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Abstract: The scarcity and difficulty in acquiring Side-scan sonar target images limit the application of
deep learning algorithms in Side-scan sonar target detection. At present, there are few amplification
methods for Side-scan sonar images, and the amplification image quality is not ideal, which is
not suitable for the characteristics of Side-scan sonar images. Addressing the current shortage of
sample augmentation methods for Side-scan sonar, this paper proposes a method for augmenting
single underwater target images using the CBL-sinGAN network. Firstly, considering the low
resolution and monochromatic nature of Side-scan sonar images while balancing training efficiency
and image diversity, a sinGAN network is introduced and designed as an eight-layer pyramid
structure. Secondly, the Convolutional Block Attention Module (CBAM) is integrated into the
network generator to enhance target learning in images while reducing information diffusion. Finally,
an L1 loss function is introduced in the network discriminator to ensure training stability and improve
the realism of generated images. Experimental results show that the accuracy of shipwreck target
detection increased by 4.9% after training with the Side-scan sonar sample dataset augmented by the
proposed network. This method effectively retains the style of the images while achieving diversity
augmentation of small-sample underwater target images, providing a new approach to improving
the construction of underwater target detection models.

Keywords: sample amplification; side-scan sonar; imaging mechanism; style transfer; sinGAN

1. Introduction

Deeper into the ocean, the demand for seabed topography exploration has been
increasing, especially in the areas of seabed target identification and detection. This plays
a vital role in fields such as navigational safety, marine surveying, maritime search and
rescue, and military missions. Currently, marine mapping primarily utilizes single-beam
multi-beam echo sounding systems and Side-scan sonar systems. Among these, Side-scan
sonar, with its high-resolution acoustic imaging capability of the seabed, has a distinct
advantage in seabed target identification [1-5]. Seabed target identification largely relies
on manual detection and recognition, a method fraught with issues such as low efficiency,
time consumption, and strong subjectivity. Therefore, research into automatic detection
methods for underwater targets is of great significance.

Some scholars have adopted machine learning techniques, combined with manual fea-
tures and classification technologies, to achieve automated underwater target detection [6,7].
However, these methods are limited when dealing with complex seabed environments,
as Side-scan sonar images often suffer from low resolution, insufficient features, high
noise, and deformation. The advancements in deep learning technologies in the field of
computer vision have significantly improved the performance of target detection and are
thus widely used in the field of underwater intelligent detection [8-10]. Models based
on Deep Convolutional Neural Networks (DCNN) are effective but require high-quality
training data, which are often scarce and limited in representativeness for Side-scan sonar
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images [11-14]. Therefore, there is an urgent need for sample augmentation research for
small-sample underwater targets in Side-scan sonar images.

With the development of sample augmentation techniques in the optical imaging field,
data augmentation techniques in the underwater acoustics field have also emerged [15-20].
Currently, the main methods for Side-scan sonar image augmentation are of two types:
one is the image style transfer method represented by GAN (Generative Adversarial
Networks) [21-33], and the other is based on the diffusion model for image generation [34].
For instance, Ye Xiufen [23] used the AdaIN network for style transfer and achieved good
results in target detection; Yang Zhiwei [24] adopted an improved DDIM model for data
augmentation, successfully enhancing the model’s accuracy; Huang Chao [21] utilized
the metal style network for data augmentation from geometric and physical perspectives,
obtaining a rich set of Side-scan sonar images. However, both of these models require a
large dataset of Side-scan sonar images and preprocessing, which increases the workload
and limits the threshold for generation.

Therefore, there are few GAN networks that satisfy the need for data enhancement
with a small number of samples [35,36]. In 2019, a network named SinGAN was proposed
in a collaborative research project between the Technion—Israel Institute of Technology and
Google [37]. This model, through in-depth learning of a single natural image, can grasp
the distribution characteristics of internal patches in the image. Through such learning,
SinGAN is capable of producing a series of both high-quality and diverse image samples.
Therefore, this paper selects the SINGAN network as the main method for research on
Side-scan sonar data augmentation. However, since the original network’s dataset mostly
consists of colorful artistic style images and natural landscape images like lakes and birds,
when using the SInGAN network to augment black and white Side-scan sonar underwater
target images, it was found that the targets appeared unrealistic and illogical.

Therefore, to enhance the network’s learning of targets and consider the characteristics
of black and white waterfall images in Side-scan sonar, this paper proposes a single-
image sample augmentation method for Side-scan sonar underwater targets based on
CBL-sinGAN. Firstly, an eight-layer pyramid network structure is designed according to
the characteristics of Side-scan sonar images, which improves the diversity of generated
images while fully learning the image textures. Secondly, the Convolutional Block Attention
Module (CBAM Module) is integrated into the generator to enhance target learning while
reducing information diffusion [38-41]. Then, an L1 loss-based loss function is introduced
in the discriminator to strengthen its ability to discern the authenticity of targets, eliminate
unrealistic, fake images, and improve the quality of generated images while enhancing
training stability and avoiding training mode collapse. Finally, based on this transformation
model, high-quality augmentation of existing small-sample Side-scan sonar images is
performed, and the augmented images are used for recognition and detection with YOLOV5.
Experiments in this paper prove that the single-image sample augmentation method for
Side-scan sonar underwater targets based on CBL-sinGAN (CBL refers to the integration of
two modules into the original SINGAN network: the CBAM attention mechanism and the
L1 loss function) proposed in this paper can generate a large number of high-quality Side-
scan sonar augmented samples according to the characteristics of Side-scan sonar images,
such as limited samples, monochromatic color, and diverse target shapes, Introducing a
novel approach to address the issue of small target sample augmentation in Side-scan sonar
and high-performance underwater target detection models. The structure of this paper is as
follows: Section 1 is the introduction, the network structure is elaborated in Section 2, the
experimental design and corresponding parameter calculations are described in Section 3,
the experimental conclusions are discussed in Section 4, and the conclusion and prospect
are summarized in Section 5.
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2. Methods
2.1. The Basic Structure of CBL-sinGAN

SinGAN was proposed in 2019 as part of a collaborative research project between the
Technion—Israel Institute of Technology and Google. It is an unconditional generative
model capable of learning from a single natural image. After training, it can capture the
internal distribution of patches within the image, thereby generating high-quality, diverse
samples with the same visual content as the image. SinGAN consists of a fully convolutional
GAN pyramid, where each pyramid level is responsible for learning the distribution
characteristics of the image at different scales. This allows for the generation of new samples
of arbitrary size and deformation, maintaining significant variability while preserving the
global structure and fine texture of the image. However, since the original network’s dataset
mostly consists of colorful artistic-style images and natural landscapes like lakes and birds,
it was found that when using the SINnGAN network to augment black and white Side-scan
sonar underwater target images, the targets appeared unrealistic and illogical. Therefore,
to enhance the network’s learning of targets and consider the characteristics of black and
white waterfall images in Side-scan sonar, this paper proposes a single-image sample
augmentation method for Side-scan sonar underwater targets based on CBL-sinGAN.
Firstly, we design an eight-layer pyramid network structure that is specifically tailored to the
characteristics of Side-scan sonar images. This structure enhances the diversity of generated
images while fully capturing the intricate textures present in the images. Secondly, we
integrate the Convolutional Block Attention Module (CBAM Module) into the generator.
This module enhances the learning of target features while reducing information diffusion,
resulting in improved target detection performance. Furthermore, we introduce an L1 loss-
based loss function in the discriminator. This loss function strengthens the discriminator’s
ability to distinguish authentic targets from fake ones. It effectively eliminates unrealistic,
fake images, thereby improving the overall quality of the generated images. Moreover, the
introduction of this loss function enhances training stability and prevents the occurrence of
training mode collapse. The proposed network structure is illustrated in Figure 1.
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Figure 1. CBL-sinGAN’s multi-scale structure. On the left is the training process of the generator,
which is divided into eight scales, and on the right is the training process of the discriminator. After
each scale, move on to the next scale. See Section 2.1 for a detailed description of the process.
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2.2. The Multi-Scale Architecture of the SinGAN Module

As shown in Figure 1, our model consists of a GAN pyramid, where both the training
and generation processes are completed in a coarse-to-fine manner. At each scale, the
generator Gy learns and is responsible for generating images of different scales, adopting a
coarse-to-fine approach, with its input being noise Z and the upsampled output from the
previous level. The discriminator Dy /s function is to discern whether its input samples are
real or forged.

It is important to note that the training target of the generator Gy is patches of a
single image, not the entire image sample. To handle targets in Side-scan sonar, such as
shipwrecks, airplanes, etc., the generator needs to capture the layout and shape of large
objects in the image, such as the hull structure of shipwrecks, the wing features of airplanes
and other global attributes. To achieve this, the generator framework consists of a series of
hierarchical patch-GANs (Markovian discriminators) [41,42], each responsible for capturing
the patch distribution at different scales of the training image. These patch-GANs have
small receptive fields and limited capacity to prevent memorization of a single image.
Although traditional GANs have also explored similar architectures [43-47], and SiInGAN
has been applied in multiple fields for image augmentation generation, we are the first to
apply it for single-image Side-scan sonar image augmentation.

Our model consists of a generator and a discriminator pyramid. The generator
{G1, G2, Gs, Gy, Gs, Gg, Gy} targets images at eight different scales for pyramid training:

~ O~~~ N~

{;0, X1, X2, X3, X4, X5, X6, ;7}, where Xy is the downsampled sample of X, with a down-
sampling factor of r,,, where is greater than 1. Each generator, through adversarial training
with the discriminator, generates real image samples Xy that best match the patch distribu-
tion of the corresponding images. The goal of the generator is to deceive the discriminator,
whose objective is to distinguish between the patches of generated samples (x ) and those
of real samples (xy).

Image generation starts from the coarsest scale and progresses upward through each
level of training up to the finest scale, with noise added at each scale. The generators and
discriminators at the same level have the same size of receptive field, which decreases
progressively with each level of generation. At the coarsest scale, the image is purely
generated, meaning G; maps the spatial Gaussian white noise z; to the image sample x7.

X7 = Gy(z7) (1)

The receptive field at this level is generally set to half the height of the image, so the
generator focuses more on the overall global structure of the image. As the scale progresses,
the receptive field is set smaller, and the generator pays more attention to the detailed
texture of the image. In addition to spatial noise zy, the input also includes the upsampled

~N+1
sample of the image x .. 71" generated at the previous scale, that is:

~ ~N+1 ’ 7 5
XN = GN ZN/xrec T /N < ( )

The training process of the generator progresses from the coarsest to the finest scale,
training the multi-scale architecture layer by layer. Once the generator at each layer is
trained, it remains fixed. The training loss for the generator at the N layer includes an
adversarial term and a reconstruction term:

min max L, (Gn, DN) + &Lrec (GN) 3)
Gy Dn
Adversarial Loss: See Section 2.4 for details
Each generator Gy is paired with a Markovian discriminator Dy, which discriminates
Dy the overlapping patches of the input. Based on the original WGAN-GP loss function,
we introduce an L1 loss for discrimination, which further increases the stability of the
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training. The final discrimination score is averaged. The loss defined here is for the entire
image, not just for individual patches, allowing the network to learn boundary conditions.
The receptive field architecture of Gy and Dy is the same, both being 11 x 11 in size.
Reconstruction Loss: To ensure that the generator can reconstruct the original image
from a specific set of input noise images. Let the image generated and reconstructed at the

~N+1
Nth layer be x,,. 17, and the random Gaussian white noise generated at this layer be Zy;.
Then, for N < 7, we have:

AN+ 2
Liec = [|GN| 2N/ Xpee T ] — 2N 4)
For N = 7, the calculation method for the reconstruction loss is as follows:
Lrec = ||G7(27) — x7| (5)

wherein the standard deviation oy of the random noise Zy at each layer is determined by

~N-+1
the reconstructed image x,,. 71" and the real image xy;, indicating the number of image
details that need to be added under the training at that level. The specific calculation
method is as follows:
ON = \/

After the training at each level, the fake Side-scan sonar images Xy are generated
at various scales, and the real Side-scan sonar images xy; are simultaneously sent to the
discriminators Dy at each level for discrimination. After the discrimination, the results are
fed back to the generator, and the generator is retrained after adjusting the loss.

~N+1 2

Xrec T —xN

(6)

2.3. Generator Based on the CBAM Model

The thorough learning of target detail features and background characteristics in
Side-scan sonar images is key to the generator’s ability to produce high-quality images. To
enhance the learning of global information and local features in the input image and to
strengthen the interaction between channel and spatial dimensions, this paper introduces
the Convolutional Block Attention Module (CBAM Module) at the second layer of the
generator. It is placed after the body layer of the generator, as shown in Figure 2:

Figure 2 above shows the overall architecture after adding the attention mechanism
CBAM module. It can be seen that the CBAM module includes two independent sub-
modules: the Channel Attention Module (CAM) and the Spatial Attention Module (SAM).
Compared to attention mechanisms that only focus on spatial aspects, this approach
achieves better results. It allows for easy insertion into various levels of the network while
saving parameters and computational power.

This module aims to reduce information diffusion and amplify the cross-dimensional
interaction of channels and space in images, thereby enhancing network performance. By
focusing on relevant features and minimizing interference, the CBAM module makes the
representation of Side-scan sonar images more delicate and detailed, which is crucial for
producing realistic and high-quality output images.

2.4. Discriminator Based on L1 Loss Function

L1 loss is a mean squared error loss that focuses on targets, as these false targets contribute
more after squared loss, thereby providing feedback to the generator, ‘prompting’ it to generate
higher quality and more representative samples of Side-scan sonar target images. This
paper incorporates L1 loss into the discriminator, calculating it alongside WGAN-GP, thereby
strengthening the discriminator’s ability to discern false targets. Adversarial Loss: Each
generator Gy is paired with a Markovian discriminator Dy, which discriminates Dy the
overlapping patches of the input. Based on the original WGAN-GP loss function, we introduce
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an L1 loss for discrimination, which further increases the stability of the training. The final
discrimination score is averaged. The loss defined here is for the entire image, not just for
individual patches, allowing the network to learn boundary conditions. The receptive field
architecture of Gy and Dy is the same, both being 11 x 11 in size.

Channel
Attention Spatial CBAM MOUdl e
Moudle Attention
> > >
Input feature Refined feature

7

-8

@ head ' CBAM Moudel @ body |f tail

Figure 2. Overall single-scale generator architecture after adding the attention mechanism
CBAM module.

}N+1 Tr

rec

The calculation principle of L1 loss is as follows:

toss(x,y) = Y1 [y — F(x) @)

wherein f(x;) and y; represent the predicted value of the ith fake Side-scan sonar image
generated at the same scale and the corresponding real Side-scan sonar image, respectively,
and 7 is the number of generated images.

3. Experimental Validation
3.1. Dataset Description and Experimental Equipment Parameters

To validate the performance of the single-image sample augmentation method for
Side-scan sonar underwater targets based on CBL-sinGAN in target detection, this paper
designed various comparative experiments. For the augmentation of shipwreck targets,
215 shipwreck images with different shapes and backgrounds, 62 airplane images, 115 fish
swarm images, and 2 underwater diver images were selected. Using the network, 2650 aug-
mented images were generated. These augmented images, along with other real Side-scan
sonar shipwreck images, were used in several experiments. The hardware used for model
training included an Intel® Core™ i7-13700KF CPU and an NVIDIA GeForce RTX 4070 GPU
with 12 GB. The software compilation environment was PyTorch 1.6.0, CUDA 11.8, and
Python 3.10 under Windows 10. Some of the datasets are shown as follows in Figure 3:
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Figure 3. Partial dataset.

3.2. Evaluation Metrics

The evaluation of images is mainly based on feature diversity and structural similarity
to assess the quality of style transfer images. According to the study in [37], in this paper,
we select Fréchet Inception Distance (FID), Kernel Maximum Mean Discrepancy (MMD),
and Inception Score (IS) as the metrics for image quality assessment. FID is used to measure
the quality of images generated by Generative Adversarial Networks (GANSs). It compares
the similarity between the distribution of generated images and real images. A lower FID
score indicates that the distribution of generated images is closer to that of real images,
implying better quality. It is particularly adept at capturing the diversity and variation in
generated images. MMD is a statistical test used to determine if two samples come from
different distributions. A smaller MMD value indicates that the two distributions are more
similar. In the context of generative models, a lower MMD means that the generated data
are closer to the real data distribution. IS is another metric used to evaluate the quality of
images generated by GANs. It measures the diversity of generated images and the clarity
or distinctiveness of these images. A higher IS indicates that the model has generated a
variety of unique images, each with clear and confident category predictions.

3.3. Analysis of Augmented Image Quality

In this paper, image augmentation was performed for shipwrecks, airplanes, fish swarms,
and underwater divers. Representative images with different backgrounds were selected for
training. Some examples of the augmented samples are shown in the following Figure 4:

Underwater
Divers

Shipwrecks

Airplanes

Fish Swarms

Figure 4. Augmented samples. Amplification tests were carried out on submarine frogmen, airplanes,
shipwrecks, and fish.
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For the four types of expansion targets above, calculations were performed for their
respective categories” FID, MMD, and IS metrics to assess image quality. Among these
metrics, a smaller FID is better, MMD closer to 0 is better, and a larger IS is better.

In an overarching analysis, it is evident that the FID values for all categories fall within
a relatively high range, as illustrated in Table 1. It is worth considering that FID may have
varying benchmark values for Side-scan sonar images. From the perspective gleaned from
the work by Tang et al. [11], these numerical values still signify commendable generative
quality in the context of side-scan sonar image augmentation. Turning our attention to the
IS metric, it is noteworthy that all categories exhibit IS values surpassing the threshold of 3.9.
This suggests that the generated images possess a discernible degree of clarity and diversity.
Additionally, it is worth noting that the MMD values for all categories hover around 0.2,
indicating a notable similarity in statistical characteristics between the generated images
and their real counterparts.

Table 1. Test metrics. The corresponding FID, IS, and MMD indicators are calculated for the
amplified images.

Group FID IS MMD
plane 127.7 3.923 +£0.226 0.221
People 123.0 4.346 = 0.197 0.217
Fish 152.6 4.965 + 0.367 0.237
Boat 118.9 4.456 + 0.300 0.139

Engaging in a vertical comparative analysis of the metrics reveals the following trends:

FID: Among the categories, the “Boat” category displays the most favorable per-
formance with the lowest FID score. An analysis of this phenomenon suggests that the
abundance of shipwreck images may facilitate enhanced model learning and style replica-
tion, consequently yielding images that closely resemble real ones.

IS: The “Fish” category outperforms others in terms of the IS metric. This can poten-
tially be attributed to the substantial presence of fish targets, often characterized by smaller
dimensions. This observation implies that the Singan network excels when confronted with
the challenge of generating diverse and complex images of small targets.

MMD: In the context of the MMD metric, once again, the “Boat” category exhibits
superior performance with the lowest MMD score. This underscores the proximity of the
generated shipwreck images to real images in terms of statistical characteristics.

Upon analysis of the evaluation metrics, it becomes apparent that the single-image
sample augmentation method for underwater targets using CBL-sinGAN manifests varying
effects across different Side-scan sonar targets (such as shipwrecks, airplanes, fish schools,
and divers). Notably, in the domains of FID and MMD metrics, the “Boat” category
distinguishes itself, possibly indicating the model’s efficiency and precision when handling
such images. Conversely, the elevated IS score observed in the “Fish” category implies
the model’s proficiency in generating highly diverse and intricate images of small targets.
These findings underscore the notion that different image categories present divergent
challenges to the generative model. Nonetheless, the model demonstrates distinct strengths
in addressing these challenges, highlighting a degree of versatility in the augmentation
model across various Side-scan sonar target categories.

3.4. Performance of the Model on Object Detection

Considering the aim of this paper is to augment underwater target sample images
obtained from Side-scan sonar to enhance the performance of deep learning-based object
detection models, the subsequent sections of this paper involve comparative experiments
using deep learning-based object detection models. Currently, there is a plethora of object
detection models available, and for this experiment, we have chosen the YOLOvV5 detection
model due to its lightweight nature, speed, and maturity, making it well-suited for this study.
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The selected target images are shipwrecks, and three sets of datasets have been de-
signed for training and deploying the YOLOv5 model. These sets consist of the following:
datasets containing only real shipwreck images, datasets containing only augmented ship-
wreck images, and datasets containing a combination of both real and augmented shipwreck
images. For the evaluation of the detection model’s performance, 100 authentic Side-scan
sonar shipwreck images were chosen. The specifics of this evaluation can be found in
the table. It is important to note that the augmented shipwreck image data underwent a
screening process to remove images of subpar generation quality. The specific grouping of
the datasets is shown in Table 2.

Table 2. The composition of the YOLOv5 detection model’s dataset and validation set.

Augmented Shipwreck

Group Real Shipwreck Images Images
1 50 -
2 - 424
3 50 424
Detection Images 100 -

The model was tested using 100 real Side-scan sonar images of shipwrecks after
training. The evaluation metrics adopted were precision, recall, and average precision (AP),
which are widely used in the field of target detection. The detection results are as follows
in Table 3:

Table 3. The effect of different training sets on the detection of real measured side-scan sonar
shipwreck target images.

Precision Recall APO0.5 APO0.5:0.95
YOLOV5-1 90.0% 91.2% 0.924 0.546
YOLOvV5-2 94.8% 95.8% 0.958 0.593
YOLOV5-3 94.9% 96.0% 0.961 0.61

Observations from Table 3 show that, compared to YOLOv5-1 and YOLOV5-2, the model
trained with the method described in this paper for augmenting Side-scan sonar images of
shipwreck targets demonstrates higher precision, recall, and average precision. This proves
the crucial role of augmented images in enhancing the model’s performance. Comparing
YOLOV5-2, which used only augmented images, with YOLOV5-3, which used both augmented
and real Side-scan sonar images, shows little difference in evaluation metrics. This indicates
that the improvement in model performance is mainly due to the Side-scan sonar augmented
data generated by the method proposed in this paper, further illustrating that the augmented
images meet the requirements of authenticity and diversity for Side-scan sonar images.

To prevent dataset bias in a single detection model, multiple detection models
(YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5x) were employed for comparative experi-
ments on precision. The analysis of the experimental results (Table 4) shows that, due to
differences in the complexity and training time of the detection models, there are variations
in precision among different models. However, a horizontal comparison across the three
experimental groups indicates that precision is consistently higher in Group 3 than in
Group 2 and Group 1, thereby further proving the validity of the experimental data.

Table 4. Comparison of precision rates between different models.

Detection Model/Group 1 2 3
YOLOv5n 82.7% 89.2% 91.5%
YOLOv5s 83.1% 92.3% 92.8%
YOLOv5m 86.1% 94.9% 95.3%

YOLOvV5x 90.0% 94.8% 94.9%
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4. Discussion
4.1. The Unique Advantages and Comparative Analysis of CBL-sinGAN

CBL-sinGAN, by retaining the style and texture of the original Side-scan sonar images,
can generate more realistic Side-scan sonar images while simulating object distortions
caused by underwater conditions, thereby improving the practicality of the images. This
method is particularly effective for datasets with few samples, as it can generate images
with a consistent style, addressing the limitations of traditional networks in this regard.
Additionally, CBL-sinGAN considers the unique relationship between the target and its
shadow during the image generation process, enhancing the realism of the images.

In the context of international research, style transfer networks such as cycleGAN and
WGAN have achieved significant results in learning image textures and styles, especially with
large datasets. However, these networks do not perform well under data-limited conditions,
particularly in the field of Side-scan sonar image enhancement. The emergence of CBL-
sinGAN provides a unique solution to this challenge, especially when the number of samples
is limited, by generating high-quality images with a strong sense of realism, marking a
significant advancement in existing technology. CBL-sinGAN fills a gap in existing technology,
showcasing the new potential of deep learning in the field of Side-scan sonar image processing
and offering a new direction for the development of future underwater target recognition and
detection models. Figures 5 and 6 below display the style images generated from training
with thirty Side-scan sonar images and optical domain images:

Original Image

Transferred Image

Figure 5. Style transfer results of the cycleGAN network trained with 30 Side-scan sonar images.

Neutral style

CycleGAN transfer AdalN

Original Image

o . . .

Figure 6. Single image style transfer effects of different networks.

The Side-scan sonar underwater target single image sample augmentation method
based on CBL-sinGAN is essentially a process of rearranging and recombining real Side-
scan sonar images. It augments images by reorganizing the image background, stretching
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and scaling the target morphology, changing the number of targets, and altering target
positions. As sinGAN is a new field for processing Side-scan sonar images, we encountered
many issues during model training and made corresponding improvements.

4.2. Scale Selection in Image Generation

Unlike artistic style images, Side-scan sonar images need to maintain the stability and
authenticity of the target during augmentation to prevent the generation of unrealistic
targets. Experiments have found (Figure 7) that the choice of training scale greatly affects
the quality of image generation. At lower scales, the network focuses on learning image
details, leading to insufficient learning of the overall target and resulting in generated
images with only basic textures and scattered targets. As the training scale increases, the
learning of the target gradually takes shape. However, an increase in scale leads to longer
training times, and setting too many scales can reduce the diversity of the generated images.
The calculation of related metrics is as follows in Table 5:

Original
Image

2 scales 3 scales 4 scales 5 scales

6 scales 7 scales 8 scales 9 scales 10 scales

Figure 7. Image migration effects at different scales.

Table 5. Calculation of image metrics at different generative scales..

Scale FID IS MMD
2 405.947 4.509 0.7412
3 368.951 4.378 0.4852
4 380.985 4.585 0.4600
5 274.182 4563 0.3936
6 216.276 4.534 0.3349
7 204.740 4.522 0.3278
8 141.345 4.583 0.2496
9 183.675 4512 0.2306
10 164.144 4.364 0.1901

Based on the analysis of the table, it can be observed that when the scale is set to 8,
the generated images exhibit the best performance in terms of the FID index, indicating
that the model has learned the style of Side-scan sonar images well. Simultaneously, the
IS index is 5.583, which is also excellent, showing good diversity in the generated images.
The higher diversity at scale 3 might be due to the model learning only the texture of the
images, not considering the overall target, thus resulting in greater diversity. In terms of
the MMD index, 0.24 is also within a good range, showing significant similarity between
the generated and original images. Therefore, considering all factors, the structure of the
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CBL-sinGAN pyramid network is set to 8 layers, where the model can improve the diversity
of generated images while sufficiently learning image textures.

4.3. Ablation Experiment and Evaluation

To verify the role of each module in the performance of our model, ablation experi-
ments were conducted on the CBAM module and the L1 loss function, using FID, MMD,
and IS as evaluation metrics. Four groups were designed for comparative experiments,
with the same experimental setup, training dataset, and evaluation data as mentioned in a
previous Section 3.3. The results are shown in Table 6.

Table 6. Calculation of image metrics for ablation studies.

Group 330132/1[ L1 Loss FID IS MMD
1 - - 131.61 4.299 4 0.285 0.169
2 Vv - 122.35 4.385 £ 0.210 0.154
3 - Vv 157.92 4.306 £ 0.275 0.261
4 Vv Vv 118.89 4.456 & 0.300 0.139

From the table, it is evident that Groups 2 and 4, which incorporated the CBAM
module, showed improved feature expression by focusing on important channels and
spatial regions, as reflected in the improved FID and IS metrics compared to the control
group (Group 1). Comparing Groups 1 and 3, the improvement in the IS index indicates
that L1 Loss performs well in handling datasets with outliers or in feature selection. The
combination of CBAM and L1 Loss in Group 4 not only improved image quality (lower
FID and higher IS) but also increased the diversity of generated images (lower MMD).
This is because CBAM enhanced feature expression, while L1 Loss increased the model’s
robustness to outliers, allowing for diverse augmentation of images while maintaining
their authenticity.

The effects of different modules on the transformation of some Side-scan sonar images
are shown in Figure 8a—e.

From the images, it can be seen that the images generated by Group 1 have the lowest
realism, not conforming to the normal structural morphology of targets. For example, there
are overlapping phenomena of two upper bodies in humans, overlapping ghost images
in ships, blurred targets in airplanes, and excessive focus on background learning in fish
swarms, neglecting target learning and augmentation, leading to large areas of black in the
generated images. Additionally, observing shipwreck ‘c’, it can be noted that the generated
image’s shadow does not correspond with the target, resulting in situations where there is
only a shadow without a target. After adding the CBAM in Group 2, compared to Group 1,
there is a certain improvement in the model’s ability to learn targets during generation, but
the phenomenon of overlapping ghost images can still be observed in shipwreck targets.
Comparing Groups 3 and 1, it is evident that the model’s ability to maintain the morphology
of targets during generation has improved, effectively preventing distortion in targets, but
the diversity of the model has not increased, and the morphology of underwater divers
remains unchanged. Comparing Group 4 with Group 1, it is observed that after integrating
CBAM and L1 loss, the model performs very well in learning the texture details of targets,
maintaining postures, and augmenting backgrounds. It generates samples with complete
details fewer distortions and maintains a good one-to-one correspondence between targets
and shadows.
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Original Image Group 1

Figure 8. Different modules on the transformation of some Side-scan sonar images.

5. Conclusions

In response to the challenges of scarce Side-scan sonar underwater target images, the
difficulty in forming a style with a limited number of samples, challenges in acquisition, and
high costs, which all contribute to the poor performance of deep learning-based underwater
obstacle detection models, we propose a single image sample augmentation method for
Side-scan sonar underwater targets based on CBL-sinGAN. This method is tailored to the
resolution and target size characteristics of Side-scan sonar images, utilizing an 8-layer scale
GAN pyramid network structure. It enhances the diversity of generated images while
thoroughly learning image textures. The CBAM module is integrated into the generator to
enhance target learning while reducing information diffusion. Furthermore, a loss function
based on L1 loss is introduced in the discriminator to strengthen its ability to discern the
authenticity of targets, eliminating unrealistic, fake images. This improves the quality of
generated images and training stability, preventing training mode collapse. The advantages
of CBL-sinGAN include its ability to maximally retain the style, background texture, and
integrity and authenticity of the original Side-scan sonar images, thereby generating more
realistic Side-scan sonar images; it can simulate object distortions caused by underwater noise
and water interference through deformations and blurring of objects, generating images that
more closely match the real conditions of Side-scan sonar operations; for datasets with too
few samples, which are insufficient to form a fixed style, the augmentation has significant
advantages; when generating images, it takes into account the relationship between the target
and its shadow, a unique feature of Side-scan sonar images. Finally, we conducted an analysis
of evaluation metrics for the augmented 2650 images and comparative experiments for target
recognition with real Side-scan sonar images. Ablation experiments were also used to assess
the performance of the modules. Our method has been proven to generate a large number of
high-quality augmented Side-scan sonar images from a small set of original images. It also
improves the accuracy of automatic underwater obstacle detection and recognition models
using these augmented images, achieving the goal of high-quality augmentation with few
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samples. This method addresses, to a certain extent, the accuracy issues in deep learning-based
target recognition and detection models caused by the scarcity of underwater samples.
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