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Abstract: Autonomous Underwater Vehicles (AUVs) are widely used for the inspection of seabed
pipelines. To address the issues of low trajectory tracking accuracy in AUV inspection processes
due to uncertain ocean current disturbances, this paper designs a new dual-loop controller based
on Model Predictive Control (MPC) and Variable Universe S-plane algorithms (S-VUD FLC, where
VUD represents Variable Universe Discourse and FLC represents Fuzzy Logic Control) to achieve
three-dimensional (3-D) trajectory tracking of an over-actuated AUV under uncertain ocean current
disturbances. This paper uses MPC as the outer-loop position controller and S-VUD FLC as the
inner-loop speed controller. The outer-loop controller generates desired speed instructions that are
passed to the inner-loop speed controller, while the inner-loop speed controller generates control
input and uses a direct logic thrust distribution method that approaches optimal energy consumption
to distribute the thrust generated by the propellers to the over-actuated AUV, achieving closed-
loop tracking of the entire trajectory. When designing the outer-loop MPC controller, the actual
control input constraints of the system are considered, and control increments are introduced to
reduce control model errors and the impact of uncertain external disturbances on the actual AUV
model parameters. When designing the inner-loop S-VUD FLC, the strong robustness of the variable
universe fuzzy controller and the easy construction characteristics of the S-plane algorithm are
combined, and integral action is introduced to improve the system’s tracking accuracy. The stability
of the outer loop controller is proven by the Lyapunov method, and the stability of the inner loop
controller is verified by simulation. Finally, simulations show that the over-actuated AUV has fast
tracking processes and high tracking result accuracy under uncertain ocean current disturbances,
demonstrating the effectiveness of the designed dual-loop controller.

Keywords: model predictive control; variable universe S-plane; three-dimensional trajectory tracking;
over-actuated AUV

1. Introduction

With the continuous advancement and innovation of autonomous navigation, control
technology, sensor technology, communication technology, and energy technology, AUVs
are capable of performing tasks in various complex underwater environments and are
widely applied in ocean survey and research, marine resource exploration, and subsea
pipeline and cable inspections [1]. The application of AUVs has increased the persistence
and continuity of underwater monitoring and improved the autonomy and flexibility of
underwater operations while reducing economic costs and avoiding potential personal
injuries and losses [2]. Over-actuated AUVs, with more actuators and control inputs,
have higher maneuverability and control capabilities compared to under-actuated AUVs,
expanding the mission capabilities and application scope of AUVs. To ensure over-actuated
AUVs can safely, stably, and accurately complete various underwater special tasks rapidly,
further research on 3-D trajectory tracking control technology is required [3]. However, the

J. Mar. Sci. Eng. 2024, 12, 418. https://doi.org/10.3390/jmse12030418 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12030418
https://doi.org/10.3390/jmse12030418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse12030418
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12030418?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 418 2 of 28

model of over-actuated AUVs exhibits nonlinearity, coupling effects, and dynamic modeling
complexity and is more sensitive to uncertainties such as modeling errors, environmental
changes, and actuator failures [4]. These characteristics make the design and analysis of
controllers for over-actuated AUVs more complex. Therefore, robust and precise control of
over-actuated AUVs is crucial [5]. The direction of three-dimensional trajectory tracking
control of autonomous underwater robots has always been a hot topic of keen interest [6].

So far, numerous classical control methods have been proposed by scholars worldwide
for the 3-D trajectory tracking of underwater vehicles [7,8]. Examples include PID control,
fuzzy control, backstepping control, sliding mode control (SMC), adaptive control, MPC, etc.
The conventional PID control strategy often fails to achieve the desired control effect and is
thus frequently combined with other control approaches to improve performance. Ye Li et al.
combined an adaptive fuzzy algorithm with PID control to ensure that the AUV achieved
accurate tracking of straight trajectories within a certain accuracy range [9]. However, due to
the frequent variations in the model parameters of underwater vehicles caused by external
environmental influences and frequent reference trajectory switching, the tuning of PID
parameters becomes excessively complex and control performance remains unsatisfactory.
By combining the Lyapunov method with backstepping control, virtual control quantities
can be recursively constructed based on Lyapunov functions, which simplifies the design
of complex control systems step by step [10]. Liang X et al. combined the backstepping
method with sliding mode control to design a controller that utilized yaw angle as the input
for tracking the horizontal path of an underactuated AUV [11]. Bing Huang et al. achieved
controller synchronization through command-filtered backstepping design and a minimum
learning parameter algorithm. They used a mapping function to transform the constrained
control problem into an unconstrained one, demonstrating the superiority and effectiveness
of this method through Lyapunov functions and simulations [12]. Nevertheless, as the
order of the system increases, the introduction of virtual control quantities leads to a
rapid increase in computational complexity, and the backstepping approach requires the
establishment of accurate system models. Sliding mode control, by introducing sliding
surfaces and sliding control laws, maintains good control performance even in the presence
of parameter variations and external disturbances [13]. However, the chattering issue
caused by the control input generated by the switching function in sliding mode control
results in decreased control accuracy and reduces the lifespan of thrusters with long-term
usage [14].

MPC can effectively handle the multi-degree-of-freedom control problem of over-
actuated AUVs while fully considering the model and constraint conditions of the AUV,
such as speed, torque, etc. [15]. It calculates the optimal control input in real time based
on the system state and objective function in each control cycle, adjusting the control
sequence to optimize tracking performance to the greatest extent and allowing the AUV
to accurately follow the desired trajectory [16]. Moreover, MPC can also deal with the
coupled dynamic effects in over-actuated AUVs, reduce the mutual interference between
different degrees of freedom, and improve control performance [17]. Therefore, MPC has
been widely used in the 3-D trajectory tracking of AUVs. Xuliang Yao et al. utilized MPC
to derive the optimal guidance law and applied SMC for dynamic controller design. Their
combination was shown, through simulations, to enhance the tracking performance of
under-actuated AUVs following 3-D linear paths [18]. Yongding Zhang et al. proposed a
three-dimensional trajectory tracking method based on MPC taking into account practical
constraints. Simulations demonstrated that it can track grid scanning paths and sinusoidal
curves [19]. Weiran Wang et al. simplified the kinematic model of the AUV into a five-
degree-of-freedom (5-DOF) model and combined the Laguerre function and adaptive
MPC, with simulations showing that it can achieve tracking of 3-D trajectories under
disturbances while reducing computational complexity, though a dynamic controller was
not designed [20]. Zheping Yan et al. used MPC to design a dual-loop controller, passed the
speed commands generated by the outer-loop MPC to the inner-loop MPC, and performed
simulation verification to show that the designed controller can track 3-D trajectories under
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external disturbances, though the design process of the inner-loop MPC was relatively
complex [21].

Although the above studies adopt different control ideas, they have a common basic
research idea, namely, to design trajectory tracking controllers by combining MPC with
other control methods. A single MPC control algorithm cannot achieve tracking of 3-D
trajectories [22]. S-VUD FLC is a combination of the classical S-plane control algorithm
and the variable universe fuzzy method [23]. In variable universe fuzzy controllers, the
introduction of a scaling universe part provides excellent robustness and adaptability,
making the design of fuzzy controllers easier [24–26]. Compared with linear conventional
PD control, the classical S-plane control algorithm with a nonlinear control surface is more
suitable for the motion control of autonomous underwater robots [27]. Many scholars
continue to deepen the demonstration and improvement of the S-plane control method and
successfully apply it to various types of autonomous underwater robots [28,29]. The use of
the S-plane to replace the fuzzy logic part in variable universe fuzzy controllers forms a
new algorithm: the Variable Universe Discourse S-plane Controller (S-VUD FLC). The new
algorithm combines the strong robustness of variable universe fuzzy controllers and the
easy-to-construct characteristics of the S-plane algorithm, further simplifying controller
design [30].

This paper thoroughly analyzes the trajectory tracking control problem of underwater
vehicles, combines MPC with S-VUD FLC, and designs a new dual-loop controller based
on MPC and S-VUD FLC. In order to improve the system’s robustness and adaptability,
MPC is used as the outer-loop position controller and S-VUD FLC as the inner-loop speed
controller. The speed control output of the outer-loop MPC controller is used as the desired
control input for the inner-loop S-VUD FLC controller, ensuring accurate tracking of time-
varying trajectories. To ensure smooth operation of the AUV when designing an MPC
controller based on the kinematics model of the AUV, control increment input is introduced,
and the actual control input constraints of the entire system are fully considered, i.e., the
change range of linear speed and angular speed. The 3-D trajectory tracking problem is
transformed into a standard quadratic programming (QP) problem with constraints. When
the AUV moves to a new position, it calculates the optimal input of the inner-loop controller
according to the current state and expectation. Meanwhile, when designing an S-VUD
FLC controller based on the dynamics model of the AUV, the idea of the PID controller is
borrowed, and the integral action is introduced to improve the tracking accuracy of the
system, thus enhancing the system’s anti-interference ability against uncertain waves. To
simulate a more realistic over-actuated AUV model and increase the control accuracy of
the system, the mathematical model of the over-actuated AUV’s propeller is established.
The direct logical thrust allocation method is used to distribute the thrust generated by the
propeller to the over-actuated AUV in a way that is close to the optimal energy consumption.
In the marine environment with complex interference effects, the over-actuated AUV can
still complete the 3-D path target tracking task well. To verify the effectiveness of the
designed dual-loop controller, the results of 3-D curve tracking simulations are provided,
and the results prove the effectiveness of the designed controller.

The remainder of this paper is organized as follows: Section 2 presents the AUV model,
the modeling of the propulsion system, and thrust allocation. Section 3 details the overall
structure of the AUV’s 3-D trajectory tracking control based on MPC and P-S-VUD FLC, as
well as proof of the stability of the kinematic controller. Section 4 validates the effectiveness
of the designed controller through simulation. Finally, Section 5 concludes the paper.

2. Establishment of the “SZ-1” AUV Model

The over-actuated AUV studied in this paper is the “SZ-1” AUV, which was indepen-
dently developed by China University of Petroleum (Beijing). The “SZ-1” AUV relies on
four thrusters arranged in a vector layout on the horizontal plane and four thrusters on
the vertical plane to achieve its six degrees of freedom attitude control. The motion and
force analysis of the “SZ-1” AUV use two coordinate systems: the body coordinate system
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{B} : O − xyz and the inertial coordinate system {I} : E − ξηζ, where both adhere to the
right-hand rule. The positive directions are respectively north, east, and downward [31].
The representation of “SZ-1” AUV in two coordinate systems is shown in Figure 1 below.
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Figure 1. The body coordinate system and the inertial coordinate system of the “SZ-1” AUV.

2.1. The Kinematic Model of the “SZ-1” AUV

In order to better describe the kinematics model of the AUV using mathematical
language, let η1 = [x, y, z]T and η2 = [φ, θ, ψ]T , representing the position and attitude in
the inertial coordinate system, respectively. Let φ represent the pitch angle, θ represent the
roll angle, and ψ represent the heading angle. Let V1 = [u, v, w]T and V2 = [p, q, r]T , repre-
senting the linear velocity and angular velocity in the body coordinate system, respectively.
Finally, let η =

[
η1

T , η2
T]T

= [x, y, z, φ, θ, ψ]T .
The kinematic model of the over-actuated AUV is as follows:

.
η = J(η)V =

[
J1(η2) 03×3
03×3 J2(η2)

]
V (1)

where
.
η1 = J1(η2)V1 (2)

J1(η2) =

cos θ cos ψ − cos φ sin ψ + sin φ sin θ cos ψ sin φ sin ψ + cos φ sin θ cos ψ
cos θ sin ψ − cos φ cos ψ + sin φ sin θ sin ψ − sin φ cos ψ + cos φ sin θ sin ψ
− sin θ cos θ sin ψ cos φ sin θ

 (3)

.
η2 = J2(η2)V2 (4)

J2(η2) =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ

0 sin φ
cos θ

cos φ
cos θ

 (5)

where J(η) represents the transformation matrix between the body coordinate system
and the inertial coordinate system, 03×3 is a 3 × 3 zero matrix, J1(η2) is the linear velocity
transformation matrix, and J2(η2) is the angular velocity transformation matrix.

2.2. The Dynamic Model of the “SZ-1” AUV

The over-actuated AUV’s dynamic model based on the Newton–Euler method is

M
.

V + C(V)V + D(V)V + g(η) = τ + τE (6)

The explanations of each term in Equation (6) are as follows:
(1) M is the inertia matrix, composed of the rigid body mass inertia matrix MRB and the

added mass matrix MA. The rigid body mass inertia matrix MRB represents the distribution
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of mass and the moment of inertia about the center of mass during the motion of the AUV.
The added mass matrix MA represents the response of the added mass moments due to the
fluid environment that the AUV encounters during its motion [32].

M = MRB + MA (7)

where

MRB = MRB
T =



m 0 0 0 mzg myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz
myg mxg 0 −Izx −Izy Iz

 (8)

MA =



X .
u X .

v X .
w X .

p X .
q X .

r
Y .

u Y .
v Y .

w Y .
p Y.

q Y.
r

Z .
u Z .

v Z .
w Z .

p Z .
q Z .

r
K .

u K .
v K .

w K .
p K .

q K .
r

M .
u M .

v M .
w M .

p M .
q M .

r
N .

u N .
v N .

w N .
p N .

q N.
r


(9)

In Equations (8) and (9), m represents the mass of the over-actuated AUV; Ix, Iy,
Iz represents the rotational inertia of the over-actuated AUV around its coordinate axes
in the body frame; and xg, yg, zg represents the components of the center of gravity
coordinates in the body frame. All terms in MA are first-order hydrodynamic derivatives,
which characterize the added mass effects generated by the AUV’s motion in the fluid
environment.

(2) C(V) represents the Coriolis–centripetal moment matrix of the AUV, composed
of the centripetal moment matrix CA(V) and the Coriolis moment matrix CRB(V). The
centripetal moment matrix represents the effect of centripetal moments due to angular
velocity during the AUV’s rotational motion. The Coriolis moment matrix CRB(V) describes
the relationship between Coriolis forces, Coriolis moments, and the linear and angular
velocities of the AUV. These forces do not actually act on the underwater vehicle but
are used to explain the motion behavior of the AUV observed in a non-inertial reference
frame [33].

C(V) = CA(V) + CRB(V) (10)

where

CA(V) =



0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0

 (11)

CRB(V) =



0 0 0 m(ygq + zgr) −m(xgq − w) −m(xgr − v)
0 0 0 −m(ygq + w) m(zgr + xg p) −m(ygr − u)
0 0 0 −m(zg p − v) −m(zgq + u) m(xg p + ygq)

−m(ygq + zgr) m(ygq + w) m(zg p − v) 0 Izr Iyq
m(xgq − w) −m(zgr + xg p) m(zgq + u) −Izr 0 Ix p
m(xgr − v) m(ygr − u) −m(xg p + ygq) −Iyq −Ix p 0

 (12)

In Equation (11), a1 = X .
uu + X .

vv + X .
ww + X .

p p + X .
qq + X .

rr,
a2 = X .

vu +Y .
vv +Y .

ww +Y .
p p +Y.

qq +Y.
rr, a3 = X .

wu +Y .
wv + Z .

ww + Z .
p p + Z .

qq + Z .
rr,

b1 = X .
pu+Y .

pv+ Z .
pw+K .

p p+K .
qq+K .

rr, b2 = X .
qu+Y.

qv+ Z .
qw+K .

q p+ M .
qq+ M .

rr,
b3 = X .

ru + Y.
rv + Z .

rw + K .
r p + M .

rq + N.
rr.
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(3) D(V) represents the fluid damping force and moment acting on the AUV during
underwater motion. It is used to simulate the damping effect on the AUV caused by the
viscosity and resistance of the fluid during its motion in the fluid, including water friction,
wave damping, etc. [34].

D(V) = diag
{

DL + DQ|V|
}

(13)

where DL represents the linear term and DQ represents the quadratic damping term.

D(V) =



Xu + Xu|u||u| 0 0 0 0 0
0 Yv + Yv|v||v| 0 0 0 0
0 0 Zw + Zw|w||w| 0 0 0
0 0 0 Kp + Kp|p||p| 0 0
0 0 0 0 Mq + Mq|q||q| 0
0 0 0 0 0 Nr + Nr|r||r|


(14)

In Equation (13), Xu, Yv, Zw, Kp, Mq, Nr represent the first-order hydrodynamic coef-
ficients of the AUV, and Xu|u||u|, Yv|v||v|, Zw|w||w|,Kp|p||p|, Mq|q||q|, Nr|r||r| represent the
second-order hydrodynamic coefficients of the AUV, indicating the nonlinear hydrody-
namic effects when the AUV moves in the fluid. These coefficients are determined by the
geometric shape of the AUV, the properties of the fluid, and the motion state of the AUV.

(4) g(η) represents the matrix composed of the restorative forces and torques resulting
from the effects of gravity and buoyancy.

g(η) =



(W − B) sin θ
−(W − B) sin φ cos θ
−(W − B) cos φ cos θ

−
(
ygW − ybB

)
cos φ cos θ +

(
zgW − xbB

)
sin φ cos θ(

zgW − zbB
)

sin θ +
(

xgW − xbB
)

cos φ cos θ
−
(
xgW − xbB

)
cos φ cos θ −

(
ygW − ybB

)
sin θ

 (15)

where B represents the buoyancy generated by the AUV and W represents the gravitational
force acting on the AUV.

(5) τ represents the forces and torques generated on the AUV due to the combined
action of eight propellers.

τ = [X, Y, Z, K, M, N]T (16)

(6) τE represents the disturbances to the AUV due to its own model vibration and
external interferences during operations.

τE =
[
du, dv, dw, dp, dq, dr

]T (17)

2.3. Modelling and Thrust Allocation of the “SZ-1” AUV Propulsion System

Due to the nonlinearity, coupling effects, and complexity of dynamic modeling in the
“SZ-1” AUV, it is more sensitive to uncertainties such as modeling errors, environmental
changes, and actuator failures. The actuators of the “SZ-1” AUV consist of eight thrusters
arranged in space. Therefore, we establish the mathematical models of its horizontal and
vertical propulsion systems and analyze the spatial thrust distribution of the thrusters,
making the modeling more refined and more in line with the actual physical model while
discussing the thrust distribution methods [35].

2.3.1. Mathematical Modeling of the Horizontal and Vertical Propulsion Systems

The “SZ-1” AUV uses propeller thrusters produced by a certain manufacturer, with
the control method being PWM. The direction and speed of rotation can be controlled by
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changing the input PWM duty cycle of the propeller thrusters. The relationship between
thruster output force and propeller speed is as follows [36]:

T(n) = KTρn2D4 (18)

In Equation (18), T is the thrust generated by the propeller driven by the impeller,
N; KT is the thrust coefficient of the propeller; ρ is the density of seawater, kg/m3; n is
the rotational speed of the propeller, r/s; and D is the diameter of the propeller, m. The
maximum rotational speed is nmax = 50 r/s, KT= 0.4, ρ= 998.2 kg/m3, and D= 110 mm.

Table 1 shows the installation positions and angles of the eight vectored thrusters of
the “SZ-1” AUV in the body coordinate system. As can be seen from the table, the eight
vectored thrusters are symmetrically installed. Since the horizontal thrusters are vectored,
they can generate lateral motion.

Table 1. Installation position and angle parameters of the AUV vector thrusters on “SZ-1”.

Number Description x(m) y(m) z(m) Installation Angle

1 Horizontal Bow Left c −b m Forms a 45◦ angle with the Ox-axis

2 Horizontal Bow Right c b m Forms a 45◦ angle with the Ox-axis

3 Horizontal Bow Left −c −b m Forms a 45◦ angle with the Ox-axis

4 Horizontal Bow Right −c b m Forms a 45◦ angle with the Ox-axis

5 Vertical Bow Left d − f n Perpendicular to the xOy plane

6 Vertical Bow Right d f n Perpendicular to the xOy plane

7 Vertical Bow Left −d − f n Perpendicular to the xOy plane

8 Vertical Bow Right −d f n Perpendicular to the xOy plane

where c = 0.3, b = 0.2, d = 0.1, f = 0.1, m = 0.1, n = −0.2.

Figure 2 shows the spatial layout of the thrusters on the “SZ-1” AUV. By analyzing
the layout and thrust distribution of the eight vectored thrusters of the “SZ-1” AUV in the
body coordinate system {B}, the expression of the force situation of the AUV in the six
degrees of freedom is derived:

X = (T1 + T2 + T3 + T4) cos α
Y = (T1 − T2 − T3 + T4) sin α
Z = T5 + T6 + T7 + T8
K = f (−T5 + T6 − T7 + T8)
M = d(−T5 − T6 + T7 + T8)
N = c(T1 − T2 + T3 − T4) sin α + b(T1 − T2 + T3 − T4) cos α

(19)

where T1, T2, T3, and T4 respectively represent the thrust exerted on the “SZ-1” AUV by the
horizontal thrusters numbered 1, 2, 3, and 4, with all thrust directions forming an angle
of 45◦ with the Ox axis; T5, T6, T7, and T8 respectively represent the thrust exerted on the
“SZ-1” AUV by the vertical thrusters numbered 5, 6, 7, and 8, with all thrust directions
being perpendicular to the Oz axis, forming an angle of 90◦.

Consequently, the relationship between the thrust and torque vector matrix τ experi-
enced by the “SZ-1” AUV and the thrust and torque generated by the eight thrusters can
be further deduced as follows:

τ = Buc (20)

where τ = [X, Y, Z, K, M, N], uc = [T1, T2, T3, T4, T5, T6, T7, T8], and B represent the spatial
vector arrangement matrix of the thrusters.
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From Equation (20), the thruster vector arrangement matrix B of the “SZ-1” AUV can
be expressed as:

B =



cos α cos α cos α cos α 0 0 0 0
sin α − sin α − sin α sin α 0 0 0 0

0 0 0 0 1 1 1 1
0 0 0 0 − f f − f f
0 0 0 0 −d −d d d

c sin α + b cos α −c sin α − b cos α c sin α + b cos α −c sin α − b cos α 0 0 0 0

 (21)

After accurate mathematical modeling of the horizontal and vertical propulsion sys-
tems is complete, the thrust distribution scheme can be discussed.

2.3.2. Thrust Allocation Method

The thrusters on the over-actuated AUV act as actuators, and the mathematical model
of propulsion is the relationship between rotation speed and thrust. The thrust generated
by the eight thrusters directly affects the AUV, causing changes in position and attitude.
The direct logic distribution method is a thrust allocation method that closely approaches
optimal energy consumption, having distinct advantages such as intuitiveness, simplicity,
high efficiency, and strong real-time performance [37]. Therefore, we use the direct logic
thrust allocation method to allocate the expected rotation speed for each thruster; the
controller is responsible for outputting the expected input on each degree of freedom.
The direct logic thrust allocation method converts the expected input into the expected
rotation speed of each of the eight thrusters. By changing the PWM duty cycle on the
microcontroller pin, the rotation direction and speed of the eight thrusters on the over-
actuated AUV are controlled. Finally, according to the spatial arrangement of the thrusters
on the over-actuated AUV, the thrust generated by the eight thrusters is applied to the AUV,
thereby achieving the six-degrees-of-freedom movement of the over-actuated AUV.

(1) Direct Logic Thrust Allocation Method for Horizontal Movement

The principle of the direct logic thrust allocation method for horizontal movement
is as follows. All four thrusters in the horizontal plane rotating in the same direction can
implement the forward and backward movements of the over-actuated AUV. Thrusters 1
and 4 rotate in the same direction, while thrusters 2 and 3 rotate in the opposite direction to
implement the rightward movement of the over-actuated AUV. Similarly, by reversing the
rotation directions of the four horizontal thrusters, the over-actuated AUV can move left.
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By keeping the speed of thrusters 1 and 2 unchanged and reversing the rotation direction of
thrusters 3 and 4, the over-actuated AUV can perform left and right turns. These concepts
can be expressed in the following equations:

Td1(n) = Xc(n) + Yc(n) + Nc(n)
Td2(n) = Xc(n)− Yc(n) + Nc(n)
Td3(n) = Xc(n)− Yc(n) + Nc(n)
Td4(n) = Xc(n) + Yc(n)− Nc(n)

(22)

where Xc(n), Yc(n), and Nc(n) are the expected inputs related to horizontal motion gen-
erated by the controller and Td1(n), Td2(n), Td3(n), and Td4(n) are the expected rotation
speeds of the four thrusters in the horizontal plane, numbered 1, 2, 3, and 4, respectively.

(2) Direct Logic Thrust Allocation Method for Vertical Movement

The principle of the direct logic thrust allocation method for vertical movement is as
follows. All four thrusters in the vertical plane rotating in the same direction can implement
the diving and surfacing movements of the over-actuated AUV. Thrusters 5 and 7 rotate in
the opposite direction, while thrusters 6 and 8 rotate in the same direction to implement
the anticlockwise rolling movement of the over-actuated AUV. Similarly, by reversing the
rotation directions of the four vertical thrusters, the over-actuated AUV can perform a
clockwise roll. Thrusters 5 and 6 rotate in the opposite direction while thrusters 7 and
8 rotate in the same direction to implement the downward pitching motion of the over-
actuated AUV. Similarly, by reversing the rotation directions of the four vertical thrusters,
the over-actuated AUV can perform an upward pitch. These concepts can be written in the
following expressions: 

Td5(n) = Zc(n)− Kc(n)− Mc(n)
Td6(n) = Zc(n) + Kc(n)− Mc(n)
Td7(n) = Zc(n)− Kc(n) + Mc(n)
Td8(n) = Zc(n) + Kc(n) + Mc(n)

(23)

where Zc(n), Kc(n), and Mc(n) are the expected rotational speed inputs related to vertical
movement generated by the controller and Td5(n), Td6(n), Td7(n), and Td8(n) are the
expected rotation speeds of the four thrusters in the vertical plane, numbered 5, 6, 7, and 8,
respectively.

3. Establishment of Three-Dimensional Path Tracking Control Model

The AUV studied in this paper first needs to establish a 3-D path tracking control
model, which includes an outer-loop kinematic control model and an inner-loop dynamic
control model, and then design their respective controllers based on this foundation.

(1) Outer-Loop Kinematic Control Model

Given that the “SZ-1” AUV is large and has a high center of buoyancy, the change in
roll angle is relatively small when subjected to external force disturbances, indicating that
the roll motion is self-stabilizing and can usually be ignored. To simplify the calculations,
let the roll angle φ = 0 and the roll angular velocity p = 0. Thus, the state vector in
the inertial coordinate system can be simplified to η = [x, y, z, θ, ψ]T , and the state vector
in the body coordinate system can be simplified to V = [u, v, w, q, r]T . The relationship
between the inertial coordinate system and the body coordinate system is then transformed
as follows:

.
η = J(η)V (24)
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where
.
η = [

.
x,

.
y,

.
z,

.
θ,

.
ψ]

T
, J(η) =


cos θ cos ψ − sin ψ sin θ cos ψ 0 0
cos θ sin ψ cos ψ sin θ sin ψ 0 0
− sin θ 0 cos θ 0 0

0 0 0 1 0
0 0 0 0 1

cos θ


To obtain the kinematic control model, Equation (24) needs to be linearized. Let point

(η0, V0) be its specific working point and perform Taylor expansion at point (η0, V0) to
obtain the linearized equation (neglecting higher-order terms):

.
η = J(η0)V0 +

∂J(η)V
∂η

|
η = η0
V = V0

(η − η0) +
∂J(η)V

∂V
|

η = η0
V = V0

(η − V0) (25)

where ∂J(η)V
∂η |

η = η0
V = V0

and ∂J(η)V
∂V |

η = η0
V = V0

are 5 × 5 Jacobian matrices.

According to the kinematic equation shown in Equation (24), the expression of the
specific working point (η0, V0) can be obtained:

.
η0 = J(η0)V0 (26)

Subtracting Equation (26) from Equation (25) provides:

.
η̃ =



.
x − .

x0.
y − .

y0.
z − .

z0.
θ −

.
θ0.

ψ −
.
ψ0

 = aη̃ + bṽ =


0 0 0 a14 a15
0 0 0 a24 a25
0 0 0 a34 0
0 0 0 0 0
0 0 0 0 0




x − x0
y − y0
z − z0
θ − θ0
ψ − ψ0



+


b11 b12 b13 0 0
b21 b22 b23 0 0
b31 0 b33 0 0
0 0 0 1 0
0 0 0 0 b55




u − u0
v − v0
w − w0
q − q0
r − r0


(27)

where a14 = −u0 sin θ0 cos ψ0 + w0 cos θ0 cos ψ0, a24 = −u0 sin θ0 sin ψ0 + w0 cos θ0 sin ψ0,
a34 = −u0 cos θ0 − w0 sin θ0, a15 = −u0 cos θ0 sin ψ0 − v0 cos ψ0 − w0 sin θ0 sin ψ0,
a25 = u0 cos θ0 cos ψ0 − v0 sin ψ0 + w0 sin θ0 cos ψ0, b11 = cos θ0 cos ψ0, b12 = − sin ψ0,
b13 = sin θ0 cos ψ0, b21 = cos θ0 sin ψ0, b22 = cos ψ0, b23 = sin θ0 sin ψ0, b31 = − sin θ0,
b33 = cos θ0,
b55 = 1

cos θ0
.

Equation (27) is the linear error kinematic control model for AUV 3-D path tracking,
in which the model parameters are time-varying.

(2) Inner-Loop Dynamic Control Model

Since the “SZ-1” AUV is designed with three sides of the shape being symmetrical
to each other, some parameters in the dynamic model can be simplified to discard some
non-essential items. Assuming that the change in the center of mass is not large and that it
is right at the origin of the motion coordinate system, with the center of gravity set as the
origin, the parameters of the simplified over-actuated AUV dynamics model are as follows:

MRB =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz

 (28)
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MA =



X .
u 0 0 0 0 0

0 Y .
v 0 0 0 0

0 0 Z .
w 0 0 0

0 0 0 K .
p 0 0

0 0 0 0 M .
q 0

0 0 0 0 0 N.
r


(29)

CA(V) =



0 0 0 0 −Z .
w Y .

vv
0 0 0 Z .

w 0 −X .
uu

0 0 0 −Y .
v X .

uu 0
0 −Z .

w Y .
v 0 −N.

rr M .
qq

Z .
w 0 −X .

uu N.
rr 0 −K .

p p
−Y .

v X .
uu 0 −M .

qq K .
p p 0


(30)

D(V) =



Xu + Xu|u||u| 0 0 0 0 0
0 Yv + Yv|v||v| 0 0 0 0
0 0 Zw + Zw|w||w| 0 0 0
0 0 0 Kp + Kp|p||p| 0 0
0 0 0 0 Mq + Mq|q||q| 0
0 0 0 0 0 Nr + Nr|r||r|


(31)

The inner-loop dynamic control model is as follows:

M
.

V + C(V)V + D(V)V + g(η) = τ + τE (32)

Establishing a 3-D path tracking control model is the basis for designing kinematic
and dynamic controllers. This paper, on the basis of the kinematic position error tracking
control model, considers the constraints of the actual speed and the speed variation of
the propeller and designs an outer-loop position controller, which calculates the optimal
desired speed to ensure the convergence of the AUV’s position tracking error. On the basis
of the dynamic control model, a multi-channel speed controller is designed to form an
inner-loop speed controller. The inner-loop speed controller outputs the desired rotational
speed command and then uses the Direct Thrust Allocation method to drive the AUV,
enabling the AUV’s actual speed to rapidly and stably converge to the desired speed. Under
the control of the dual-loop controller, the over-actuated AUV can ultimately achieve 3-D
trajectory tracking under uncertain ocean current disturbances.

The control design framework of the entire dual-loop system is shown in Figure 3.
Wherein V∗

r represents the desired velocity value for the inner-loop.
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3.1. Design of the Kinematic Controller

The reference trajectory in this paper is a time-varying trajectory, where it is assumed
that the upper-layer reference trajectory and reference control input are given by the
real-time solution of the upper-layer path planning algorithm, that is, at any time t. there is

ηd(t) = [xd(t), yd(t), zd(t), θd(t), ψd(t)]
T (33)

Vd(t) = [ud(t), vd(t), wd(t), qd(t), rd(t)]
T (34)

.
ηd(t) = J(ηd)Vd(t) (35)

Based on Equation (25), we linearize the nonlinear kinematic equation shown in
Equation (24) at the reference trajectory point (ηd, Vd), thus obtaining the following
expression:

.
η̃ =



.
x(t)− .

xd(t).
y(t)− .

yd(t).
z(t)− .

zd(t).
θ(t)−

.
θd(t).

ψ(t)−
.
ψd(t)

 = aη̃ + bṽ =


0 0 0 a14 a15
0 0 0 a24 a25
0 0 0 a34 0
0 0 0 0 0
0 0 0 0 0




x(t)− xd(t)
y(t)− yd(t)
z(t)− zd(t)
θ(t)− θd(t)
ψ(t)− ψd(t)



+


b11 b12 b13 0 0
b21 b22 b23 0 0
b31 0 b33 0 0
0 0 0 1 0
0 0 0 0 b55




u(t)− ud(t)
v(t)− vd(t)
w(t)− wd(t)
q(t)− qd(t)
r(t)− rd(t)


(36)

where a14 = −ud sin θd cos ψd + wd cos θd cos ψd, a24 = −ud sin θd sin ψd + wd cos θd sin ψd,
a34 = −ud cos θd − wd sin θd, a15 = −ud cos θd sin ψd − vd cos ψd − wd sin θd sin ψd,
a25 = ud cos θd cos ψd − vd sin ψd + wd sin θd cos ψd, b11 = cos θd cos ψd, b12 = − sin ψd,
b13 = sin θd cos ψd, b21 = cos θd sin ψd, b22 = cos ψd, b23 = sin θd sin ψd, b31 = − sin θd,
b33 = cos θd, b55 = 1

cos θd
.

In order to design the predictive controller, we use the Euler forward equation to
discretize Equation (36):

η̃(k + 1) = al η̃(k) + blṼ(k) (37)

where al = I5 + aT, bl = bT, I5 represents the identity matrix of order 5 and T denotes the
sampling time.

The error in actual modeling and the process noise present when the AUV is work-
ing underwater are considered in order to enhance robustness and eliminate static error
in the steady state. In predictive control based on state–space equations, a state–space
model based on augmented state is adopted, introducing the increment of control in-
put u(k) = Ṽ(k)− Ṽ(k − 1) and resetting the state variable of the controlled system as

x(k) =
[
η̃(k), Ṽ(k − 1)

]T
, with Equation (37) thus becoming

x(k + 1) =
[

η̃(k + 1)
Ṽ(k)

]
=

[
al bl

05×5 I5

][
η̃(k)

Ṽ(k − 1)

]
+

[
bl
I5

][
Ṽ(k)− Ṽ(k − 1)

]
= Ax(k) + Bu(k) (38)

where A =

[
al bl

05×5 I5

]
,B =

[
bl
I5

]
Let

y(k) = Cx(k) (39)

In Equation (39), C = [I5, 05×5].
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Combining Equations (38) and (39), the augmented state–space representation of the
controlled system is provided by{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(40)

(1) Future State Prediction of the System

Assume the prediction horizon to be Np and the control horizon to be Nc(Np ≥ Nc).
By multi-step derivation of Equation (38), the state prediction value within the Np time
domain of the system is

x(k + 1) = Ax(k) + Bu(k)
x(k + 2) = Ax(k + 1) + Bu(k + 1) = A2x(k) + ABu(k) + Bu(k + 1)
x(k + 3) = Ax(k + 2) + Bu(k + 2) = A3x(k) + A2Bu(k) + ABu(k + 1) + Bu(k + 2)
...
x(k + Nc) = Ax(k + Nc) + Bu(k + Nc) = ANcx(k) + ANc−1Bu(k) + ANc−2Bu(k + 1) + · · ·+ A0Bu(k + Nc − 1)
...
x(k + Np) = ANpx(k) + ANp−1Bu(k) + ANp−2Bu(k + 1) + · · ·+ A0Bu(k + Np − 1)

(41)

Similarly, by multi-step derivation of Equation (39), we obtain the output equation set
within the Np time domain of the system:

y(k + 1) = Cx(k + 1) = CAx(k) + CBu(k)
y(k + 2) = CAx(k + 1) + CBu(k + 1) = CA2x(k) + CABu(k) + CBu(k + 1)
y(k + 3) = CAx(k + 2) + CBu(k + 2) = CA3x(k) + CA2Bu(k) + CABu(k + 1) + CBu(k + 2)
...
y(k + Nc) = CAx(k + Nc) + CBu(k + Nc) = CANcx(k) + CANc−1Bu(k) + CANc−2Bu(k + 1) + · · ·+ CA0Bu(k + Nc − 1)
...
y(k + Np) = CANpx(k) + CANp−1Bu(k) + CANp−2Bu(k + 1) + · · ·+ CA0Bu(k + Np − 1)

(42)

For the output equation set in Equation (42), let

Y =



y(k + 1)
y(k + 2)

· · ·
y(k + Nc)

· · ·
y(k + Np)

 (43)

Ψ =



CA
CA2

· · ·
CANc

· · ·
CANp

 (44)

U =


u(k)

u(k + 1)
u(k + 1)

· · ·
u(k + Nc − 1)

 (45)
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Θ =



CB 0 0 · · · 0
CAB CB 0 · · · 0

· · · · · · · · · . . . · · ·
CANc−1B CANc−2B CANc−3B · · · CA0B

· · · · · · · · · . . . · · ·
CANp−1B CANp−2B CANp−3B · · · CANp−NcB


(46)

Thus, the output equation can be written in a more compact form:

Y = Ψx(k) + ΘU (47)

Therefore, if the state quantity at the current moment is known, as well as the control
increment within the Nc control horizon, it is also possible to predict the system output
within the future Np time domain.

(2) Constrained Optimization for an AUV System’s Predictive Controller

As it is an error equation that has been established, the control target is to gradually
converge the tracking error of the reference trajectory. Therefore, the reference value of the
system output can be defined as

Yr =
[
yr(k + 1) yr(k + 2) · · · yr(k + Nc) · · · yr(k + Np)

]T
=

[
0 0 · · · 0 · · · 0

]T (48)

The optimization objective function can be defined as

minJ(k) =
Np

∑
i=1

∣∣∣∣∣∣y(k + i|k)− yr(k + i)
∣∣∣|2Q +

Nc

∑
i=0

∣∣∣∣∣∣u(k + i|k)
∣∣∣|2R (49)

where Q and R respectively represent the weighting matrices of the output signal and the
control signal.

Let E = Ψx(k), QQ = INp ⊗ Q, RR = INp ⊗ R, and Ỹ = (Y − Yr), where the symbol ⊗
represents the Kronecker product.

Thus,

minJ(k) = ỸTQQỸ + UT RRU
= (Y − Yr)

TQQ(Y − Yr) + UT RRU
= [Ψx(k) + ΘU − Yr]

TQQ[Ψx(k) + ΘU − Yr] + UT RRU
= UT(ΘTQQΘ + RR)U + 2ETQQΘU + ETQQE − YrQQΘU + YT

rQQY − 2YT
rQQE

(50)

Since ETQQE −YrQQΘU +YT
rQQY − 2YT

rQQE is a constant, it can be omitted when
solving the objective function.

If we let H = ΘTQQΘ + RR and g = ETQQΘ, then the objective function can be
rewritten as

min
U

J = 2(
1
2

UT HU + gTU) ⇔ min
U

J =
1
2

UT HU + gTU (51)

For the control quantity and control increment, the following recursive formulas exist:

Ṽ(k) = Ṽ(k − 1) + u(k)
Ṽ(k + 1) = Ṽ(k) + u(k + 1) = Ṽ(k − 1) + u(k) + u(k + 1)
· · ·
Ṽ(k + Nc − 1) = Ṽ(k + Nc − 2) + u(k + Nc − 1) = Ṽ(k − 1) + u(k) + u(k + 1) + · · ·u(k + Nc − 1)

(52)

The above equation can be rewritten as
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VA =


Ṽ(k)

Ṽ(k + 1)
Ṽ(k + 1)

· · ·
Ṽ(k + Nc − 1)

 =


Ṽ(k − 1)
Ṽ(k − 1)
Ṽ(k − 1)

· · ·
Ṽ(k − 1)

+


I2 0 0 · · · 0
I2 I2 0 · · · 0
I2 I2 I2 · · · 0

· · · · · · · · · . . . 0
I2 I2 I2 · · · I2




u(k)
u(k + 1)
u(k + 2)

· · ·
u(k + Nc − 1)

 = VT + AIU (53)

Due to the power limitation of the thruster and the influence of the underwater
drag environment, the velocity and velocity increment of the AUV are bounded. Let the
amplitude of the control input in the state variable have an upper bound Vmax and a lower
bound Vmin, and let the amplitude of the control input increment u(k) have an upper bound
umax and a lower bound umin.

umin ≤ u(k) ≤ umax (54)

Vmin ≤ VA ≤ Vmax (55)

The amplitude of the control input increment U is also finite, respectively set as the
upper bound Umax and the lower bound Umin. Hence, the following inequality constraints
of control input can be obtained:

Vmin ≤ VT + AIU ≤ Vmax →
{

AIU ≤ Vmax − VT
−AIU ≤ −Vmin + VT

(56)

Umin ≤ U ≤ Umax (57)

In summary, the problem of predictive 3-D trajectory tracking control for the AUV has
been transformed into a standard quadratic programming (QP) problem:

U∗(k) = min
U

J = 1
2 UT HU + gTU

s.t.


AIU ≤ Vmax − VT
−AIU ≤ −Vmin + VT
Umin ≤ U ≤ Umax

(58)

By solving the QP problem, the optimal control action U∗(k) within the Nc domain at
each moment can be obtained. The first element u∗(k) in the vector U∗(k) is taken as the
optimal control action at moment k. Since u∗(k) is the optimal control increment input, it
needs to go through the following formula to obtain the optimal reference value V∗

r (k) of
linear velocity and angular velocity at the current sampling time k.

V∗
r (k) = Ṽ(k − 1) + u∗(k) + Vd(k) (59)

V∗
r (k) =


ur
vr
wr
qr
rr


k

(60)

Up to this point, the design of the outer-loop kinematic controller has been completed.
Take V∗

r (k) as the reference value for the dynamic controller. Next, the design of the
inner-loop dynamic controller will commence.

3.2. Design of the Dynamic Controller

Before the advent of variable universe fuzzy control algorithms, fuzzy control algo-
rithms were considered a crude control method, as the division of fuzzy sets cannot be
infinitely numerous and fuzzy rules are generally fixed. Hongxing Li proposed the vari-
able universe fuzzy controller and successfully applied this method to control a nonlinear
system, specifically a quadruple inverted pendulum [38]. The variable universe fuzzy
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controller introduces the concept of variable universes based on traditional fuzzy control
theory [39]. By designing suitable scaling factors to control the expansion and contraction
of the universe of discourse, the controller can still perform with high precision within
a sufficiently small region. Meanwhile, the design of scaling discourse makes the fuzzy
controller have good robustness and adaptability, which simplifies the design of the fuzzy
controller [40,41]. The approximate expression for the variable universe fuzzy controller
can be described as

y = f (x/s(x)) (61)

where s(x) represents the scaling factor, x represents the input of the controller, and y
represents the output of the controller.

This paper directly adopts well-established scaling factors, and there are primarily
two commonly used forms of scaling factors.

s(x) = (
|x|
E
)

τ

+ ε, τ > 0, ε is a sufficiently small positive number. (62)

s(x) = 1 − λ exp(−kx2), λ ∈ (0, 1), k > 0 (63)

The S-plane control strategy is based on fuzzy control ideas, replacing traditional fuzzy
controllers with ‘S’-shaped function surfaces. It uses the sigmoid function to construct the
S-plane controller functions, which makes the controller easier to design [29]. The classic
S-plane control with nonlinear control surfaces is more suitable for the motion control of
autonomous underwater vehicles.

The variable universe fuzzy controller is divided into two parts: the scaling factor
part and the fuzzy logic part. For the fuzzy logic part, since the S-plane control strategy
is designed based on fuzzy control theory, we attempted to combine the two, using the
S-plane (which can be referred to as a basis function) as a substitute while retaining the
proportional factor part, thus simplifying the variable universe fuzzy controller. This forms
a new algorithm, namely the S-VUD FLC algorithm. It is a combination of variable universe
fuzzy controllers and S-plane algorithms and combines the strong robustness of variable
universe fuzzy controllers with the ease of constructing S-plane algorithms.

The following are the construction steps for the new algorithm:
Step1.
Use the following sigmoid function:

tansig(x) =
ex − e−x

ex + e−x , e is a natural number (64)

Step2.
Construct the S-plane: let x1 and x2 be the inputs and y be the output, thus leading to

y = β1tansig(α1x1) + β2tansig(α2x2) (65)

Step3.
The S-plane controller is represented by ys = fs(X), where X represents the input vector.
The S-VUD FLC controller can be expressed as

ys
′ = fs(

x1

α(x1)
,

x2

α(x2)
)/β(pX), p = [0.5, 0.5] (66)

α(x) = 1 − γ exp
(
−0.5x2

)
(γ < 1), β(pX) ensures that ys

′ is sufficiently large (67)

fs(X) = λtansig (cx1) + (1 − λ)tansig(cx2) (68)

In the above formula, α(x) and β(pX) represent the scaling factors for the input and
output ends, respectively (which can degenerate into gain if fixed values are taken), and p
is the weight vector. Thus, the S-VUD FLC algorithm can be represented as a combination
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of an S-plane function and scaling factors. The factor c can cause horizontal axis scaling,
changing the effective range of the input. The factor λ can change the weight of the input;
when input noise is significant, it is necessary to increase the weight of the error to reduce
the noise impact.

The action of the scaling factors also affects control performance. The closer γ is to 1,
the steeper the controller’s change, the smaller the steady-state error, and the quicker the
response, but with stronger oscillations; the smaller γ is, the gentler the controller’s change,
the slower the response speed, and the smaller the oscillations. Therefore, the tightness of
the scaling factor is an important parameter affecting controller performance. According
to simulation test results, the scaling factor γ in the above formula should preferably be
chosen between 0.8 and 0.9.

To reduce the steady-state error of the system, enhance the ability to resist disturbances
in the uncertain underwater environment, and improve the stability of the system, we draw
on the design concept of PID controllers to improve S-VUD FLC. By introducing an integral
term into the expression of S-VUD FLC, we name the new controller as the Improved
Variable Universe S-plane Controller (P-S-VUD FLC). The expression is as follows:

ys
′ = fs(

x1

α(x1)
,

x2

α(x2)
)
/

β(pX) + Ki

t∫
0

x2dt, p = [0.5, 0.5] (69)

α(x) = 1 − γ exp
(
−0.5x2

)
(γ < 1), β(pX) ensures that ys

′is sufficiently large (70)

fs(X) = λtansig (cx1) + (1 − λ)tansig(cx2) (71)

In Equation (69), Ki is the coefficient of the integral term.
The new controller combines the strong robustness of variable universe fuzzy con-

trollers and the easy-to-construct characteristics of S-plane algorithms. The advantages
are quite obvious: it greatly simplifies the design of variable universe fuzzy controllers,
making the controller’s design more flexible and easier to implement. It is very conve-
nient for model simulation, and performance analysis and optimization of the system are
more straightforward, accelerating the development and validation process of the control
algorithm.

Below is the design process of the P-S-VUD FLC for the over-actuated AUV:
Step1.
Let the difference between the desired velocity V∗

r (k) generated by the outer-loop kinematic
controller and the actual velocity V(k) sensed by the sensors be denoted as eV . The
derivative of eV is denoted as

.
eV .

Thus,

eV = V∗
r (k)− V(k) =


ur − u
vr − v
wr − w
qr − q
rr − r


k

(72)

Step2.
The velocity deviation eV and its derivative

.
eV are used as inputs to the inner-loop dynamic

controller. If we let pr = 0, then eV can be rewritten as follows:

eV =



ur − u
vr − v
wr − w
pr − p
qr − q
rr − r


k

(73)
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Step3.
P-S-VUD FLC is designed for each degree of freedom of the AUV, and these six improved
Variable Universe S-plane controllers together form the inner-loop dynamic controller, as
shown in Figure 4.
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We will verify the stability and effectiveness of the designed dynamic control through
simulation experiments in Section 4.

3.3. Stability Proof of the Kinematic Controller

In this section, the stability proof of the outer-loop controller is presented.

Theorem 1. Consider the optimization objective function (51) under constraint condition (56),
choose the positive-definite matrix for weighting factors Q and R, prediction horizon Np and
control horizon Nc, to ensure the existence of the optimal solution for the optimization objective
function (51). Choose the optimal cost function J∗(k) as the Lyapunov function V∗(k). If the
condition V∗(k + 1) ≤ V∗(k) is satisfied, the optimal solution U∗(k) ensures nominal stability of
the system (37).

Proof of Theorem 1. In the optimal solution U∗(k) of the optimization objective func-
tion (51) under constraint condition (56), choose u∗(k + i|k) as the optimal control input.
Ṽ∗(k + i|k) is then the optimal control input corresponding to the optimal control input
increment u∗(k + i|k). Choose the optimal objective function J∗(k) as the Lyapunov func-
tion V∗(k).

V∗(k) = minJ(k)

= min

[
Np

∑
i=1

∣∣∣∣∣∣x(k + i|k)− xd(k + i)
∣∣∣|2Q +

Nc−1
∑

i=0

∣∣∣∣u(k + i|k)
∣∣|2R

]
(74)
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Obviously, the optimal function (74) satisfies V∗(0) = 0 and k = 0, V∗(k) > 0 and
k ̸= 0. For system (37) with external disturbances, the optimal control input increment
u(k + 1 + i|k + 1) and control input Ṽ(k + 1 + i

∣∣∣k + 1) are as follows:

u(k + 1 + i|k + 1) = [u(k + 1|k + 1), u(k + 2|k + 1), . . . , u(k + Nc|k + 1)]
= [u∗(k + 1|k + 1), u∗(k + 2|k + 1), . . . , u∗(k + Nc|k + 1)]

(75)

Ṽ(k + 1 + i|k + 1) =
[
Ṽ(k + 1|k + 1), Ṽ(k + 2|k + 1), . . . , Ṽ(k + Nc|k + 1)

]
=

[
Ṽ∗(k + 1|k + 1), Ṽ∗(k + 2|k + 1), . . . , Ṽ∗(k + Nc|k + 1)

] (76)

It is easy to prove that (75) and (76) are feasible solutions to the quadratic pro-
gramming problem (58). The control increment u(k + 1 + i|k + 1) and control variable
Ṽ(k + 1 + i|k + 1) satisfy constraint sets (54) and (55), respectively. Based on (75) and (76),
the relationship between V∗(k) and J(k + 1) is as follows:

V∗(k + 1) ≤ J(k + 1) ≤ V∗(k)− ||y(k + i|k)− yr(k + i)||2Q − ||u(k + i|k)||2R (77)

where

J(k + 1) =
Np

∑
i=1

||y
(

k + 1 + i|k + 1)− yr(k + 1 + i)||2Q +
Nc
∑

i=0
||u

(
k + 1 + i|k + 1)||2R

=
Np

∑
i=2

||y∗(k + i|k)− yr

(
k + i)||2Q +

Nc−1
∑

i=1
||u∗(k + i|k)||2R

=
Np

∑
i=1

||y∗(k + i|k)− yr

(
k + i)||2Q +

Nc−1
∑

i=0
||u∗(k + i|k)||2R − ||y(k|k)− yr(k)||2Q − ||u(k|k)||2R

= V∗(k)− ||y(k|k)− yr(k)||2Q − ||u(k|k)||2R

(78)

Additionally, due to the optional nature of the cost function (58), the function J(k + 1)
is not less than V∗(k + 1).

V∗(k + 1) ≤ V∗(k) (79)

The Lyapunov function (74) satisfies the following requirements: when k = 0,
V∗(0) = 0; when any k ̸= 0, V∗(k) > 0. Therefore, the Lyapunov function (74) is monotoni-
cally decreasing, that is, V∗(k + 1) ≤ V∗(k). In conclusion, system (37) is nominally stable,
and the stability proof of the outer-loop controller based on MPC is complete. □

The stability proof of the outer-loop controller based on MPC verifies the effectiveness
of the designed controller, ensuring the convergence of the system to the equilibrium point.
In the next section, we will use simulation experiments to validate the proposed dual
closed-loop controller, achieving three-dimensional curvilinear trajectory tracking for the
“SZ-1” AUV.

4. Simulation Results and Analysis

The simulation model used in this paper is based on the “SZ-1” AUV independently
developed by China University of Petroleum (Beijing). As the 3-D trajectory tracking
control performance of the AUV depends on the precise establishment of the model, this
paper combines hydrodynamic experiments and Ansys professional software for modeling
analysis to obtain more accurate parameters for the “SZ-1” AUV model and reviews the
relevant literature [42]. The obtained parameters for the “SZ-1” AUV are shown in Table 2.
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Table 2. Relevant parameters of the “SZ-1” AUV.

Parameter Value

m 177 kg
B 1158 kN

MRB diag{117.0, 117.0, 117.0, 10.7, 11.8, 13.4}
MAM diag{58.40, 23.80, 23.80, 3.38, 1.18, 2.67}
D(v) diag{120 + 90|u|, 90 + 90|v|, 150 + 120|w|, 15 + 10|p|, 15 + 12|q|, 18 + 15|r|}

This paper used Matlab/Simulink software to build a simulation environment.
When the AUV is performing a water area survey mission in a certain water body, it is

required to cruise underwater along a curved trajectory, during which it will be affected
by various types of disturbances. In this paper, the simulated ocean current disturbance
model τE is added to each component of the AUV linear velocity vector V1 = [u, v, w]T , as
shown in Equation (80).

τE =

[
0.5 sin(

t
75

)• cos(
t

150
)

]
(80)

To validate the control performance of the designed controller for curve trajectory
tracking, the curve reference trajectory is defined as Equation (81) and the initial state of
the AUV is set to [0, 0, 0, 0, 0]T .

Yd(t) =


0.5 sin(0 .8t)

0.5 − 0.5 cos(0 .8t)
0.3t

(81)

4.1. Simulation Results without Disturbance

In order to analyze the tracking performance of the proposed control method (which
uses the MPC controller as the outer loop and the P-S-VUD FLC controller as the inner
loop) on the 3-D curve trajectory, the inner-loop dynamic controller is replaced with a
classic PID controller while the outer-loop controller remains the same. A simulation is
used to compare the tracking performance of the two methods on the reference 3-D curved
trajectory. Table 3 presents the design parameters of the MPC controller.

Table 3. MPC controller design parameters.

Parameter Value

T(Sampling time) 0.0005
Qi 100
Ri 0.1
Np 20
Nc 10

Vmax [0.7, 0.4, 0.7, 1.25, 1.25]
Vmin [−0.7,−0.4,−0.7,−1.25,−1.25]
Umax [0.08, 0.08, 0.08, 0.15, 0.15]
Umin [−0.08,−0.08,−0.08,−0.15,−0.15]

Firstly, the 3-D curve trajectory tracking simulation results of the “SZ-1” AUV under no
ocean current interference are provided, as shown in the figures below. In all the following
figures, Method 1 refers to the dual-loop controller based on MPC and PID, while Method
2 refers to the dual-loop controller based on MPC and the P-S-VUD FLC.

Figure 5 shows the trajectory tracking effects of the three methods on a 3-D curve
in the absence of interference. The black curve is the reference trajectory, the blue curve
represents the tracking effect of the conventional PID controller combined with MPC, and
the red curve represents the tracking effect of the P-S-VUD FLC controller combined with
MPC. To further display the details of 3-D trajectory tracking, the projection of the 3-D
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curve tracking effect on the two-dimensional plane is provided. Figure 6 shows the position
tracking effects on the x, y, and z axes. Figures 7 and 8 are the position tracking error
curves and attitude tracking error curves, respectively. Combining Figures 7 and 8, it can
be seen that both control methods can track the 3-D curve trajectory, though by comparison
Method 2 allows the AUV to track the expected 3-D curve trajectory from the initial position
(0, 0, 0) faster, and the tracking error thus converges more quickly. Table 4 shows the Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) of the position tracking error.
From Table 4, it can be seen that the MAE of Method 2 is only 0.038, which is 41.54% less
than that of Method 1. Figure 8 shows the tracking error curves of the pitch angle and
heading angle, indicating that Method 2 causes the attitude angle to converge to zero more
quickly. Figure 9 is the curve of the actual control force and torque changes, which changes
slowly under disturbance-free conditions.
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Figure 9. Variation curves of force and torque experienced by the AUV without disturbance.

4.2. Simulation Results with Disturbance

To further compare the control effects of Method 2 versus Method 1, the control effects
of the two methods under uncertain ocean current disturbances τE are provided below.

As can be seen from Figures 10 and 11, when the AUV carries out trajectory tracking
tasks, after incorporating continuous uncertain ocean current disturbances, Method 2
has stronger anti-interference capabilities compared to Method 1. In the initial stage, the
deviation from the reference trajectory is smaller, and it can track the reference trajectory
quickly within a short period. However, the actual running trajectory of Method 1 has
obvious fluctuations and a lower anti-interference ability. As seen from Figures 12 and 13,
after being affected by disturbances, Method 2 can converge the tracking error to zero at
a faster speed. As per Table 5, the Mean Absolute Error of position in Method 2 is only
0.045, which is 43.04% less than that of Method 1. This indicates higher trajectory tracking
accuracy and stronger robustness in Method 2. Figure 14 shows the actual control force
and torque variation curves under disturbance conditions, the output curve of Method 2 is
comparatively smoother.
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model of over-actuated AUVs exhibits nonlinearity, coupling effects, and dynamic modeling
complexity and is more sensitive to uncertainties such as modeling errors, environmental
changes, and actuator failures [4]. These characteristics make the design and analysis of
controllers for over-actuated AUVs more complex. Therefore, robust and precise control of
over-actuated AUVs is crucial [5]. The direction of three-dimensional trajectory tracking
control of autonomous underwater robots has always been a hot topic of keen interest [6].

So far, numerous classical control methods have been proposed by scholars worldwide
for the 3-D trajectory tracking of underwater vehicles [7,8]. Examples include PID control,
fuzzy control, backstepping control, sliding mode control (SMC), adaptive control, MPC, etc.
The conventional PID control strategy often fails to achieve the desired control effect and is
thus frequently combined with other control approaches to improve performance. Ye Li et al.
combined an adaptive fuzzy algorithm with PID control to ensure that the AUV achieved
accurate tracking of straight trajectories within a certain accuracy range [9]. However, due to
the frequent variations in the model parameters of underwater vehicles caused by external
environmental influences and frequent reference trajectory switching, the tuning of PID
parameters becomes excessively complex and control performance remains unsatisfactory.
By combining the Lyapunov method with backstepping control, virtual control quantities
can be recursively constructed based on Lyapunov functions, which simplifies the design
of complex control systems step by step [10]. Liang X et al. combined the backstepping
method with sliding mode control to design a controller that utilized yaw angle as the input
for tracking the horizontal path of an underactuated AUV [11]. Bing Huang et al. achieved
controller synchronization through command-filtered backstepping design and a minimum
learning parameter algorithm. They used a mapping function to transform the constrained
control problem into an unconstrained one, demonstrating the superiority and effectiveness
of this method through Lyapunov functions and simulations [12]. Nevertheless, as the
order of the system increases, the introduction of virtual control quantities leads to a
rapid increase in computational complexity, and the backstepping approach requires the
establishment of accurate system models. Sliding mode control, by introducing sliding
surfaces and sliding control laws, maintains good control performance even in the presence
of parameter variations and external disturbances [13]. However, the chattering issue
caused by the control input generated by the switching function in sliding mode control
results in decreased control accuracy and reduces the lifespan of thrusters with long-term
usage [14].

MPC can effectively handle the multi-degree-of-freedom control problem of over-
actuated AUVs while fully considering the model and constraint conditions of the AUV,
such as speed, torque, etc. [15]. It calculates the optimal control input in real time based
on the system state and objective function in each control cycle, adjusting the control
sequence to optimize tracking performance to the greatest extent and allowing the AUV
to accurately follow the desired trajectory [16]. Moreover, MPC can also deal with the
coupled dynamic effects in over-actuated AUVs, reduce the mutual interference between
different degrees of freedom, and improve control performance [17]. Therefore, MPC has
been widely used in the 3-D trajectory tracking of AUVs. Xuliang Yao et al. utilized MPC
to derive the optimal guidance law and applied SMC for dynamic controller design. Their
combination was shown, through simulations, to enhance the tracking performance of
under-actuated AUVs following 3-D linear paths [18]. Yongding Zhang et al. proposed a
three-dimensional trajectory tracking method based on MPC taking into account practical
constraints. Simulations demonstrated that it can track grid scanning paths and sinusoidal
curves [19]. Weiran Wang et al. simplified the kinematic model of the AUV into a five-
degree-of-freedom (5-DOF) model and combined the Laguerre function and adaptive
MPC, with simulations showing that it can achieve tracking of 3-D trajectories under
disturbances while reducing computational complexity, though a dynamic controller was
not designed [20]. Zheping Yan et al. used MPC to design a dual-loop controller, passed the
speed commands generated by the outer-loop MPC to the inner-loop MPC, and performed
simulation verification to show that the designed controller can track 3-D trajectories under

Figure 12. Position tracking error curves with disturbance.
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Table 5. Position tracking error results with disturbance.

Method Mean Absolute Error (MAE) Root Mean Square Error (RMSE)

Method 1 0.079 0.174
Method 2 0.045 0.110
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5. Conclusions

Addressing the issue of 3-D trajectory tracking control for over-actuated underwater
robots, a novel tracking control method was herein designed by drawing on the principles
of cascade control theory. This involved the use of MPC and the P-S-VUD FLC for the
design of kinematic and dynamic controllers, respectively, as well as employing Lyapunov
functions to analyze the stability of the outer loop. The modeling process takes into account
the spatial arrangement model of the thrusters in over-actuated AUVs, using a direct
logic method close to optimal energy consumption for thrust allocation. In designing the
kinematic controller, constraints on the linear and angular velocities of the actual model
are considered, and control increment input is introduced to reduce errors caused by
the linearized kinematic model. The dynamic controller incorporates integral action to
enhance system tracking precision and strengthen the system’s resistance to uncertain wave
disturbances. Simulation results show that the over-actuated AUV can still achieve fast
and precise tracking of 3-D curvilinear trajectories in the presence of continuous uncertain
ocean current disturbances, verifying the effectiveness of the designed dual closed-loop
controller.

In the future, we will consider using mathematical tools to prove the stability of the
inner loop and attempt to implement the proposed design method in a physical over-
actuated AUV to enhance its practicality in engineering applications.
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