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Abstract: Dredging hoses are flexible and are particularly suitable for slurry transportations for
mud or sand in dredging projects. To achieve sufficient bending stiffness and to prevent the pipe
body from collapsing, this type of hose segment is a composite structure that is embedded with
several cord reinforcement layers and steel wires in its rubber layer. To quickly evaluate the nonlinear
bending mechanical properties of rubber hoses, this study proposes the equivalent stiffness method
of linear superposition, which is verified by test data and numerical results. The results show
that the equivalent bending stiffness method proposed in this study is in good agreement with
numerical and experimental results. Then, by comparing the calculation results of the hose string,
it was demonstrated that the linear stiffness superposition method proposed in this study can also
accurately predict the bending mechanical behavior characteristics of string hose, and provide reliable
guidance for hose design in practice.

Keywords: dredging hose; mechanical nonlinearity; stiffness superposition; string bending

1. Introduction

A dredging floating hose is a specialized type of hose that connects the dredge vessel
to the dredge head, facilitating the transport of materials such as silt, sand, coral, and small
stones from the dredging site to the designated location, as shown in Figure 1. These hoses
are typically made from a combination of rubber matrix and other reinforced materials,
such as steel wires and cords, to ensure durability and flexibility. Attributed to the huge
demand in the dredging market, the global floating dredging hose market is expected to
grow at an annual growth rate of nearly 3.3% during the forecast period [1]. Currently,
many companies have the ability to produce various types of dredging hoses, for example,
Goodyear’s SEAWING series of hoses, Dunlop’s double-layered reinforced structure hoses,
Kleber’s large-diameter series of hoses, and Uniroyal Manuli’s sealing series hoses. Based
on almost 60 years of production and application experience, a number of specifications
have been developed for the design, testing, and application of dredging hoses, such as
JIS F 3995:2000 [2], GMPHOM [3], API 17K [4], ISO 28017:2018 [5], etc. These standards
and guides are quite beneficial for design specifications and structural details in product
development; however, it is important to note that a gap still exists between academic
research and industrial application. Because of the expertise required for hoses, there are
very few research facilities and institutes that work on them [6].

The engineering application characteristics of dredging floating hoses require a high
level of system safety due to their multi-layer composite structure and special mechanical
properties. Considering the working conditions of floating hoses at sea, they are subjected
to various forces such as gravity, buoyancy, wave loads, and ocean currents. As a result,
hoses may experience twisting, bending, and stretching, which can lead to misalignment,
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cracking, loose joints, and even breakage. The analysis and design of offshore floating hose
systems are extremely challenging due to the combined stress caused by the movement
of ships and buoys, and the inherent stress of the piping system. Additionally, the defor-
mation and load solution of hoses also involves nonlinear analysis, including geometric
nonlinearity, material nonlinearity, and contact nonlinearity. Geometric nonlinearity refers
to the large deformation of hoses due to sufficient flexibility. Material nonlinearity refers
to the hyperelastic mechanical behavior of the main component of a hose, rubber, and the
internal embedded cords with different orientation angles. Contact nonlinearity refers to
the incomplete adhesion between layers and steel wires, as well as the asymmetry of the
hose structure. In this study, material nonlinearity was emphasized. Therefore, during the
preliminary design stage of hoses, it is crucial to establish an overall mathematical model
of the floating hose group to obtain inherent mechanical characteristics. This will lay a
foundation for further dynamic analysis.

Figure 1. Engineering application of dredging hoses (from http://www.hlrubber.net/about/10.html
(accessed on 24 January 2024)).

Many scholars have conducted research on the principles and applications of marine
hoses. Tonato et al. [7] studied the nonlinear mechanical behavior of aramid/polyamide hy-
brid reinforced cord hoses using both macroscopic and microscopic analysis methods. Zhou
et al. [8] established a unified mathematical method based on the anisotropic laminated
composite theory to provide analytical results for flexible hoses with any multi-layer rein-
forcement layer under internal pressure, and further conducted failure analysis. Amaechi
et al. [6] comprehensively reviewed the technologies on bonded hoses for marine applica-
tions in the offshore industry. Gao et al. [9] proposed a simplified theoretical method to
predict the response of an offshore bonded composite hose to lateral crush load.

Many of the above studies on floating hoses have mainly focused on a single hose
segment, with greater emphasis on the tensile mechanical properties. In fact, due to
wave loads, floating hoses on the sea are in a bent state. Providing a method that can
quickly predict the bending load of hoses is of great practical engineering significance.
This study investigates the bending characteristics of a dredging floating hose from three
perspectives: theoretical, numerical, and experimental. Firstly, this study proposes a
theoretical solution method for hose bending based on beam theory. The bending of rubber
hoses is decomposed into pure bending and compression processes. The relationship
between these two processes can be determined by using the pure bending installation
angle as a bridge. The problem can be transformed by solving the total stiffness matrix.
Based on the hyperelastic model, spring principle, and laminated theory, constitutive

http://www.hlrubber.net/about/10.html
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models for the three main components of the hose, including the rubber matrix, steel wire,
and composite reinforcement layer, have been established. Afterwards, a simplified finite
element model of the structure is then constructed based on embedded element technology.
By comparing theoretical solutions, finite element method (FEM) results, and bending test
results, the feasibility and accuracy of the proposed theoretical solution method are verified.
Finally, bending performances of hose string are predicted and compared with the finite
element results. The research approach is illustrated in Figure 2.

Figure 2. The theoretical, numerical, and experiment analysis flowchart of hose bending.

2. Hose Structure and Assumption

The dredging floating hose is an approximate cylinder duct filled with water com-
posed of multiple layers (see Figures 3 and 4). The middle floating foam is primarily
composed of pure rubber with low density, which serves to provide buoyancy and to seal
the high-pressure liquid transported in the pipeline made of synthetic tire cord fabric,
serving as a reinforcing layer that maintains the pressure of the compressed air like an
airbag. In addition to the composite reinforcement layer, the hose is also embedded with
helical steel wires.

As can be seen in Figure 4, the processing technology of the floating hose used in
engineering practice is the essential complex, so it is impossible to describe all the details in
theoretical or finite element calculations, and the model has to be simplified. Therefore, the
following assumptions are made:

(a) The whole hose is divided into three main components based on the structure and
material characteristics of the floating hose, including the rubber matrix, cord rein-
forcement layer, and helical steel wire. There are no material defects in any group of
structures. The floating body and other outer structures do not bear loads when the
hose bends.

(b) The adhesion assumption, wherein each layer maintains adhesion without separation
under external forces.

(c) The cord layer is considered a linear elastic material within a small deformation range.
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Figure 3. Outward appearance of floating hose.

Figure 4. Layout of composite hose body (longitudinal profile) [10].

3. Theoretical Analysis Solution

Given that the length of the hose is much larger than the diameter, the bent hose
operating in marine engineering can be seen as a free beam. Figure 5a illustrates the
bending process of a beam connected with rigid bending rods driven by tension force F.
Following the principle of force transmissibility, this process can be decomposed into two
parts: (1) the pure bending process of a straight beam only under bending moments, and
(2) the bending process of a curved beam under external forces.
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Figure 5. Bending deformation of hose beam. (a) Hose beam and pulling load. (b) Bending of a
straight beam under moment only (c) Curved beam bending.

(1) Straight beam pure bending
According to the basic beam theory, as shown in Figure 5b [11], the relationship

between the curvature radius of a beam after bending and the bending moment at both
ends can be expressed as

1
R

=
M
EI

=
Flrod cos αL

EI
(1)

Based on the relevant assumptions in Section 2, the total bending stiffness of the rubber
hose is divided into three parts: pure rubber, helical steel wire, and a reinforcement layer.
Consider the geometric relationship after bending:

R · 2αL = L (2)

F =
1

lrod cos αL
· 2αL

L
(EI)total =

1
lrod cos αL

· 2αL
L

((EI)rubber + (EI)wire + (EI)reinforcement) (3)

Therefore, the most important step for solving hose bending is determining the equiva-
lent bending stiffness of different components by establishing material constitutive relations.
Then, the total bending stiffness, (EI)total, can be obtained by linearly superimposing them.

(2) Curved beam bending
Figure 5c shows the establishment of a coordinate system xoy at the midpoint of the

beam. The curve coordinates of any point p on the axis of the curved beam are expressed
as s, and the section angles before and after deformation are expressed as α ∈ (0, αL) and
θ ∈ (0, θL), respectively. Then, the rotation angle of the cross-section at point p can be
expressed as

ϕ = θ − α (4)

According to the Euler–Bernoulli beam theory, the microelement of a curved beam at
point p can be expressed as follows, ignoring the axial elongation:

ds = R(α)dα = r(θ)dθ (5)

where R and r represent the curvature radius before and after deformation of the curved
beam.
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The equilibrium equation at point p is
Q′ = F sin θ = −dM′

ds
N′ = F cos θ

M′ = EI dϕ
ds

(6)

The deformation control equation can be expressed as

d2θ

dα2 =
d2 ϕ

dα2 = − FR2

EI
sin θ = −η2 sin θ (7)

Equation (7) has a general solution:(
1
2

dθ

dα

)2
= η2 cos θ + D (8)

where D is the integral constant.
For a curved beam that is simply supported, the bending moment at the end is always

zero. Therefore, the following are the boundary conditions:{
θ(αL) = θL
dθ
dα

∣∣∣
α=αL

= 1 (9)

Combining Equation (8) and boundary condition (9), Equations (10) and (11) can be
obtained.

dθ

dα
=
√

1 + 2η2(cos θ − cos θL) (10)

∫ θL

0

dθ√
1 + 2η2(cos θ − cos θL)

= αL (11)

Given a series of curved beam end installation angles αL, the corresponding external
force term F (or η) can be determined through Formula (3). The shooting method can then
be employed to solve integral Equation (11) and obtain the numerical solution for the large
deformation of the free beam driven by bending rods.

3.1. The Constitutive of Rubber Matrix

For rubber-like material at finite strain, the hyperelastic model provides a general
strain-energy potential to describe the material behavior for nearly incompressible
elastomers [12].

W = f (I1, I2, I3) (12)

where W is the strain-energy density, and I1, I2, and I3 are the three invariants of each of
the two Cauchy–Green deformation tensors.

Rivlin [13] specified the form of Equation (12) with the power series.

W =
∞

∑
i+j+k=1

Cijk(I1 − 3)i(I2 − 3)j(I3 − 1)k (13)

where the numbers of 3 and 1 are included in the formulation to force W = 0 without
deformation. For incompressible materials, I3 = 1.

The primary, and probably best known and most widely employed, strain-energy
function formulation is the Mooney–Rivlin model [13,14], which reduces to the widely
known neo-Hookean model. Other models that have been demonstrated to be quite
appropriate and desirable for modeling rubber-like materials are the Yeoh [15], Ogden [16],
Arruda–Boyce (statistically-based) [17], and Gent models [18].
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Yeoh [15] proposed the following three-term strain-energy function, where only the
first strain invariant I1 appears. It has the specific form of

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (14)

Given the nonlinearity of the material and the degree of agreement with the test results,
the authors of this study ultimately applied the Yeoh model to describe the hyperelastic
mechanical property of the rubber in the hose.

The equivalent bending stiffness of rubber pipes can be expressed as

(EI)rubber = E(λ)Irubber =
∂σ(λ)

∂ε Irubber =
∂σ(λ)

∂λ
∂λ
∂ε Irubber

= ∂
∂λ

[
2
(
λ− λ−2)( ∂W

∂I1
+ λ−1 ∂W

∂I2

)]
Irubber

= ∂
∂λ

[
2
(
λ− λ−2) ∂W

∂I1

]
· π

64
(

D4
rubber − d4

rubber
) (15)

where λ is the elongation rate for uniaxial stretching, λ = 1 + ε and I1 = λ2 + 2λ−1; Irubber
is the equivalent moment of inertia of the rubber pipe’s cross-sectional area; Drubber is the
outer diameter of rubber pipe; and drubber is the inner diameter of rubber pipe.

3.2. The Constitutive of Helical Steel Wire

As the radius of the cross-section of helical steel wire is much smaller than the radius
of coil, the helical steel wire can be equivalent to a helical spring, and the elastic coefficient
can be determined using the energy method [19]. Figure 6 shows a schematic diagram of
the force acting on the spring during compression.

Figure 6. Force loading on helical cylindrical spring.

The couple M acting in the vertical plane is shown as a vector. The couple is equal to
the product of the axial force F with the arm R to the force of a couple:

M = FR = F
D
2

(16)

where D is the mean coil diameter of the spring.
As shown in Figure 7, the couple M resolves into two components lied in planes,

which are tangential and normal to the helix, respectively.{
mN = M sin α
mT = M cos α

(17)

where α designates the inclination of the helix with any plane perpendicular to the axis of
the coil (namely the pitch angle or lead angle). The couple mN tends to cause bending of
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the spring wire in the normal plane, and the couple mT causes twisting along the tangential
to helix curve.

Figure 7. Resolution of moments into normal and tangential components.

The length of the spring element can be described by the following expression:

dl =
D

2 cos α
dθ (18)

The total length of the wire Lw is

LW =
∫ 2πn

0
dl =

∫ 2πn

0

D
2 cos α

dθ =
Dπn
cos α

(19)

where n is the number of coil turns.
The stored elastic energy of the linear spring ignoring the effect of torsion is as follows:

Ue =
F2

2k
(20)

where k is the compression or tensile spring rate.
The elastic energy stored in the spring is the integral of twist and bending energy of

wire over its length LW.

Ue =
1
2

∫
LW

[
m2

T
GIT

+
m2

N
EI

]
dl (21)

According to Castigliano’s method [20], the second derivatives of the stored energy
Ue with respect to F provide the spring rates.

1
k
=

∂2Ue

∂F2 =
∫

LW

D2

4

[
cos2 α

GIT
+

sin2 α

EI

]
dl (22)

The equivalent elastic modulus of the helical steel wire is

(EI)wire = kL
Awire

· Iwire

= 4kL
πd2

wire
· π

64

[
(D + dwire)

4 − (D− dwire)
4
] (23)

where Awire represents the equivalent cross-sectional area of the helical steel wire; Iwire is
the equivalent moment of inertia of the spring beam’s cross-sectional area; and dwire is the
diameter of the cross-section of the helical steel wire.
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3.3. Composite Reinforced Layers

The composite reinforcement layers in the floating hose are composed of rubber and
cords (see Figure 8), and their thickness is very small compared to the other dimensions.
Therefore, the following conditions can be assumed:

σ3 = τ23 = τ31 = 0

Figure 8. Cord-rubber composite reinforcement layer. (a) Composite layers. (b) Coordinate system
transformation.

In addition to the assumption of macroscopic homogeneity and plane stress state, the
deformation of a single-layer plate is small and conforms to the linear elastic law. Therefore,
a relationship between on-axis (fiber direction) stress–strain is given as ε1

ε2
γ12

 = S

 σ1
σ2
τ12

 =

 1/E1 −µ12/E1 0
−µ21/E2 1/E2 0

0 0 1/G12

 σ1
σ2
τ12

 (24)

Q = S−1 =

Q11 Q12 0
Q21 Q22 0

0 0 Q66

 (25)

µ12/E1 = µ21/E2 (26)

where Q represents the on-axis stiffness matrix. The elastic constants can then be predicted
using traditional micromechanics approximations based on the rule of mixtures, and the
Halpin–Tsai [21] semi-empirical relations for Ec >> Er are given by

E1 = EcVc + Er(1−Vc)

µ12 = νcVc + νr(1−Vc)

E2 = Er(1+2Vc)
1−Vc

G12 = Gr(1+Vc)
1−Vc

(27)

where Ec and Er are the initial Young’s moduli of the reinforced cord and rubber, respec-
tively; νc and νr are the Poisson’s ratios of the reinforced fiber and rubber, respectively; Gr
is the initial shear modulus of rubber; and Vc is the reinforced fiber volume ratio.

The off-axis stiffness of a laminate along the direction forming an angle ϕ with the
fiber direction can be expressed by the matrix Q:

¯
Q =

 Q11 Q12 Q13
Q22 Q23

sym. Q66

 = TT
e QTe (28)
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Te =

 cos2 ϕ sin2 ϕ cos ϕ sin ϕ

sin2 ϕ cos2 ϕ − cos ϕ sin ϕ

−2 cos ϕ sin ϕ 2 cos ϕ sin ϕ cos2 ϕ− sin2 ϕ

 (29)

According to the stress–strain relationship of a single-layer laminate, the stress of the k
layer in the laminated plate can be obtained as follows [22]: σx

σy
τxy


k

=

 Q11 Q12 Q13
Q22 Q23

sym. Q66


k


 ε0

x
ε0

y
γ0

xy

+ z

 Kx
Ky
Kxy

 (30)

where ε0
x, ε0

y, γ0
xy are the normal or shear strains in the laminate midplane, and Kx, Ky, Kxy

are the bending deflections in the midplane.

 ε0
x

ε0
y

γ0
xy

 =


∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x


 Kx

Ky

Kxy

 =


− ∂2w0

∂x2

− ∂2w0
∂y2

−2 ∂2w0
∂x∂y

 (31)

The force and moment are obtained by integrating the stresses of each single layer
along the thickness of the laminated plate.

N =
[
Nx, Ny, Nxy

]T
=
∫ h/2
−h/2

[
σx, σy, σxy

]Tdz

M =
[
Mx, My, Mxy

]T
=
∫ h/2
−h/2

[
σx, σy, σxy

]Tzdz
(32)

The physical equation of laminate can be expressed as{
N
M

}
=

[
A B
B D

]{
ε0

K

}
(33)

where A denotes the tensile stiffness matrix; B denotes the coupling stiffness matrix, which
illustrates the coupling relationship between tension and bending; and D denotes the
bending stiffness matrix.

Aij =
∫ h/2
−h/2

(
Qij

)
k
dz

Bij =
∫ h/2
−h/2

(
Qij

)
k
zdz

Dij =
∫ h/2
−h/2

(
Qij

)
k
z2dz

(34)

For the thin-walled beam illustrated in Figure 8, the laminated element experiences
only in-plane tensile or compressive forces. In the case of symmetric laminated plates
subjected solely to in-plane tensile force Nx, the inverse matrix of A is denoted as a, and ε0

is obtained from Equation (33) by unfolding aN.
ε0

x = a11Nx

ε0
y = a12Nx

γ0
xy = a13Nx

(35)

The engineering elastic modulus in the x direction is

Ex = σx/ε0
x = 1/(ta11) (36)
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where t is total thickness of the laminate. The equivalent bending stiffness of the reinforce-
ment layer can be expressed as

(EI)reinforcement = Ex Ilaminate

= Ex
π
64
(

D4
laminate − d4

laminate
) (37)

where Ilaminate represents the equivalent moment of inertia of the thin-walled beam’s cross-
sectional area; Dlaminate is the outer diameter of composite laminate pipe; and dlaminate is
the inner diameter of composite laminates pipe.

3.4. Material Parameters

To establish the basic mechanical model of the hose, it is necessary to test the main
components that make up the hose, including the cord and rubber. For cord materials
(Figure 9), due to their small diameter, they can only withstand forces along the length
direction. The testing of their modulus can refer to the determination of the modulus of
steel wires, which will not be repeated here. This section will provide a detailed explanation
of the uniaxial tensile testing process for rubber matrix and composite film materials.

Figure 9. Synthetic tire cord fabrics forming the middle layer that reinforces the hose.

Uniaxial tensile testing is a common experimental method for hyperelastic materials.
To achieve a pure uniaxial tensile state, the length of the sample must be much greater
than its width and thickness [23]. Relevant finite element analysis has also been conducted
by some researchers, who concluded that the length of the sample should be 10 times
greater than its width and thickness. Therefore, many standards have traditionally used
dumbbell-shaped samples to measure the stress–strain curve of pure uniaxial tension. To
ensure accurate measurements, the testing position should be located far from the clamping
part. The main component of the uniaxial tensile specimen is ethylene-propylene-diene
mischpolymer (EPDM) rubber, which is a copolymer of ethylene, propylene, and a small
amount of nonconjugated olefins, and is widely applied in the fields of automotive and
marine engineering. The thickness range of the tensile test sample is determined to be
2.0 mm ± 0.2 mm according to the provisions of ISO 23529:2016 [24] and GB/T528-2009 [25]
for the tensile test. The specific dimensions of the uniaxial tensile test sample are shown in
Figure 10. The center of the uniaxial tensile test sample is 33 mm × 6 mm × 2 mm.
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Figure 10. Rubber uniaxial tensile sample.

The fixture is shown in Figure 11. The fixture is made of metal material and can be
freely opened and closed by manually operating the two operating clamps at both ends of
the fixture. When pinched in by hand, the fixture is in an open state. After releasing the
grip, the fixture returns to its previous closed state. The contact between the fixture and
the rubber is not smooth, with many neat small teeth. Its function is to increase its friction
coefficient so that during the stretching process of the specimen, the tensile force is not too
strong, and the mutual sliding between the specimen and the fixture is not affected. The
connection between the fixture and the stretching machine is connected with a pin.

Figure 11. Rubber specimens clamped on uniaxial tensile testing machine.

The movement speed of the upper clamp of the stretching machine is controlled at
200 mm/min ± 20 mm/min. Based on the recorded tensile force and displacement, and
combined with the specimen size, the stress–strain relationship of rubber under uniaxial
tension can be obtained, as shown in Figure 12. To better describe the material properties
in FEM calculation, this study adopts the Yeoh hyperelastic constitutive model to fit the
stress–strain relationship, which has been introduced in Section 3.1. Table 1 summarizes
the material properties used in all cases in this study.
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Figure 12. Rubber stress–strain relationship.

Table 1. Material parameters.

Material Parameters

Rubber C10 = 9.68 MPa; C20 = 0.46 MPa; C30 = 0.21 MPa
Steel (Helical wire) Young’s modulus = 140 GPa; Poisson’s ratio = 0.3

Steel (Flange) Young’s modulus = 206 GPa; Poisson’s ratio = 0.3
Cord Tensile modulus = 1313 MPa; Poisson’s ratio = 0.3

4. Case Study
4.1. Numerical Model
4.1.1. Finite Element Modeling Setup

The finite element model has been suitably simplified according to the assumptions in
Section 2 to reduce the computational cost. Table 2 provides the geometric parameters of
simplified hose structural components. Other structures, such as the floating body of foam
and the outer jacket, have little contribution to the strength of the hose and are, therefore,
ignored. The modeling method for self-floating hoses refers to the work of other researchers
in modeling flexible pipelines [7,10,26].

Table 2. Geometric parameters of the analyzed hose.

Parameter Value

Nominal inner radius/mm 450
Outer radius/mm 518

Winding angle of 1st reinforcement layer [90◦/45◦/0◦/−45◦/90◦/45◦/0◦]
Winding angle of 2nd reinforcement layer [45◦/−45◦]

Mean helix radius/mm 480
Helix wire diameter/mm 12

Pitch of helix/mm 100
Length of the model/mm 11,900

The hose with a 900 mm inner diameter and 68 mm wall thickness was modeled
using solid elements. Due to its cross-sectional properties as a hyperelastic material, a
hybrid formulation mesh (C3D8H) was used for discretization. Reinforcement layers were
defined by shell elements (S4R), and embedded cords were simulated by rebar layers. The
reinforcement shell was uniformly divided into rebar layers defined along the thickness
direction. The following data are required to model the performance of flexible hoses using
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the steel reinforcement method: layer name, area per bar, spacing (distance between the
centers of two cords), material properties, orientation angle, and position of cord layers.
The winding diameter of the helical steel wire was 960 mm, the pitch was 100 mm, and the
cross-sectional diameter was 12 mm. Given that the cross-sectional scale of the steel wire
was much smaller than the axial scale, a very small mesh size was required to discretize
a three-dimensional solid model, which greatly increased the number of meshes and the
difficulty of convergence. Therefore, the helical steel wire was modeled as a spatial beam
element model and discretized using B31 elements. Table 3 summarizes the types of
discrete elements with different structures and the number of meshes and nodes. After
these components were suitably assembled, the reinforcement layer shell elements and
helical steel wire beam elements were embedded into the rubber matrix by embedded
element technology in Abaqus, and the simplified model is shown in Figure 13.

Figure 13. Simplified hose FE model.

Table 3. Mesh details.

Component Element Type No. of Elements No. of Nodes

Rubber matrix C3D8H 77,224 116,130
Reinforcement (2 layers) S4R 42,552 42,660
Reinforcement (14 layers) S4R 37,824 37,920

Helical steel wire B31 11,867 11,868
Flange (string bending) C3D8R 1456 2496

4.1.2. Loads and Boundary Conditions

To reduce computational costs, this study used coupling constraints instead of mod-
eling the bending rod, as its stiffness was much greater than that of the rubber hose. As
shown in Figure 14, two reference points, RP1 and RP2, were set at both ends of the hose,
offset by 2.15 m (initial bending rod arm length) from the centerline of the hose along the x
direction. The six degrees of freedom of nodes on the end of the hose were coupled with
reference points. A velocity of V3 = 0.1 m/s towards the middle was applied at the reference
point, thereby causing the two end section of the rubber hose to bend. To avoid rigid body
displacement leading to nonconvergence, the z direction (axial direction) displacement of
nodes in the middle section was constrained. To simulate the internal water pressure in the
test, a uniformly distributed pressure load of P1 = 0.1 MPa was applied to the inner wall of
the hose to prevent potential local buckling.
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Figure 14. Loads and boundary conditions.

4.1.3. Stress and Deformation

Figures 15–17 show the stress contours of the rubber base, cord reinforcement layers,
and helical steel wire at a bending angle of 30◦. The maximum stress on the rubber matrix
was 1.926 MPa, which occurred in the middle of the rubber pipe. The maximum stress
values for the four typical cord angle (−45◦, 90◦, 45◦, 0◦) ply layers were 1.595 MPa, 3.506
MPa, 1.665 MPa, and 0.2978 MPa, respectively. When the cord angle was close to 0◦,
the direction of the cord was parallel to the circumferential direction of the pipeline, and
the cords could not withstand less bending normal stress loads. To increase the bending
stiffness of the hose, it is recommended to align as many cord layers along the pipeline
axial direction (cord angle of 90◦) as possible.

Figure 15. Stress contour of rubber matrix.
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The maximum stress on the steel wire was 183.2 MPa, which is almost 100 times
the maximum value of other structures. However, the high stress on the steel wire is
not caused by large bending loads, but mainly to resist cross-sectional deformation and
internal pressure during the bending process. To further illustrate this point, Table 4 shows
bending stiffness and proportions of different compositions. It can be seen that the rubber
matrix and composite reinforcement layers contribute significantly to the total stiffness.
Although the modulus of the steel wire is relatively large, its cross-sectional area is very
small, so its contribution is relatively small. However, it is not the case that steel wires
should be out of the calculation equation. The steel wire is the main component that
withstands radial pressure and limits the radial deformation (flattening) of the hose cross-
section, which prevents stiffness reduction during large bending deformation. Figure 18
compares the cross-sectional deformation of embedded steel wire hose and non-wire hose
during bending. It can be seen that when the steel wire is not embedded, the cross-section
of the hose will undergo significant deformation, changing from a circular shape to an
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approximate elliptical shape, which will result in much smaller bending or buckling loads
than the actual values.

Table 4. Contribution of the bending stiffness of compositions.

Composition (EI)rubber (EI)reinforcement (EI)wire (EI)total

Value/N·m2 953,632 903,652 584 1,857,868
Proportion 51.33% 48.64% 0.03% -

Figure 18. Cross−section deformation at the midpoint of the hose (bending angle of 30◦).

4.2. Hose Bending Test Setup

For finished hoses, their relevant mechanical properties must be measured before
leaving the factory to provide a reference for practical applications, and one of the most
common test methods is the bending test. According to GB/T 37221-2018 [27], a bending
test was performed on a 900 mm × 11,900 mm self-floating hose weighing 7.4 tons using
the method shown in Figure 19. The bending condition, minimum bending radius, and
bending stiffness of the hose were measured.

Figure 19. Bending test method.

The hose to be tested was placed on a relatively smooth base with hose bending rods
connected at both ends to facilitate the application of tension by the tensioner to bend the
hose. By bending the hose at different angles, mechanical characteristics, such as the bend
radius, tension, and torque of the hose, were obtained. Considering the friction between
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the rubber hose and the ground, the test was divided into two processes: tension and
relaxation, with the tension forces recorded, respectively.

Figures 20 and 21 show the test setup at the test site of Jiangsu Huashen Special Rubber
Products Co., Ltd. in Danyang, China, for the bending testing of the self-floating hose.

Figure 20. Floating hose for testing.

Figure 21. Connection between bending rod and floating hose.

4.3. Comparison

The tensile forces at both ends of the hose are presented in Figure 22, which includes
theoretical calculations, FEM calculations, and experimental testing results. Table 5 displays
the relative errors. Except for a small bending angle (10◦), the theoretical calculation error is
less than 8%. The largest calculation error in the first group, −19.47%, is mainly attributed
to friction. Although a lubricating film was laid in the testing to reduce the friction between
the hose and the ground, due to the heavy weight of the hose, the difference between the
friction force and the small angle bending load was not significant, which led to significant
calculation errors. In general, test results show a good agreement with theoretical analysis
solutions, which also proves the feasibility and credibility of the theoretical model proposed
in this study for evaluating the engineering application of offshore hoses. FEM results are
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generally 20% higher than testing results, indicating that the FE model is biased towards
rigidity and conservative in predicting the bending behavior of hoses.

Figure 22. Comparison of bending tension of rubber hoses.

Table 5. Calculation error.

Angle Force by Theory Force by FEM Average Force by Test Error 1 Error 2

(1) (2) (3) ((1)–(3))/(3) ((2)–(3))/(3)

10◦ 11,758 14,358 14,602 −19.47% −1.67%
25◦ 26,597 32,316 27,578 −3.56% 17.18%
35◦ 35,070 42,275 35,467 −1.12% 19.20%
45◦ 42,639 50,724 43,927 −2.93% 15.47%
50◦ 46,138 54,367 45,223 2.02% 20.22%
55◦ 49,460 58,412 47,856 3.35% 22.06%
60◦ 52,631 62,947 57,200 −7.99% 10.05%

4.4. Hose String Bending
4.4.1. Flange Connection

In Figure 1, it can be seen that the dredging floating hose is typically connected in
series using flanges. In Section 4.1, only the bending of a single pipeline was considered,
and the stiffness of the flange was assumed to be much greater than that of the rubber hose.
Therefore, the flange was not included in the model. When considering the string bending
of self-floating rubber hoses, the influence of flanges on the bending stiffness of the pipeline
cannot be ignored. Figure 23 illustrates the discretization of the flange using the C3D8R
element type and tie constraints of contact surfaces between the flange and the rubber hose
to prevent relative slip. To investigate the influence of the number of connected hoses on
bending calculation, this study investigated the cases of two hoses in a string and three
hoses in a string.
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Figure 23. Flange connection.

4.4.2. Results

Figures 24 and 25 show the stress results at a 30◦ bending angle of the hose string. The
more connected the pipe sections are, the less bending curvature each rubber hose shares.
In addition, it can be concluded that although the rigid flange, to some extent, hinders
the deformation of the hose end face, the bent hoses in a string still show an approximate
circular arc shape, which also indirectly proves that the beam theory can be used for the
calculation of the hose string.

Figure 24. Stress contour of two hoses in a string.

Figure 25. Stress contour of three hoses in a string.
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Figures 26 and 27, respectively, show the theoretical and numerical calculation results
for the cases of two hoses in a string and three hoses in a string It can be seen that the
theoretical solution based on equivalent bending stiffness is still applicable to the case of
bending string. The load variation trend between two calculation results is very similar,
with a difference of less than 20%, and FEM results are more conservative. This verifies
the feasibility of the theoretical method proposed in this study and provides a solution for
solving the problem of floating hose string alignment in new products.

Figure 26. Comparison of FEM results and theoretical solutions for two hoses in a string.

Figure 27. Comparison of FEM results and theoretical solutions for three hoses in a string.

5. Conclusions

This study presents general theoretical, numerical, and experimental analyses of the
nonlinear bending mechanical behavior of dredging floating hoses. A theoretical solution
based on the basic beam theory and equivalent bending stiffness was established, in
which the final theoretical bending stiffness was obtained by superimposing the linearly
equivalent results of the three main components. The mechanical model proposed in this
study can be applied to general marine hose structures, and therefore, it can analytically
solve the bending results in hoses with nonlinear reinforcement structures. Through
comparative research with relevant testing and FEM results, the basic beam bending theory
of flexible hoses that meets engineering requirements has been verified.

Although the results presented in this study can provide effective references for the
actual production design of floating hoses, there are still some uncertain engineering factors.
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Further research is going to consider the changes in the cross-sectional shape of large-
diameter hoses without dense steel wire arrangement during bending deformation, which
is also important in correcting the bending stiffness. More boundary conditions should be
included, such as instantaneous changes in internal fluid pressure under higher pressure.
The factors mentioned above will definitely provide more refined predictive modes and
more reliable guidance for further designing and verifying the global performance of
marine hoses.
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