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Abstract: Due to the intensification of economic globalization and the impact of global warming, the
development of methods to reduce shipping costs and reduce carbon emissions has become crucial.
In this study, a multi-objective optimization algorithm was designed to plan the optimal ship route for
safe cross-ocean navigation under complex sea conditions. Based on the traditional non-dominated
sorting genetic algorithm, considering ship stability and complex marine environment interference,
a non-dominated sorting genetic algorithm model considering energy consumption was designed
with the energy consumption and navigation time of the ship as the optimization objectives. The
experimental results show that although the proposed method is 101.23 nautical miles more than the
large ring route, and the voyage is increased by 10.1 h, the fuel consumption is reduced by 92.24 tons,
saving 6.94%. Compared with the traditional genetic algorithm, the voyage distance and time are
reduced by 216.93 nautical miles and 7.5 h, and the fuel consumption is reduced by 58.82 tons,
which is almost 4.54%. Through experimental verification, the proposed model can obtain punctual
routes, avoid areas with bad sea conditions, reduce fuel consumption, and is of great significance for
improving the safety and economy of ship routes.

Keywords: route planning; energy consumption; weather forecast; ship stability; global optimization

1. Introduction

Maritime transportation is the main mode of transportation in trade, and the shipping
industry accounts for more than 80% of global trade. However, with the continuous
development of shipping, the direct result is an increase in global greenhouse gas (GHG)
emissions. To this end, the International Maritime Organization (IMO) has established
that by 2050, the global shipping industry will reduce carbon by at least 50% compared
with 2008, and other shipping organizations have proposed a series of measures [1,2].
The acceleration of the global economic process has put forward higher requirements for
maritime transportation. It has become an urgent task to improve shipping efficiency and
reduce shipping costs [3]. However, due to the influence of the marine environment, the
safety of ships has been greatly tested. Planning a route as economical and safe as possible
has become a key factor in improving shipping efficiency.

The core of route optimization is to find an optimal route. Based on marine environ-
ment data, combined with ship performance and navigation tasks, a safe and economical
route is selected. With the increasingly significant role of route optimization in maritime
navigation, many methods for planning routes have been proposed. When navigating
in complex weather conditions, the captain uses weather data to avoid potential dangers
during the voyage and maximizes the safety of ship navigation. According to different
theories, ship route planning methods can be divided into three categories: graph search
method, meta-heuristic algorithm of dynamic path, and trajectory analysis method using
big data [4].

In the early days, the graph search method usually set the route at a fixed speed, and
then adjusted the speed according to the navigation loop. The navigation area is discretized
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into nodes and edges, and the route planning problem is transformed into directed graph
search, such as Dijkstra algorithm and A-star algorithm [5], which are gradually applied to
path planning to obtain the shortest time path and the shortest distance path. Although
these algorithms can effectively avoid static obstacles, they are not suitable for dynamic
and complex marine environments. In order to solve different problems, the improvement
of these algorithms has been ongoing. Silveira et al. [6] and Wang et al. [7] made targeted
improvements to the Dijkstra algorithm, although there is still more room for improvement.
Liu et al. proposed a PE-A* algorithm, which uses the potential energy field to express the
environmental field to achieve the effect of global planning and local collision avoidance [8].
Addressing this problem, Shin et al. proposed an improved A-star algorithm, which can
avoid the limitations of the initial A-star algorithm [9]. Mannarini et al. proposed a new
dynamic programming method (VISIR: Discovering Safe and Efficient Routes) [10], which
evaluates the optimal path in time by solving the basic differential equation of the optimal
path in dynamic wind and waves.

At present, various meta-heuristic algorithms are applied to the field of route planning,
such as the genetic algorithm (GA) [11], simulated annealing algorithm, particle swarm
optimization (PSO) [12], and ant colony algorithm. Zhou et al. proposed a hybrid genetic
algorithm, which combines a simulated annealing algorithm with a genetic algorithm to
avoid falling into a local optimum [13]. Zhang et al. combined the ant colony algorithm
with the A-star algorithm [14], and introduced the Bessel curve method to smooth the path
to obtain the optimal path.

The big data mining method is based on the statistical analysis of a large number
of ship route data from the automatic identification system (AIS) to improve shipping
efficiency [15–19]. This method usually considers historical ship trajectory data, using
clustering methods for statistical analysis and establishing a route trajectory model to
improve the safety of navigation.

Reasonable meteorological route arrangement can minimize the risks caused by total
fuel consumption, sailing time, and adverse conditions, but in practice, it is difficult to
pursue these three objectives at the same time. At present, the multi-objective optimization
method is roughly divided into two kinds. One is to assign weights to the objective
function and transform the multi-objective problem into a single-objective problem. This
method simplifies the solution process, but the route involves conflicting objectives, such as
reducing the total cost, emissions, and navigation time. The single-objective optimization
method with heavy weight does not solve this conflict well. The latter finds the approximate
optimal solution of the problem by finding the Pareto front and can complete the search
in an acceptable time [20–24]. Du et al. proposed an improved fractional order particle
swarm optimization (FOPSO) algorithm [25] that avoids problems such as falling into
local optimization in solving multi-objective problems. Ma et al. used a non-dominated
sorting genetic algorithm to optimize the cost and time of navigation [26]. Considering
carbon emissions and weather factors, Yuan et al. also proposed a weather uncertainty
model [27], and added the weather probability model as a penalty factor to the non-
dominated sorting genetic algorithm for route optimization. Polar navigation is also an
important part of ship navigation. Szlapczynski et al. added the information of into the
multi-objective evolutionary algorithm to find a route that is more in line with the decision
makers’ ideas [28], and considered the uncertainty of weather forecasts.

Addressing the problem of ship route optimization, this paper focuses on finding a
safe and low-carbon route-optimization method, which designs a route for ocean-going
navigation in bad sea conditions, takes the safety of ship navigation, sailing time, and
fuel consumption as variables to optimize the route, and can update the weather and
meteorology in time, avoid rough seas, and reach the destination safely. To summarize our
views, the work we have done mainly includes the following aspects.

(1) A model for sea conditions using weather data is established. The complex sea area
exceeding the threshold is marked as a dangerous area as a danger zone according to
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the set safety threshold, and the calibrated dangerous area is updated by updating the
environmental data.

(2) Considering the speed loss of ships in different marine environments, a speed-loss
model of ships is established.

(3) On the basis of the above model, a route-optimization model considering both ship
navigation time and fuel consumption is established by using a non-dominated sorting
genetic algorithm (NSGA-II), and ship stability is added to the constraint factor to
make the optimal path safer and more energy-saving.

The structure of the rest of this paper is as follows: In the second part, a complex
marine environment model is proposed. By rasterizing the environmental data, a marine
environment model is established to study the ship speed loss under different sea conditions.
In the third part, the objective function of route optimization is designed, the constraints of
navigation are proposed, and the NSGA-II is used to solve the route optimization problem.
In the fourth part, the validity and reliability of the method are verified by comparing it
to path optimization based on a genetic algorithm. Finally, the work done in this paper is
summarized and discussed.

2. Materials and Methods
2.1. Complex Sea Environment Model

At present, meteorological data of weather forecasts can be obtained from the European
Centre for Medium Weather Forecasting (ECMWF), National Centers for Environmental
Prediction (NCEP), and National Oceanic and Atmospheric Administration (NOAA), etc.
From these databases, weather and sea conditions that affect ship routes can be obtained.

Weather forecast data obtained from different agencies are slightly different in spatial
and temporal resolution, but are usually expressed as a set of latitude–longitude grid data.
At the weather forecast time-node t, the weather or sea-state element can be expressed as
Equation (1):

W(x, y, t) = f t
(p,v) (1)

where x and y are the latitude and longitude grid points, and W represents the weather
forecast data of any position at any time t. The ship navigation environment information of
any position p(φ, λ) at any time t can be inferred from the weather forecast data set W, and
for any position p(φ, λ) at any time t, v represents the ship navigation speed at this time.

During the voyage, different ships can deal with different wind and wave conditions.
According to the ship type, structural strength, operating performance, and loading capacity,
the impact of wind and waves on the ship will be very different. Therefore, the actual
situation of the ship should be taken into account in the specific definition of the strong
wind and wave area. As long as the wind and wave environment in a certain sea area
exceeds the bearing capacity of the ship, it can be defined as a strong wind and wave area.
The environmental information is rasterized, and the rasterized environmental model is
more conducive to the dangerous-area calibration of the sea conditions through which the
route passes; the model is updated through real-time updated weather data, as shown in
Figure 1. The route-optimization problem is transformed into an optimal path problem that
can avoid obstacles.
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2.2. Speed Loss Model of Ship
2.2.1. Definition of Route Model

In the route-optimized design, the whole route is defined as a combination of multiple
route points, that is, the route is divided into multiple route segments, each including
latitude and longitude coordinates (φ, λ) and navigation speed v. The starting position and
the end position as well as the departure time and arrival time are set. Route optimization
is used to find the shortest and safest route. The route consists of n waypoints, which
are represented as p = {p1, p2, · · · , pn}, and the corresponding speed is represented by
v = {v1, v2, · · · , vn}, as shown in Figure 2.
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2.2.2. Configuring Ship Speed

The external environment can have varying degrees of impact on the normal navi-
gation of a ship in a complex and changing wind and wave environment. The ship will
slow down if output power of the main engine remains constant, resulting in a lower
actual speed than the still-water speed. This phenomenon is known as the natural speed
loss of the ship. Of course, sometimes when the ship is sailing in bad sea conditions, the
surrounding environment will pose a great threat to the safety of the ship route, and the
captain will take the initiative to reduce the speed of the ship to ensure safe driving and
avoid accidents. In ensuring safe running of the ship, reasonable planning of speed can
make the ship sail at a suitable speed in different sea areas and achieve good operational
benefits throughout the voyage. Under normal circumstances, the speed of a ship will
be adjusted according to its own performance, navigation environment, and economic
benefits, so as to keep it in a reasonable range, that is, the still-water speed v. To better
study the influence of wind and waves on ship navigation, this paper assumes that the
output power of the main engine of the ship is constant.

According to the empirical formula of Kwon [29], the speed loss of the ship can be
shown as Equation (2):

∆v =
vi × CβCUCForm

100
(2)

Therefore, vi represents the actual speed of the ship during navigation, and the ship
water speed vwi minus the speed loss ∆v is obtained, as shown in Equation (3):

vi = vwi − ∆v (3)

However, the speed loss of ships during actual navigation is affected by factors such
as the marine meteorological environment and ship performance. Specific factors are
shown in Tables 1–3 [30]. Here, Cβ represents the speed loss direction coefficient, which
depends on the angle of direction of the weather and the value of the puff wind level, as
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shown in Table 1; CU represents the deceleration coefficient, which varies with the blocking
coefficient CB, the load condition, and the Froude number Fn, as shown in Table 2; CForm
represents the shape coefficient of the hull, which is related to the ship type, wind level,
and ship displacement ∇ (m3), as shown in Table 3.

Table 1. Speed loss direction coefficient Cβ.

Wave (Wind) Direction Direction Angle β Cβ

Top wave, headwind 0◦ 2Cβ = 2
Oblique wave, facing wave 30–60◦ 2Cβ = 1.7 − 0.03(BN − 4)2

Transverse wave, crosswinds 60–150◦ 2Cβ = 0.9 − 0.06(BN − 6)2

Following seas, tailwind 150–180◦ 2Cβ = 0.4 − 0.03(BN − 8)2

Table 2. Deceleration coefficient Cu.

Ship Blocking Coefficient CB Ship Load Situation Cu

0.55 Normal 1.7 − 1.4Fn − 7.4(Fn)2

0.60 Normal 2.2 − 2.5Fn − 9.7(Fn)2

0.65 Normal 2.6 − 3.7Fn − 11.6(Fn)2

0.70 Normal 3.1 − 5.3Fn − 12.4(Fn)2

0.75 Full load or normal 2.4 − 10.6Fn − 9.5(Fn)2

0.80 Full load or normal 2.6 − 13.1Fn − 15.1(Fn)2

0.85 Full load or normal 3.1 − 18.7Fn − 28.0(Fn)2

Table 3. Hull shape coefficient CForm.

Ship Form CForm

Full load conditions of all ship types (except cargo ships) 0.5BN + BN
6.5/(2.7∇2/3)

Preloading conditions of all ship types (except cargo ships) 0.7BN + BN
6.5/(2.7∇2/3)

Normal loading of cargo ships 0.7BN + BN
6.5/(22.0∇2/3)

3. Multi-Objective Route Optimization Model of the Ship
3.1. Objective Functions

In addition to the need to ensure the safety of navigation, a voyage must also consider
the economic benefits of shipping, such as the amount of time it takes and how much fuel
is used, in addition to ensuring the safety of the route. Therefore, ship route optimization
is a complex problem involving multiple objectives, variables, and factors. The impact of
sudden situations such as gusts is not taken into account by meteorological conditions to
simplify the problem and facilitate the establishment and resolution of the model. The
mathematical expression of the multi-objective route optimization model is as follows:

minF(x) = [ f1(x), f2(x)]T (4)

x = [p1, p2, · · · , pn, v1, v2, · · · , vn]
T (5)

f1(x) =
n

∑
i=1

di
vwi

(6)

f2(x) =
n

∑
i=1

di
vwi

× η(vi) (7)

vmin ≤ vwi ≤ vmax, i = 1, 2, . . . , n (8)

Here, x is the decision variable represented by the set of waypoints p and the corre-
sponding actual speed vi; n is the number of waypoints on the route. F(•) are the objective
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functions, where f1(•) is the total time of n leglines by the ship along the route, and f2(•)
is the total fuel consumption of the ship during navigation, which is related to the speed of
the ship in still water. di is the distance between waypoints i and i + 1, vwi is the still water
speed of a ship sailing between waypoints i and i + 1, vmin is the minimum speed, vmax is
the maximum speed, and η is the fuel consumption rate determined by the performance of
the main engine of the ship and the speed, in which the baseline fuel consumption of the
ship can be obtained by using the Lagrange method based on a large number of voyage
data of the ship.

During the voyage, ships will encounter shoals, reefs, and other obstacles, which
greatly limit the scope of ship activities. Therefore, in the optimization process, it is neces-
sary to stay as far away from them as possible. Equation (9) represents the geographical
constraints of the ship in navigation:

D(pi) > Ddra f t + Dukc, i = 1, 2, . . . , n − 1 (9)

where D(pi) is the water depth of the ship at the i-th waypoint, and Ddra f t and Dukc
respectively represent the average draft of the ship at this position and the gap under the
keel.

During the voyage of the ship, under the combined action of external parameters such
as wind, waves, and currents, the periodic change in the geometric shape of the immersed
part of the hull and the shape of the waterline surface leads to the periodic change in the
restoring moment of the ship, that is, the rolling phenomenon. This phenomenon can easily
cause the ship to capsize and is a huge potential safety hazard. However, an important
factor affecting rolling is the relationship between the encounter period and the natural
period:

Tn =
2C × B√

hGM
(10)

Te =
2π

ω − ω2

g v cos χ
(11)

In Equation (10), C = 0.373 + 0.023 × B
d − 0.00043L; B is the width of the ship; L is the

waterline length; d is the average water intake; and hGM is the height of initial stable center.
In Equation (11), χ = ψ − µ is the encounter angle; ψ is the heading angle; µ is the

absolute wave direction angle; ω is the natural frequency of waves; v is the ship speed; and
g is the acceleration due to gravity.

1 − τ1 < Te
Tn

< 1 + τ1,
1 − τ2 < 2Te

Tn
< 1 + τ2,

0.5Lpp ≤ λ ≤ 1.5Lpp

 (12)

Equation (12) addresses the stability constraint of the ship in navigation, where τ1 and
τ2 are the thresholds, taken here to be 0.5; Lpp is the length of the ship; λ = 1.56T2 is the
wave length of the wave; and T is the wave period. Equation (13) represents the constraints
of weather or sea condition that the ship can withstand:{

Hwave(pi) ≤ Hmax,
Wwind(pi) ≤ Wmax, i = 1, 2, . . . , n

}
(13)

These conditions are usually simply set to deterministic thresholds, such as maximum
allowable wave height and maximum allowable wind speed. H and W represent the wave
height and wind speed encountered by the ship at the i-th waypoint, which do not exceed
the maximum allowable wave height Hmax and the maximum allowable wind speed Wmax.
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3.2. Designing the Algorithm

By considering multiple objective functions and constraints at once, they can determine
that a population approach is the most optimal solution in the feasible region. The behavior
of organisms during evolution is simulated using natural selection, elimination, and repro-
duction mechanisms. Selecting a suitable multi-objective evolutionary algorithm (MOEA)
is crucial to finding the optimal solution for the multi-objective and multi-constraint route
optimization problem.

Currently, the non-dominated sorting genetic algorithm is a mature MOEA. It achieves
efficient search, uniform distribution, and diversity maintenance of solutions through fast
non-dominated sorting, congestion comparison, and elite strategy, and has high conver-
gence and robustness. Compared to other algorithms, the NSGA-II is more stable and
efficient, so it is chosen to solve the multi-objective route optimization problem.

In the MOEA, the initial population is randomly generated in the solution space,
and the characteristics of individuals are represented by chromosomes, and then the
population is updated by crossover, mutation, and selection. Similarly, when solving the
multi-objective route optimization problem, the individual ship route can be composed of
variables determined by waypoints and speed information, as shown in Equation (14):

IN = [p1, p2 · · · , pN , v1, v2, · · · , vN ]
T , N = 1, 2, · · · N (14)

where p1 and pN are the departure position and destination position, respectively; and N
is the number of individuals in the population.

In order to improve the calculation speed and accuracy of the algorithm, the initial
population is generated randomly, that is, the routes around the great circle empirical
routes are randomly generated as individual populations, and the navigation speed is
also generated randomly. A new population Q0 is generated by selecting, crossing, and
mutating the initial population I0 to ensure that the population sizes of I0 and Q0 are both N.
It and Qt are merged into Ct, and after the Ct is quickly non-dominated, a partial ordered set
is established by calculating the crowding distance of all individuals in a certain self, and
then individuals are selected in turn to enter It+1 until the scale reaches N. Then, an iterative
operation is performed to determine if the maximum number of iterations is satisfied. If
not, the new generation of population Qt+1 is continued to be generated. If it is satisfied,
the individual of It+1 is output, that is, the non-dominated optimal solution set.

Route optimization is an optimization problem to find the minimum value of the
objective function; the smaller the value, the better the individual’s fitness and survival
probability. In the process of population evolution, a penalty factor ζ is added to the
objective function to evaluate the fitness of the individual. The individual increases the
elimination rate of the next generation by increasing the value of the cost function, but
the individual can evolve through operations such as cross mutation, which not only
ensures the randomness of the individual, but also improves the efficiency of algorithm
optimization. As shown in Equation (15):

F(IN) = f j(IN)× ζ, j = 1, 2 (15)

It is worth noting that the NSGA-II algorithm’s discovery of the Pareto solution set
is not the only optimal solution. Therefore, solving the route optimization problem by
evolutionary algorithm is to find a set of solution sets that make the objective function more
complementary, and then sort the solution sets according to the user’s optimization criteria
based on sorting method, and finally obtain the optimal route.

4. Experiment Analysis
4.1. Data Acquisition

Sea conditions and weather factors such as significant wave height (SWH), mean sea
level pressure (MSLP), 10 m U-component of wind (U10), 10 m V-component of wind (V10),
mean period of wind waves (MPWW), mean wave direction (MWD), and effective height
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of wind waves (SHWW) are obtained from the ECMWF. The meteorological data are stored
in NetCDF format, with a grid resolution of 1 × 1.

Historical weather data from of the Pacific Ocean were selected as the input of the
simulated environmental data. In order to make the experimental ship sail closer to
the actual navigation environment, the environment data were updated every 1 h and
re-entered into the model. Figures 3 and 4 show part of the data visualization.
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4.2. Route Optimization Experiment

To verify the feasibility of the route optimization method proposed in this paper, bad
weather conditions are simulated. In the experiment, the Pacific Ocean is selected as the
navigation area, starting from Yokohama Port in Japan and ending at San Francisco Port in
the United States, and the weather forecast data in July 2023 is selected as the navigation
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condition of the ship [31–33]. In addition, a typical container ship is simulated in the route
optimization. The relevant parameters of the ship are shown in Table 4, and the speed of
the ship is set to 12–20 knots. In this experiment, waves with heights higher than 6m are
considered dangerous sea conditions. Based on the traditional speed fuel consumption
table method this paper adopts the Lagrange interpolation polynomial fuel consumption
baseline as shown in Figure 5.

Table 4. Relevant parameters of experimental ship.

Parameter Numerical Value

Length/m 348
Ship width/m 51.2

Average draft/m 13.5
Displacement/m3 169,700

Ship blocking coefficient 0.693
Initial metacentric height/m 4
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In this experiment, in order to verify the feasibility of the proposed route optimization
model in bad weather, this experiment adopts three methods for route planning and
compares them under the same navigation conditions. The Great Circle Route is the
shortest route between two points on the sphere, that is, in the ideal environment, the
ship will take the Great Circle Route as the best choice; in reality, however, the ship is not
easy to sail along the Great Circle Route, and considering the dangerous meteorological
environment, the route will be adjusted. Therefore, three kinds of route planning are
adopted to find the optimal route, including the Great Circle Route, the GA Optimization
Method, and the NSGA-II Optimization Route, which are the classic ship routes. Figure 6a,b
show the convergence rate of the genetic algorithm and Pareto solution set of the NSGA-II,
respectively. Figure 6a uses a single-objective genetic algorithm with weights.

In the simulation experiment, the speed of the experimental ship is 15 knots, which
is the speed of the circular route, that is, the speed of the empirical route. The speed
of the other two optimized routes is calculated according to the speed loss calculation
formula. Table 5 shows the parameter settings of the two methods. In the case of the same
ship navigation environment, the routes obtained by the two optimization methods are
compared with the classic routes. Table 6 shows the route information obtained by different
methods. Figure 7 shows the optimal path optimized by the two algorithms.
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Table 5. Relevant parameters of evolutionary algorithms.

Algorithm Parameter Value

Genetic algorithm

Population size 50
Maximum number of iterations 200

Penalty factor 1 × 1010

Cross probability 0.6
Mutation probability 0.1

Step factor 0.3

NSGA-II
Population size 50

Iterations 200
Penalty factor 1 × 1010

Table 6. Comparison results of three routes.

Route Distance/nm Voyage Time/h Fuel Consumption/t

Empirical route 4864.50 324.3 1329.78
GA route 5182.66 341.7 1296.36

NSGA route 4965.73 334.2 1237.54
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As can be seen from Figure 7 and Table 6, the Great Circle Route obviously encounters
waves higher than 6 m in the course of sailing, and the voyage is very risky. The route
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obtained by the multi-objective evolutionary method can avoid the dangerous sea state
area, and a route with the lowest fuel consumption can be found within the given con-
straints. However, although the GA route avoids the dangerous area, it has a higher fuel
consumption and takes longer. As for the route optimization method in complex weather,
the voyage is 101.23 nautical miles longer than the voyage along the Great Circle Route,
because it detours a certain distance to avoid bad weather. However, it can be clearly seen
from the table that the fuel consumption of the route planned by the method proposed in
this paper is 92.24 t (6.94%) less than that of the Great Circle Route, making it an economical
and safe route.

Figure 8 shows the significant wave heights experienced by the three routes at different
time and space positions; the red solid line represents the maximum allowable significant
wave height (H = 6 m). From Figure 8, it can be found that during the period of segment
4–10, the wave height of the empirical route exceeds the allowable wave height limit, even
exceeding 7 m. Therefore, there is a great risk in following the empirical route; in contrast,
the other two optimized routes can avoid the high wind and wave area and rationally
allocate the speed. Figure 9 shows the wind speed of the three routes at different time and
space positions. It can be seen that the wind field of the two optimized routes is stable and
safe compared with the Great Circle Route. Compared to the GA route, the NSGA route
has the characteristics of short time consumption and low energy consumption.
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5. Conclusions

Ship navigation is forced to slow down or detour due to the influence of high wind
and wave environment to ensure the safety of navigation, which will lead to increased
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shipping costs and increased risks. In order to find a safe and energy-saving green route
within the specified time, this paper proposes a multi-objective route optimization method
under a complex marine environment. Firstly, this paper rasterizes the marine environment
information, establishes a complex marine environment model, and updates the model
based on meteorological data. Taking the navigation position and speed as the decision
variables, considering the influence of the marine environment on the ship’s motion, the
technical characteristics, and stability of the ship, the NSGA is used to find the optimal
route. Through case analysis (Section 4), the proposed method is superior to the widely
used genetic algorithm. It is worth noting that there are still some shortcomings in the
route-optimization design method proposed in this paper, which need to be solved in future
work. The main reason is that the environmental modeling in this paper only considers
the influence of wind and waves on navigation, and there is a certain gap with the actual
environment of maritime navigation. Therefore, it is necessary to consider comprehensive
and more accurate weather data that affect the navigation status. In the future, a method
of ship navigation safety assessment can be introduced to improve the accuracy of route
optimization.
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