM-AT 1.5772 0.1568 1.4983 91.7%
SSA-BiLSTM-AT 1.5986 0.1602 1.5367 91.2%

QPSO-BiLSTM-AT 1.6052 0.1209 1.2675 92.5%
ISMA-BiLSTM-AT 0.6482 0.1234 0.8051 95.8%

ISMA-BiLSTM-TPA 0.4284 0.1076 0.6545 98.2%

To confirm the practicality and effectiveness of the TPA mechanism in short-term
EGT trend prediction under identical conditions, we additionally compared the predictive
performance of the BiLSTM-AT model with the BiLSTM-TPA model. The results show
that, compared to the BiLSTM-AT, the BiLSTM model incorporating the TPA mechanism
exhibited reductions in MSE, MAPE, RMSE, and an increase in R2 by 5.1388, 0.2960%,
1.0797, and 2.1%, respectively. Once again, these results demonstrate that the BiLSTM
model with the TPA mechanism achieves higher prediction accuracy compared to the
BiLSTM model with the AT mechanism.

According to the evaluation results of the ISMA-BiLSTM-AT, SMA-BiLSTM-AT, and
BiLSTM-AT prediction models, the BiLSTM-AT prediction models based on the ISMA and
SMA showed significant advantages in prediction accuracy. The MSE, MAPE, and RMSE
values are notably lower compared to those from the sole use of the BiLSTM-AT model,
with the R2 also exhibiting a significant increase. This outcome emphasizes the stability and
applicability of the SMA in time-series prediction. Further comparison of the evaluation
metrics between the ISMA-BiLSTM-AT and SMA-BiLSTM-AT models validated the more
effective optimization performance of the ISMA compared to the SMA.

The comprehensive analysis presented in this study demonstrates that the proposed
ISMA-BiLSTM-TPA model exhibits outstanding practicality and stability, excelling in meet-
ing the accuracy requirements of short-term EGT trend prediction tasks. By incorporating
the ISMA strategy and the BiLSTM-TPA architecture, the model significantly enhances the
predictive capability for time-series data, enabling it to accurately capture minute changes
in EGT trends, thereby ensuring high precision and reliability of the prediction results.

5. Conclusions

This paper proposes a method for short-term EGT trend prediction in MDE based on
an ISMA, to optimize the BiLSTM model under the TPA mechanism.

(1) Using PCA, input feature parameters for the trend prediction model are selected
based on the absolute value of the correlation coefficient between the EGT and other
parameters, ensuring it exceeds 0.4 to avoid redundant features and minimize noise
interference. Concurrently, employing the BiLSTM network to extract time-series
features enhances the prediction accuracy of the EGT.

(2) Introducing the TPA mechanism, crucial features between internal matrices of BiL-
STM network hidden layers are extracted through the internal convolutional kernel.
The TPA mechanism captures inherent connections between different input vectors
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and time steps, extracting relevant information more efficiently than traditional AT
mechanisms, further improving the accuracy of the prediction model.

(3) Introducing a reverse learning strategy and a nonlinear inertia weight decay strategy
to the original SMA, the ISMA is developed, which improves the quality of the initial
solution and the search capability of the SMA optimization algorithm. Comparing the
optimization effects of the ISMA with the QPSO algorithm, it is proved that the ISMA
has better optimization effects and higher prediction accuracy in the trend prediction
task described in this paper.

The prediction results indicate that the ISMA-BiLSTM-TPA prediction model possesses
better network parameter optimization capability and higher prediction accuracy in the
prediction task, effectively improving the accuracy of short-term EGT trend prediction.
Compared to other prediction models in this paper, this prediction model exhibits good
applicability and stability for short-term EGT trend prediction tasks.

Despite this study providing valuable insights into the prediction of the EGT for
MDEs, it faces several limitations. Firstly, the collection of input feature parameters related
to the EGT of MDEs is limited, and the method has not been validated across different
engine models due to the lack of parameters from other models. Moreover, the variety of
optimization algorithms introduced is limited, constraining the universality of the method.
Considering these limitations, future research will focus on expanding the dimensionality
of input feature parameters and increasing the variety of optimization algorithms to further
enhance the accuracy and applicability of the prediction method.
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Nomenclature

ASR Area-Specific Resistance
AT Attention Mechanism
BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
CDI Comprehensive Degradation Index
DBN Deep Belief Networks
EGT Exhaust Gas Temperature



J. Mar. Sci. Eng. 2024, 12, 541 22 of 24

EGTATC Exhuast Gas After T/C Temperature
EGTBTC Exhuast Gas Before T/C Temperature,
FOP Fuel Oil Pressure
FOT Fuel Oil Temperature
L Load
LSTM Long Short-Term Memory
LOP Lubricating Oil Pressure
ISMA Improved Slime Mold Algorithm
IEMD Improved Empirical Mode Decomposition
MDE Marine Diesel Engine
MSE Mean Square Error
MAPE Mean Absolute Percentage Error
MES M/E Speed
OFPD Oil Filter Inlet and Outlet Pressure Difference
PCA Pearson Correlation Analysis
PCC Pearson Correlation Coefficient
PSO Particle Swarm Optimization
QPSO Quantum Particle Swarm Optimization
RNN Recurrent Neural Network
RMSE Root Mean Square Error
R2 Coefficient of Determination
RBF Radial Basis Function
SAP Fuel Oil Pressure
SAT Scavenge Air Temperature
SARIMA Seasonal ARIMA
SOFCs Solid Oxide Fuel Cells
SMA Slime Mold Algorithm
SVR Support Vector Regression
SCS Supercharger Speed
SSA Sparrow Search Algorithm
TPA Temporal Pattern Attention
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