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Abstract: Automatic collision avoidance decision making for vessels is a critical challenge in the
development of autonomous ships and has become a central point of research in the maritime
safety domain. Effective and systematic collision avoidance strategies significantly reduce the risk of
vessel collisions, ensuring safe navigation. This study develops a multi-vessel automatic collision
avoidance decision-making method based on deep reinforcement learning (DRL) and establishes
a vessel behavior decision model. When designing the reward function for continuous action
spaces, the criteria of the “Convention on the International Regulations for Preventing Collisions
at Sea” (COLREGs) were adhered to, taking into account the vessel’s collision risk under various
encounter situations, real-world navigation practices, and navigational complexities. Furthermore,
to enable the algorithm to precisely differentiate between collision avoidance and the navigation
resumption phase in varied vessel encounter situations, this paper incorporated “collision avoidance
decision making” and “course recovery decision making” as state parameters in the state set design,
from which the respective objective functions were defined. To further enhance the algorithm’s
performance, techniques such as behavior cloning, residual networks, and CPU-GPU dual-core
parallel processing modules were integrated. Through simulation experiments in the enhanced
Imazu training environment, the practicality of the method, taking into account the effects of wind
and ocean currents, was corroborated. The results demonstrate that the proposed algorithm can
perform effective collision avoidance decision making in a range of vessel encounter situations,
indicating its efficiency and robust generalization capabilities.

Keywords: automatic collision avoidance decision making; multi-ship encounter situations; deep
reinforcement learning; COLREGs

1. Introduction

With the globalization of the world economy, the number of ships used for marine
transportation has increased significantly, leading to more congested waterways. This
development has highlighted the importance of safety in navigation. The primary objective
of safe navigation for vessels is to enable them to perform effective collision avoidance
decision making in complex navigation environments, minimizing or preventing collisions.
Compliance with the COLREGs is crucial in preventing collision accidents during ship
encounter situations [1]. According to statistics, over 80% of ship collisions are caused
by human error, specifically, the crew’s failure to adhere to the COLREGs when making
crucial decisions [2]. Presently, the COLREGs are based on human-made agreements,
leading to open interpretations of specific rules and resulting in difficulty in establishing a
uniform standard, which makes it challenging for crew members to take avoidance actions
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in compliance with the rules. To solve with these problems, it is recommended to quantify
the COLREGs and establish an autonomous collision avoidance decision-making method,
which is capable of dealing with various encounter situations. In order to reduce the
risk of ship collision avoidance, it is essential to enhance the level of vessel automation
technology, reduce human intervention in the decision-making process, and gradually
achieve automation and intelligence of vessel operations.

With the development of artificial intelligence algorithms, numerous intelligent algo-
rithms have been applied in ship collision avoidance research. For example, in 1999, Harris
used neural networks to investigate ship collision avoidance [3]. In 2000, Smierzchalski et al.
utilized genetic algorithms to plan a ship’s navigation path, which solved the ship collision
avoidance problem [4]. In 2004, Lee et al. developed a fuzzy logic collision avoidance
algorithm using an improved potential field method, which satisfied the COLREGs for
static and dynamic obstacles [5]. In 2008, Zhuo et al. supported ship drivers in making
navigation decisions by using fuzzy neural networks [6]. In 2012, Ahn et al. developed a
collision avoidance system by combining expert systems and fuzzy reasoning systems and
proposed a method for calculating collision risk using neural networks [7]. In 2012, Su et al.
created a database for ship collision avoidance using fuzzy logic theory on the Vessel Traffic
Service (VTS) system [8]. In 2015, Szlapczynski et al. proposed a method for collision
avoidance that utilized game theory hypotheses and evolution rules [9]. While the method
demonstrated robust real-time performance and was effective in dealing with multi-ship
collision avoidance problems in water areas, it occasionally violated the COLREGs. In
2018, Gao et al. designed an online ship real-time prediction model based on Automatic
Identification System (AIS) data characteristics and bidirectional long short-term memory
recurrent neural network [10]. Huang et al. proposed a generalized velocity obstacle
algorithm for ship collision avoidance in 2019 and designed a ship collision avoidance
system based on this algorithm [11]. In the same year, Xie et al. applied an improved beetle
swarm antenna search algorithm to ship collision avoidance prediction [12].

Traditional non-learning-based collision avoidance algorithms for vessels often require
extensive computations. Most of these algorithms pre-generate collision-free paths for
all foreseeable scenarios based on a known global map, leading vessels to move along
predetermined trajectories. Consequently, when creating collision-free paths for multi-
vessel encounters, these algorithms tend to be inefficient. The chosen paths may not be
optimal, posing limitations in real-time responsiveness of autonomous navigation systems.
To address this constraint, reinforcement learning (RL) is emerging as a frequently utilized
method in artificial intelligence and control disciplines. As a form of self-supervised
learning, RL stands out due to its capacity to learn optimal strategies through interaction
with its environment, without the need for explicit labeled data [13]. And its ability to
adapt and improve based on feedback from the environment is making it an increasingly
prominent tool in various domains. The agents trained through RL are particularly suitable
for local planning and in tackling scenarios with unknown environments, given their ability
to continuously adapt and derive strategies based on environmental feedback.

The fundamental principle of reinforcement learning is to continuously interact be-
tween the agent and the environment, obtain state information and reward functions fed
back by the environment, guide the agent’s actions, and repeatedly optimize its action
policy by trial-and-error training to obtain the maximum reward return [14]. The primary
problem that reinforcement learning needs to solve is the adaptive dynamic programming
problem based on sequential decision making. Researchers have proposed policy search
algorithms for this problem and quantitatively evaluate the quality of the policy by intro-
ducing value functions, leading to the development of classical reinforcement learning
algorithms, including Q-learning and Sarsa [15–17]. These reinforcement learning meth-
ods are usually unable to handle autonomous control problems that require a significant
amount of representation capability. With the rapid development of deep learning, its
outstanding feature learning capability can well compensate for the shortcomings of these
reinforcement learning, leading to a new direction for research into reinforcement learning
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algorithms that integrate deep learning technology. Currently, the development of DRL
technology has achieved remarkable results. DRL algorithms are a crucial technique in
the realm of machine learning, which can effectively tackle decision-making challenges
in ship collision avoidance that involve continuous state and action spaces. Ship collision
avoidance is a dynamic process in which vessels continuously interact with the surround-
ing environment, learning and making decisions as they navigate. DRL can offer more
flexible solutions for sudden changes in maritime conditions compared to classic collision
avoidance algorithms, once it has undergone training and reached convergence. Thus, DRL
is an effective method for solving collision avoidance problems.

Mnih et al. proposed a Deep Q Network (DQN) algorithm in 2013 [18] that combines
Q-learning with neural networks, achieving a level of play on Atari games that rivals
human game players. The algorithm uses neural networks to efficiently compute Q-
values, circumventing the need for a computationally demanding Q-table construction.
The DeepMind team improved the DQN algorithm in 2015 by proposing two neural
networks [19], one for generating actions and the other for evaluating their performance,
resulting in enhanced algorithm convergence and training efficiency. Dinh et al. extended
the application of DRL to autonomous obstacle avoidance for robots in 2017 [20]. Their
approach utilized sensor-derived position and motion information of obstacles around the
robot and classic path planning algorithms to enable safe avoidance. To address issues of
data diversity, the algorithm leveraged a memory pool to store sample data and randomly
shuffled them during training, reducing data correlation and improving neural network
convergence. In 2017, Linhai Xie et al. proposed a novel algorithm referred to as Double
Deep Q-Network (Double DQN) [21], which utilizes two identical neural networks to
estimate actions from images. The proposed algorithm discretizes the robot’s motion
environment and formulates a reward function to satisfy collision avoidance requirements,
allowing the robot to effectively perform turning actions to circumvent obstacles in its
current motion environment. Although the algorithm has been shown to be effective, its
reliance on prior knowledge of the robot’s environmental information limits its versatility
in handling significant changes in the robot’s motion environment, which in turn restricts
its applicability.

The gradient-based methods to optimize deep neural networks has become the pre-
vailing approach, due to the remarkable generalization capabilities of these methods in
high-dimensional input spaces. A number of algorithms based on this principle have
garnered significant attention, including the deep deterministic policy gradient (DDPG)
algorithm proposed by the DeepMind team in 2016 [22], the asynchronous advantage
actor–critic (A3C) algorithm proposed by Mnih et al. in 2016 [23], the Proximal Policy
Optimization (PPO) algorithm developed by Schulman et al. in 2017 [24], and the soft
actor–critic (SAC) algorithm proposed by Haarnoja et al. in 2018 [25]. In the context of
continuous control tasks, Tai et al. demonstrated in 2016 that policy gradient methods
are generally considered to be more effective [26]. Regarding collision avoidance issues
discussed in this article, it is evident that the PPO algorithm outperforms other methods.
The PPO algorithm is capable of handling continuous action and state spaces, and exhibits
strong robustness in complex environments and reward functions. Zhao et al. [27] and
Meyer et al. [28] have previously demonstrated the successful application of the PPO algo-
rithm to multi-ship collision avoidance in 2019 and 2020, respectively. In 2020, L. Engstrom
demonstrated that the PPO algorithm can indeed enhance the performance of deep policy
gradient algorithms [29]. Additionally, Ryohei Sawada applied PPO in combination with
LSTM neural networks to achieve autonomous ship collision avoidance in continuous ac-
tion spaces [30]. Most recently, in 2021, Thomas Nakken Larsen compared the effectiveness
of various DRL algorithms for safe navigation in challenging waterways [31].

Based on a comprehensive review of the relevant literature, it has been concluded that
decision making for ship collision avoidance presents several challenges.

Firstly, the majority of research conducted in this field has discretized the ship’s
environment and actions, neglecting the continuous nature of both factors in actual mar-
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itime scenarios. Collision avoidance decision-making algorithms have not adequately
accounted for the characteristics of ship movement and lack a comprehensive and specific
quantification and implementation of the COLREGs.

Secondly, in situations involving multiple ships, collision avoidance algorithms typ-
ically prioritize avoiding each ship based on its level of collision risk, from high to low.
However, these algorithms do not take into account the presence of other ships when at-
tempting to avoid the ship with the highest level of collision risk, which can create potential
risks to other ships.

Thirdly, classic collision avoidance methods aimed at balancing collision avoidance, ship
models, and the COLREGs are no longer feasible in terms of both accuracy and efficiency.

Under conditions where ship positions, navigation, and speed can be observed and
obtained from external sensors such as radar and cameras, and focusing on encounter
situations involving ships of the same type, this paper proposes a method for ship collision
avoidance decision making based on DRL algorithms, which is designed for dealing with
diverse encounter situations, including complex multi-ship encounters. The proposed
method is intended to improve navigation safety and reduce the incidence of vessel col-
lisions that are attributable to human error. The remainder of this paper is organized
as follows: Section 2 introduces the collision avoidance process of autonomous vessels.
Section 3 develops a decision-making method based on DRL algorithm. Section 4 describes
a design of the simulation environment and experiment, and the algorithm’s effectiveness
and generalization capability are verified through simulation analysis in a test scenario.
Section 5 summarizes the research work and looks forward to the future work. Figure 1
presents the technical roadmap central to this study.
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Figure 1. The technology roadmap of this paper.

2. Process of Collision Avoidance

The collision avoidance process of autonomous vessels typically involves four pri-
mary stages shown in Figure 2: environmental perception, situation recognition, collision
avoidance decision making, and collision avoidance control.
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In the first stage, a range of sensors including radar, cameras, and the Automatic
Identification System are utilized to collect data regarding ship positions, speeds, headings,
and environmental conditions. In the second stage, based on the collected information,
predictions are made regarding the future trajectories of other vessels. This process involves
identifying the current encounter situation and assessing potential collision risks. In the
third stage, once the current encounter situation is determined, the autonomous vessel will
perform collision avoidance decision making based on scheduled rules and algorithms.
These decisions may involve altering the course, adjusting the speed, or implementing
other measures to avoid collision. In the fourth stage, once the collision avoidance deci-
sion making are formulated, the autonomous vessel executes these decisions through an
automatic control system. This stage typically involves the utilization of advanced control
systems, such as autopilots and dynamic positioning systems, to control vessel motion and
ensure it avoids collisions.

The aim of this study is to tackle the problem of collision avoidance in multi-ship
encounter situations, where vessels autonomously make decisions to avoid target vessels
while adhering to the COLREGs. In this chapter, we considered factors such as the COL-
REGs, ship domain model, ship maneuvering performance, and other elements relevant to
ship risk assessment.

2.1. An Analysis of the COLREGs

The COLREGs serve as the foundation for all vessels navigating on the seas, dictating
that all vessels comply with them to coordinate their movements and ensure safe passage.
Some related studies have been conducted based on the analysis and application of the
COLREGs. M.R. Benjamin et al. focused on the operations of autonomous unmanned ma-
rine vehicles to ensure adherence to the COLREGs [32]. Chauvin and Lardjane researched
the decision-making process and strategies in maritime interactions [33]. L. P. Perera et al.
developed an intelligent decision-making system based on fuzzy logic, guided by the
COLREGs [34]. In this study, vessels recognize themselves as the “own ship” (OS) and
other vessels in the vicinity as “target ships” (TS), creating collision avoidance decision
making based on their observations and the state information they get from nearby vessels.
If a TS enters the detection area of the OS, and there is a danger of collision between the two
vessels, the OS must react to avoid the TS while following the COLREGs before resuming
its initial trajectory towards the destination once safety is guaranteed. According to the
COLREGs, every vessel in various encounter situations is obligated to adhere to a specific
course to prevent collision. These encounter situations are categorized based on the relative
position and direction of the OS and the TS.

2.2. Ship Domain Model

According to Goodwin [35], the domain is “the effective area around a ship which a
navigator would like to keep free with respect to other ships and stationary objects”. The
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ship domain is a generalization of the safe distance and comes from the observation that
the safe distance is not the same in all directions. Currently, there are many different ship
domains widely used, but each ship domain typically has a different meaning depending
on the author’s definition or the purpose of developing domain models. Ship domains can
be roughly divided into those developed by theoretical analyses, those based on experts’
knowledge and those determined empirically [36]. In collision avoidance studies, the
ship domain commonly used is based on domains determined through experimental data
statistics, where three classic vessel domains are defined as the Fuji ship domain, the
Goodwin ship domain, and the Coldwell ship domain.

The concept of a ship domain is used to calculate collision risk areas and to define a
safe domain around the OS or TS, which is an area that other vessels should not enter to
avoid collision. However, due to the different definitions of ship domains, different safety
standards are used for different ship domains. The first safety standard is that the domain
of the own ship should not be violated by the target ship; the second is that the domain
of the target ship should not be violated by the own ship; the third is that the domains
of both ships should not be violated by each other; and the fourth is that the domains of
both ships do not overlap and are independent of each other. The difference between these
four safety standards is very important because it has a significant impact on the distance
between vessels. The Fuji ship domain uses the second safety standard, and the Coldwell
ship domain uses the first safety standard. The first two safety standards are asymmetric,
using same standards based on different vessel is evaluated can lead to different safety
evaluation results. When using the third safety standard, the determined distance between
vessels is reasonable for each encounter situation, and it is safe for both ships and conforms
to the typical domain definition.

The Goodwin ship domain is widely used for testing and evaluating collision avoid-
ance methods, and the domain is applicable to multiple safety standards. Incorporating
factors related to ships in various domain models, the Fuji ship domain and Coldwell ship
domain are associated with the ship’s length, taking into account ship-specific considera-
tions. On the other hand, the Goodwin ship domain is unrelated to ship factors and does
not consider ship-specific elements. At the same time, the Goodwin ship domain definition
considers the COLREGs and can be used to simulate various encounter situations. This
makes it a universal and flexible tool for evaluating navigation safety and making collision
avoidance decision, which is in line with the research needs of this paper. Therefore, this
paper adopts the modified Goodwin domain model [37] and the third safety standard
for research.

3. Method

In this chapter, we propose a decision-making method based on a DRL algorithm
for the process of multi-ship collision avoidance. The primary reason for opting to learn
COLREGs through a machine learning framework rather than direct implementation is
that machine learning methods are better suited to handling the complex, dynamic, and
uncertain marine environments. While COLREGs provide clear guidelines for navigation,
the direct application of these rules might not cover all possible encounter situations,
especially in situations involving multiple vessels and variable conditions; even if feasible,
it could require extensive resources. Machine learning approaches enable the flexible
application of these rules across different contexts, thereby enhancing the adaptability and
robustness of decision-making processes.

The method process is illustrated in Figure 3. If the OS is the stand-on vessel, it
generally does not need to perform collision avoidance actions; it only needs to continue
on its original course. Therefore, our main focus of study is when the OS is the give-
way vessel. Randomly selecting one of the encounter situations, the OS sails towards its
destination and the ship state information is calculated as input for the DRL algorithm.
Using the CRI and distance between ships, the OS detects whether the current target
ship is in danger of collision. In the collision avoidance phase, the OS is trained using a
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specific reward function to avoid collisions. When Time to Closest Point of Approaching
(TCPA) and the trend in the distance between ships indicate that the collision risk has been
resolved, the OS enters the navigation resumption phase. In this phase, it is trained with a
different reward function designed to guide the ship to reach its destination as quickly and
efficiently as possible. The algorithm records the reward and re-initializes the environment
for the next round of training if the OS reaches its destination or a collision occurs. After a
certain amount of training, the OS optimal collision avoidance behavior is obtained for the
encounter situations.
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The method develops innovations and improvements, primarily in the design of
network architecture, initialization, state and action sets, and the reward function.

3.1. The DRL Modeling

The present study develops a collision avoidance algorithm based on DRL, which integrates
RL with deep neural networks for enhanced performance. According to Sutton et al. [38],
reinforcement learning algorithms are a type of algorithm that involves an agent taking
actions based on the environment, with the objective of maximizing the value function
calculated through rewards in the present state. To aid in such decision making, RL utilizes
the Markov decision process (MDP) framework, which allows agents to interact with the
environment and make consecutive decisions. Recently, DRL has become a new approach
to RL utilizing multi-layer neural networks as the agent’s value function. Due to the
outstanding performance and robust data storage capabilities of neural networks, DRL
surpasses classical RL algorithms in effectively dealing with increasingly complex problems.
DRL algorithms use the powerful modeling capabilities of DL to enable the accurate control
of intelligent agents based on complex, high-dimensional inputs, thereby making it possible
to solve complex collision avoidance problems.

The present study uses the PPO algorithm, which is an actor–critic DRL algorithm.
When addressing control problems that have a particular objective, such as ship collision
avoidance [39], the PPO algorithm exhibits strong performance and stable learning conver-
gence in numerous applications. This study focuses on the problem of collision avoidance,
where an agent represents its OS and the environment is composed of TS and navigation
waypoints. The actor–critic DRL method involves two neural networks. In each round of
the Markov decision process, the OS receives the current state st ∈ S and reward rt from
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the ocean environment, where S is the set of all possible states. The actor network selects
actions at at ∈ A based on the policy πθ(at|st), which represents the decision-making
process, while the critic network computes the value function V(s) for state st to assess
the selected action. Here, A is the set of all actions that the agent can choose from the
current state st and the policy represents the probability distribution of selecting actions
at A. Subsequently, the agent executes at in the environment and calculates the next state
st+1 and reward rt+1 based on the current state st and the selected action at. In this study,
the actor and critic networks are used separately and do not share data between them. At
the end of each iteration, the policy for each neural network is updated using the obtained
rewards and value functions.

The PPO objective function LCLIP(θ) is given by

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
(1)

and

rt(θ) =
πθ(at|st)

πθold(at|st)
(2)

clip(x, l, r) = max(min(x, r), l) (3)

where in Equation (1), rt(θ) is the ratio of probabilities, which is the ratio of the probability
that the policy before the update takes a specific action in a specific state and the probability
that the current policy takes the same action in the same state. The clip function is applied
to rt(θ), using between (1 − ϵ) and (1 + ϵ), according to the clipping hyperparameter ϵ
with a value of 0.1–0.2. As a result, the value of LCLIP(θ) stably changes within a small
range near 1, even in the presence of significant differences between the previous and
current policies. The PPO framework utilizes the generalized advantage estimation (GAE)
for estimating Ât:

ÂGAE(γ,λ)
t =

∞

∑
l=0

(γλ)lδV
t+1 (4)

and
δV

t = rt + γVω(st+1)− Vω(st) (5)

At the heart of this formula lies the result of the critic network, denoted as V(s),
which represents a learned estimation of the state’s value. The impact of future rewards is
accounted for by the discount factor γ, while λ serves as a coefficient for GAE to regulate
the variance and bias of the model.

Upon initialization of the network parameters, the ship’s navigational state set serves
as input data for the network. In each iteration, the PPO algorithm obtains a batch of
Markov chains from the current policy and calculates the reward and GAE functions. The
policy is then updated using the PPO objective and the Adam optimizer. Afterward, the
value function is fitted using mean square error regression and updated with the gradient
descent method. Through a repeated iterative process, the optimal collision avoidance
strategy for ships is trained, leading to convergence.

Ships encounter a variety of situations, which require collision avoidance actions that
conform to both the constraints of ship maneuverability and the COLREGs. The collision
avoidance decision-making process can be effectively modeled using the Markov decision
process. We construct a state set st that includes the encounter environment information
based on the navigational information between ships to ensure that the input neural
network has sufficient effective information on ship navigation. The collision avoidance
action at takes into account ship maneuverability and mainly adopts ship turning behavior
to ensure the collision avoidance decision making’s implementability. The reward function
rt is the most crucial part of the ship PPO collision avoidance model, as it forms the basis
for the ship’s collision avoidance decision while taking into account the COLREGs and
economic practicality. When there is no risk of ship collision, the ship usually navigates to
its destination according to the prescribed course. However, when there is a risk of collision,
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the collision avoidance decision making taken by the ship must consider the safety and
effectiveness of the collision avoidance process between ships, as well as whether the ship
complies with the COLREGs during the collision avoidance process. We summarize the
PPO algorithm in Algorithm 1.

Algorithm 1 PPO with the Ships Collision Avoidance

1:A. Input: ship state st, ship action at and ship reward rt
2:B. Training Procedure:
3: Initialize policy network
4: Repeat for each epoch:
5: a. Collect batch of observations from environment.
6: b. Compute action probabilities and values with policy network.
7: c. Compute advantages using generalized advantage estimation.
8: d. Compute old log probabilities of actions.
9: e. Repeat for each update iteration:
10: i. Compute new log probabilities of actions;
11: ii. Compute ratio of new and old probabilities;
12: iii. Compute surrogate loss;
13: iv. Compute surrogate loss;
14: v. Compute value loss;
15: vi. Compute total loss;
16: vii. Compute gradients of total loss;
17: viii. Update policy network with gradients.
18:C. Return trained policy network.

3.2. Network Architecture and Initialization Settings

For the design of the neural network structure, we used residual networks. The
purpose is to solve the problem of gradient disappearance in the training process of
deep neural networks. This problem can cause useful information to not be propagated
throughout the network. Our residual networks (as shown in Figure 4a) consist of four
residual blocks. Except for the input and output layers, each residual block contains
two convolutional layers, a tanh activation function and a skip connection, which allows
information to be directly propagated through the residual block, avoiding the problem of
gradient disappearance. The convolutional kernel size is set to 3 and the stride is 1. The
pooling kernel for the pooling layer is 2 and the stride is 2. The number of hidden units
in the linear layer is 128, and the activation function is the tanh function. The dropout
parameter is set to 0.5.

This article presents a training strategy that adopts a dual-actor network. The first actor
network represents the original policy network and is responsible for action selection and
interaction with the environment, while the second actor network serves as the new policy
network and is responsible for learning and modification. To facilitate the training process,
both actor networks are trained in parallel using a combination of GPU and CPU. During
training, the parameters of the two actor networks are independent of each other. The input
for the actor networks is the state data set in the algorithm, and the output is a normal
distribution that corresponds to the ship’s action value. The actor networks are updated
using importance weight processing, temporal difference error, and clip function guidance.
The critic network takes the state data set as input and outputs the corresponding value
function. The critic network is updated using temporal difference error guidance. Finally,
the Adam optimization algorithm is utilized to train the PPO-based collision avoidance
algorithm for ships.

In the network initialization phase of this study, Behavioral Cloning (BC) was utilized
for the pre-training of the policy network. Using BC serves to establish a more stable initial
state for the policy network, thereby facilitating the training process of PPO and enhancing
the robustness of the algorithm. AIS is a vital tool in maritime navigation, providing
accurate, real-time data about a ship’s position, course, and speed. Some studies have
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investigated ship collision avoidance behavior by decoding AIS data [40]. We decoded
the AIS data from July 2021 for the Florida Straits, connecting the Atlantic waters. This
process focused on extracting key navigational parameters such as location, heading,
speed, and course alterations. To identify collision avoidance trajectories from the AIS
data, we applied a method similar to the Sliding Window Algorithm. Informed by these
real-world vessel trajectories as shown in Figure 5 and by integrating the reward function
developed in this study, representative avoidance trajectories for three distinct encounter
situations were filtered out from a dataset of 321 real-ship trajectories. This filtering process
generated an expert strategy dataset comprising 1918 state–action pairs that exemplify
efficient avoidance tactics. Utilizing this dataset, supervised learning was executed. Given
a state st and its corresponding expert action aexpert, the objective of the policy network
πθ(at|st) is to minimize the difference between its output action and the expert action using
the mean squared error loss.
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L = MSE
(
πθ(s), aexpert

)
(6)

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 31 
 

 

error guidance. Finally, the Adam optimization algorithm is utilized to train the PPO-
based collision avoidance algorithm for ships.  

In the network initialization phase of this study, Behavioral Cloning (BC) was 
utilized for the pre-training of the policy network. Using BC serves to establish a more 
stable initial state for the policy network, thereby facilitating the training process of PPO 
and enhancing the robustness of the algorithm. AIS is a vital tool in maritime navigation, 
providing accurate, real-time data about a ship’s position, course, and speed. Some 
studies have investigated ship collision avoidance behavior by decoding AIS data [40]. We 
decoded the AIS data from July 2021 for the Florida Straits, connecting the Atlantic waters. 
This process focused on extracting key navigational parameters such as location, heading, 
speed, and course alterations. To identify collision avoidance trajectories from the AIS 
data, we applied a method similar to the Sliding Window Algorithm. Informed by these 
real-world vessel trajectories as shown in Figure 5 and by integrating the reward function 
developed in this study, representative avoidance trajectories for three distinct encounter 
situations were filtered out from a dataset of 321 real-ship trajectories. This filtering 
process generated an expert strategy dataset comprising 1918 state–action pairs that 
exemplify efficient avoidance tactics. Utilizing this dataset, supervised learning was 
executed. Given a state 𝑠௧ and its corresponding expert action 𝑎ୣ୶୮ୣ୰୲, the objective of the 
policy network 𝜋𝜽(𝑎௧|𝑠௧) is to minimize the difference between its output action and the 
expert action using the mean squared error loss. 𝐿 = 𝑀𝑆𝐸൫𝜋𝜽(𝑠), 𝑎ୣ୶୮ୣ୰୲൯ (6) 

Using the aforementioned loss function, we undertook pre-training for 100 iterations. 
The pre-training utilized the Adam optimizer with a learning rate set to 0.001 and a batch 
size of 64. Upon completing the pre-training, the resulting policy network was 
transitioned into the PPO algorithm as the initial neural network setup for the subsequent 
main training phase. 

  
(a) Head-on  (b) Crossing 

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 31 
 

 

 
(c) Overtaking 

Figure 5. Actual vessel collision avoidance trajectories.  

3.3. The Design of the State and Action Sets 
The state set is defined as the information received by the agent from the 

environment during each training round. Both the actor and critic networks of the PPO 
algorithm require observable states as input information, which are subsequently used to 
output the turning actions in the action set for interaction with the environment and 
updating the algorithm. To optimize the efficiency of the algorithm, the perception field 
of the ship is divided into 30 regions, with each region spanning 12°. Ship collision 
avoidance actions are typically initiated when the distance between ships is 6 nautical 
miles, and the ship records and perceives the surrounding environment within a radius 
of 6 nautical miles. Each region is bounded by an arc length of L = 2327.29 m, which 
guarantees that only one target ship is present within each region and is also less than the 
safety distance required for most ship navigation. 

The three crucial ship navigation information factors selected are distance d relative 
to the target ship, relative bearing θ, and speed ratio k. In addition, to assess the level of 
urgency in ship navigation, TCPA and Distance of Closest Point of Approaching (DCPA) 
are selected as state factors. The current ship phase p is also selected as the sixth 
information element in the state set, and is determined by TCPA and the changing trend 
of the distance between ships, indicating the present ship phase. The collision avoidance 
and navigation resumption phases are represented by 1 and 0, respectively. 

In conclusion, the PPO state set includes six essential ship navigation information 
elements and distributes them according to the TS’s region during the encounter. 

𝑆௧ =
⎣⎢⎢
⎢⎢⎡

𝑑௜𝜃௜𝑘௜𝑇𝑐𝑝𝑎௜𝐷𝑐𝑝𝑎௜𝑝௜ ⎦⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎡
𝑑ଵ, 𝑑ଶ, ⋯ , 𝑑ଷ଴𝜃ଵ, 𝜃ଶ, ⋯ , 𝜃ଷ଴𝑘ଵ, 𝑘ଶ, ⋯ , 𝑘ଷ଴𝑇ଵ, 𝑇ଶ, ⋯ , 𝑇ଷ଴𝐷ଵ, 𝐷ଶ, ⋯ , 𝐷ଷ଴𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝ଷ଴ ⎦⎥⎥

⎥⎥⎤ (7) 

Specifically, when the TS is not detected in the immediate vicinity of the OS, the PPO 
state set will utilize the lowest ship danger value. The relative distance between the OS 
and TS will be set to 6 nautical miles, with the relative bearing and ship speed ratio both 
set to 0. The TCPA will be set at 2 h, and the DCPA will be set at 6 nautical miles. During 
the navigation resumption phase, the state set will be taken as 0. 

The design of the action set must take into consideration the ship’s maneuverability 
and fuel economy. To avoid potential damage to the main engine and unnecessary fuel 
consumption, the action set has been designed to prioritize maintaining speed while 
changing direction. Specifically, the turning angle range of the ship’s avoidance behavior 

Figure 5. Actual vessel collision avoidance trajectories.

Using the aforementioned loss function, we undertook pre-training for 100 iterations.
The pre-training utilized the Adam optimizer with a learning rate set to 0.001 and a
batch size of 64. Upon completing the pre-training, the resulting policy network was
transitioned into the PPO algorithm as the initial neural network setup for the subsequent
main training phase.

3.3. The Design of the State and Action Sets

The state set is defined as the information received by the agent from the environment
during each training round. Both the actor and critic networks of the PPO algorithm require
observable states as input information, which are subsequently used to output the turning
actions in the action set for interaction with the environment and updating the algorithm.
To optimize the efficiency of the algorithm, the perception field of the ship is divided into
30 regions, with each region spanning 12◦. Ship collision avoidance actions are typically
initiated when the distance between ships is 6 nautical miles, and the ship records and
perceives the surrounding environment within a radius of 6 nautical miles. Each region
is bounded by an arc length of L = 2327.29 m, which guarantees that only one target ship
is present within each region and is also less than the safety distance required for most
ship navigation.
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The three crucial ship navigation information factors selected are distance d relative
to the target ship, relative bearing θ, and speed ratio k. In addition, to assess the level of
urgency in ship navigation, TCPA and Distance of Closest Point of Approaching (DCPA)
are selected as state factors. The current ship phase p is also selected as the sixth information
element in the state set, and is determined by TCPA and the changing trend of the distance
between ships, indicating the present ship phase. The collision avoidance and navigation
resumption phases are represented by 1 and 0, respectively.

In conclusion, the PPO state set includes six essential ship navigation information
elements and distributes them according to the TS’s region during the encounter.

St =



di
θi
ki

Tcpai
Dcpai

pi

 =



d1, d2, · · · , d30
θ1, θ2, · · · , θ30
k1, k2, · · · , k30
T1, T2, · · · , T30

D1, D2, · · · , D30
p1, p2, · · · , p30

 (7)

Specifically, when the TS is not detected in the immediate vicinity of the OS, the PPO
state set will utilize the lowest ship danger value. The relative distance between the OS
and TS will be set to 6 nautical miles, with the relative bearing and ship speed ratio both
set to 0. The TCPA will be set at 2 h, and the DCPA will be set at 6 nautical miles. During
the navigation resumption phase, the state set will be taken as 0.

The design of the action set must take into consideration the ship’s maneuverability
and fuel economy. To avoid potential damage to the main engine and unnecessary fuel
consumption, the action set has been designed to prioritize maintaining speed while
changing direction. Specifically, the turning angle range of the ship’s avoidance behavior
is defined as a continuous action set denoted by: A = {−∆ψ, ∆ψ}, where a left turn is
denoted by a negative value and a right turn is denoted by a positive value. Furthermore,
the turning angle ∆ψ is set to a value greater than 0, which can be reasonably determined
based on the ship’s operational characteristics, economy, and practicality.

3.4. The Reward Function Settings

In this research, the design of the reward function for ship collision avoidance in the
PPO algorithm is a critical aspect. The objective is to enable the ship to navigate to its
destination when there is no risk of collision. However, when collision risk is present,
the ship must make an effective decision that prioritizes safety, economic practicality, and
compliance with the COLREGs.

To this end, the ships are classified into two navigation modes during the training pro-
cess, and reward functions suitable for each mode are chosen based on their characteristics.
In a multi-ship encounter situation, the algorithm integrates the reward functions of each
target ship for network training optimization. During multi-ship simulations, the sum of
the rewards is utilized as the optimization evaluation target for actor–critic network train-
ing. The OS perceives the presence of collision risk and enters the collision avoidance phase.
The rewards received during this phase are based on the ship’s operational decisions, which
ensure compliance with the COLREGs and efficient collision avoidance actions. Figure 6
depicts the collision avoidance phase, which utilizes various reward functions, including
collision risk index (CRI) reward, encounter situation reward, target and collision reward,
and navigation rules reward. After successfully avoiding collision, the ship enters the navi-
gation resumption phase, and the reward function during this phase assesses whether the
ship’s operational decision is efficient resumption actions. This phase uses the resumption
reward function and the navigation rules reward function. The influence weights of each
reward function on the experimental results are considered in this study. To normalize the
effect of each reward on the network, the value of each reward is adjusted to be within
−1 and 1. The range of [–1, 1] is utilized to calibrate the reward functions, taking into
account the unique requirements of each stage and training objective. A significant number
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of training steps are necessary for the ship to reach its destination from the starting point.
After the number of training steps reaches the batch size, a policy iteration is performed,
and the entire training process continues until the maximum iteration value is reached. The
total reward is the sum of rewards for each iteration. In training process, the ship’s collision
avoidance performance can be assessed by evaluating the changes in the total reward.
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3.4.1. The Collision Risk Index Reward Function

The CRI is a fundamental concept in the field of ship collision avoidance and serves as
a parameter to assess the possibility of collision between encountering ships. It is influenced
by various factors, including DCPA, TCPA, ship speed ratio, distance, relative bearing, and,
in some cases, visibility, water conditions, and human factors. The CRI is used to divide
ship encounter situations and determine the appropriate timing for collision avoidance
action. This paper proposes a PPO algorithm that uses the CRI, which is closely related to
the state set elements, to design the reward function.

This study improves the revised Goodwin ship domain’s membership function. This
function primarily includes the DCPA, TCPA, ship speed ratio, distance, and bearing angle,
and it combines the membership functions of DCPA and TCPA. This model facilitates
a sophisticated risk evaluation by allowing a high CRI to emerge from low DCPA and
TCPA values under specific conditions, thereby accounting for the interplay of additional
relevant factors. This model is also designed to balance the influence of diverse factors
more equitably, thereby preventing the skewed risk evaluations that might result from
overly focusing on high TCPA or DCPA values in isolation. The setting of the membership
functions for each parameter is guided by the principles of fuzzy set theory, aiming to
better represent the gradations of these parameters.

CRI = αcpa
√

uDcpa·uTcpa + αdud + αθuθ + αkuk (8)
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The weights of the parameters are assigned such that the sum of the weights is equal
to unity.

αcpa + αd + αθ + αk = 1 (9)

The CRI value directly reflects the level of danger in the ship encounter situation.
Initially, DCPA and TCPA are given more weight. As the research progresses, greater
weight is gradually applied to ship speed ratio, distance, and relative bearing. Therefore,
the design of Rcri is defined by Equations (10) and (11).

Rcri,i = λcorrect1(λcorrect2 − CRIi) (10)

Rall cri =
T

∑
i=1

Rcri,i (11)

where λcorrect1 and λcorrect2 are correction coefficients for the reward function, dividing
the reward function into positive and negative rewards with CRI = 0.5 as the boundary.
This guides the network in identifying the current encounter situation and the urgency of
collision avoidance action. T is the total number of target ships in the encounter situation, i
is the target ship’s number, and CRIi is the CRI of the target ship i.

3.4.2. The Encounter Situation Reward Function

The focus of the study is on developing a reward function to handle specific encounter
situations in compliance with the COLREGs. Therefore, we propose a reward function for
collision avoidance action amplitude that takes into account the DCPA between the vessels
to determine whether the avoidance behavior meets the requirements for sufficiency.

Rwide,i =


0 , DCPAsafe ≤ D

− DCPAsafe−D
DCPAsafe−DCPAdanger

, DCPA
danger

≤ D ≤ DCPAsafe

−1 , 0 ≤ D ≤ DCPAdanger

(12)

Rall wide =
T

∑
i=1

Rwide,i (13)

where DCPAsafe is the minimum DCPA between two vessels when they are deemed to
be in a safe state, and DCPAdanger is the minimum DCPA between two vessels when
they are in a dangerous state. These two metrics are determined based on the DCPA
membership function.

In a head-on situation, the OS must turn to the right and pass from the left side of
the TS to avoid collision. At the closest point of approach, it is important to ensure that
the OS is positioned on the left side of the TS. This is represented by the relative bearing
angle θ ∈ [180◦, 360◦]. The ideal relative bearing angle for a head-on situation is 270◦, for
which we have formulated a reward function using a sine function. The reward function
for head-on situations is depicted in Equation (14).

Rheadon = −sinθ (14)

In a crossing situation, the OS must alter its course and pass behind the stern of the
TS to prevent crossing ahead of it. The relative bearing angle θ ∈ [90◦, 270◦] is used to
determine if our vessel has crossed the other vessel’s bow. We formulated a reward function
for crossing situations, which is defined as Equation (15).

Rcross =

{
1, θ ∈ [90◦, 270◦]

−λcrosscosθ, θ /∈ [90◦, 270◦]
(15)

where λcross is the reward value adjustment coefficient for the crossing situation.
The function’s visualization is provided in Figure 7.
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3.4.3. The Target and Collision Reward Function

The target reward function for the collision avoidance phase is based on the ship’s
current position and its destination.

As illustrated in Figure 8, once the ship receives an avoidance command, it moves
to the next position (xOt+1, yOt+1) from its current position (xOt, yOt). The ship’s action
area is represented by concentric circles at the current position with the center located at
(xOt, yOt) and a radius equal to the product of the unit time and speed. Equation (17) is
designed to calculate the target reward function for the collision avoidance phase.

Lt =

√(
xOt − xgoal

)2
+

(
yOt − ygoal

)2
(16)

Rgoal =
Lt − Lt+1

VO·dt
(17)

where VO is the OS speed, and dt is the unit time step. Lt and Lt+1 is the distance between
the OS and the destination at the current and next time steps, respectively. In cases where
the ship has not reached the destination, the denominator of Equation (17) represents the
distance the ship can move in unit time, while the numerator indicates the difference in
distance to the destination at each time step. Positive feedback is provided when the ship
moves to the destination (ship 1 in Figure 8) and negative feedback is provided when it
moves in the opposite direction (ship 2 in Figure 8). The magnitude of the action is also
considered in determining the degree of reward, and the reward function is normalized in
the range [−1, 1].

Following the navigation resumption phase, the original target reward function is
enhanced to enable quick arrival at the destination and accelerate algorithm convergence.
To facilitate the agent’s exploration, a potential energy function is designed by incorporating
the principles of potential energy functions used in physics and the specific environment of
the study. Equation (19) describes the navigation resumption reward function.

Ls =

√(
xstart point − xgoal

)2
+

(
ystart point − ygoal

)2
(18)
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Rresumption =

{
λcorrect3(Ls − Lt), (Lt − Lt+1) > 0
−λcorrect4(Ls − Lt), (Lt − Lt+1) ≤ 0

(19)

A potential energy function is utilized to encourage the agent to move from a high
potential energy state to a low one, with increasing rewards as the agent approaches the
goal. Conversely, the agent is penalized when transitioning from a low-potential-energy
state to a high one. The potential energy function is calculated using the Lt and the distance
Ls between the starting point and the goal. Correction coefficients, λcorrect3 and −λcorrect4,
are used to adjust the range of the reward and punishment.
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In the training process, if the distance between vessels is less than the Safe Distance of
Approach (SDA), a collision occurs, and a penalty value −rcollision is applied. Equation (20)
describes the collision reward function.

Rcollision =

{
0, otherwise

−rcollision, d ≤ SDA
(20)

Finally, a final state reward rarrive is used to motivate the OS to reach the destination.

Rarrive =

{
rarrive, Lt = 0

0, Lt ̸= 0
(21)

This approach is effective in encouraging the OS to maintain a safe distance from the
TS and arrive at the destination quickly.

3.4.4. The Navigation Rules Reward Function

This study proposes an innovative approach for regulating ship behavior, utilizing a
continuous function represented by Equations (22) and (23). The function incorporates the
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sparse collision reward function to guide the OS towards a better understanding of how to
avoid ship collisions.

Raway,i =


0, dsafe ≤ d

− dsafe−d
dsafe−ddanger

, ddanger ≤ d ≤ dsafe

−1, d ≤ ddanger

(22)

Rallaway =
T

∑
i=1

Raway,i (23)

where dsafe and ddanger are the distances between two ships during encounters that are
deemed to be in a safe state and dangerous state, respectively. The values of both are
determined by the distance membership function.

To address the problem of ships repeatedly circling or stopping to obtain local rewards,
while ignoring their original objectives, we developed a heading keeping reward function,
represented by Equation (24).

Rdirection =


0, ∆φO ≤ ∆φO,max

− ∆φO−∆φO,max
∆φO,ban−∆φO,max

, ∆φO,max ≤ ∆φO ≤ ∆φO,ban

−1, ∆φO ≤ ∆φO,ban

(24)

where ∆φO is the deviation between the ship’s current heading and the target heading. The
maximum allowable deviation is represented by ∆φO,max, while ∆φO,ban represents the
heading deviation value that must be avoided.

4. Simulation Analysis

In response to the PPO-based ship collision avoidance algorithm proposed in Section 3,
this study performs simulation experiments to verify the algorithm’s effectiveness across
various ship encounter situations. The simulation results are analyzed to determine if the
collision avoidance strategies used in different scenarios comply with the COLREGs.

4.1. Collision Avoidance Experiment Design
4.1.1. Experimental Environment and Scenarios

The environment includes OS, TS, navigational waypoints, and a target area. The
target area is presumed to be a region of the sea devoid of any obstacles such as buoys or
coastline. The navigational waypoints are established as the OS’s intended destination, and
the task of the OS is to arrive the waypoints while avoiding the TS. The Imazu problem is
utilized to locate the TS in the target area, and the effectiveness of the PPO algorithm is
validated by simulation of testing scenarios.

The effectiveness of the collision avoidance algorithm during the training process
depends on the encounter situations used. A comprehensive scenario should consist of
both simple one-on-one encounters and intricate one-on-multiple ship situations, such as
the Imazu problem. Cai et al. proposed an evaluating of marine traffic simulation system
for collision avoidance capability and proved the effectiveness of the Imazu problem [41].
Therefore, the Imazu problem has been selected as the training scenario for the algorithm,
as it satisfies the requirements of this study’s simulation experiments. As the typical Imazu
problem 8 is fundamentally similar to other scenarios in terms of ship collision avoidance
decision making and encounter situations, this article optimizes it. The training scenario is
illustrated in Figure 9. Each box in Figure 9 depicts an encounter situation illustrated by
a case of the Imazu problem, where “os” signifies the own ship, “ts” signifies the target
ship, and the short bars indicate the velocity vectors of each ship. Allowing the target
ship to avoid collision risks may make solving the problem easier. So this study utilizes
a more precise experimental approach, where the position and heading of each ship in
each scenario are set to intersect at the spatial coordinate origin. Moreover, the TS can only
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moves straight ahead without altering course and relying on the OS’s turning behavior to
avoid collision.
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During training, a randomly selected situation from the Imazu problem was used, and
the target ship was placed in accordance with the specific configuration of each situation.
The Imazu problem parameters are listed in the Appendix A Table A1. An OS with an
initial position (XO, Y O), heading φO, speed VO, and other parameters was established.
Additionally, a certain number of target ships of the same type as the OS were placed
according to the Imazu problem. For various encounter situations, the initial position
(Xt, Y t), heading φt, speed Vt, and other parameters of target ships were set to ensure they
would collide in 30 min at a fixed coordinate. Incorporating the influence of wind, waves,
and currents is paramount during the training phase. To simplify their representation,
Gaussian noise was introduced to the positions, velocities, and headings of both the own
ship and the target ships. Specifically, a standard deviation was established to simulate the
uncertainties arising from these maritime disturbances. This noise was generated randomly
in each simulation iteration. For any given parameter x, its noise can be denoted as:

x′ = x + σ·N (n, k) (25)

where N (n, k) signifies a standard normal distribution with mean n and standard deviation
k, and σ represents the intensity of the Gaussian noise. In particular, for the noise associated
with the positions and velocities of both the own ship and the target ship, we used N (0, 1).
Meanwhile, for the heading noise, N (0, π/12) was used.

During training, the algorithm should reinitialize the parameters and restart the
training process under three specific conditions: (1) collision between the OS and a TS,
(2) successful avoidance of all target ships and reaching the destination, and (3) the comple-
tion of a preset number of training episodes or attainment of a negative reward threshold.
The objective of the training is to enable the OS to solve the Imazu problem by consistently
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reaching its destination without any collisions. Table 1 provides the parameters of Section 3
for each of the reward functions.

Table 1. Parameters of the reward function based on the COLREGs.

Parameter Interpretation Value

αcpa Weighting of CPA membership function 0.3
αd Weighting of distance membership function 0.3
αθ Weighting of target bearing angle membership function 0.25
αk Weighting of velocity ratio membership function 0.15

DCPAsafe DCPA in safe state 1.5 nm
DCPAdanger DCPA in danger state 0.5 nm

dsafe Safe separation distance 2.5 nm
ddanger Dangerous proximity distance 1.5 nm

∆φO,max Maximum acceptable course deviation 45◦

∆φO,ban Prohibited course deviation 90◦

4.1.2. Algorithm Parameters and Optimization Strategies

The parameters of the PPO algorithm are provided in Table 2.

Table 2. Hyperparameter of PPO algorithm.

Parameter Value

Episodes 4000
Discounted factor 0.96

Reuse times 8
Clip epsilon 0.2

Lambda 0.98
Learning rate of actor network 2 × 10−5

Learning rate of critic network 5 × 10−3

Specifically, “Episodes” refers to the aggregate number of training iterations. “Dis-
counted factor” denotes the extent to which the agent must consider future rewards when
executing each step. “Reuse time” refers to the number of times each sample within the
Relay Buffer should be recycled during training. “Clip epsilon” represents the coefficient
used to restrict the policy update within the trust region by clipping the GAE. “Lambda” is
the coefficient utilized to adjust the variance and bias of the GAE. Finally, the “Learning
rates” for both the actor and critic networks correspond to the frequency of updates made
to each respective network during the training process.

To enhance the performance of the PPO algorithm, some tricks were implemented:

1. The GAE calculation was optimized by normalizing the advantage and state.
2. The actor network was set to output actions using a bounded Beta distribution instead

of a Gaussian distribution.
3. The Adam optimizer’s eps value was set to 1 × 10−5.
4. Orthogonal Initialization was used as the neural network initialization method.
5. Gradient clipping was incorporated to prevent the possibility of gradient explosion

during the training process.
6. Reward scaling was used to rescale the reward function.
7. To improve the exploration capability of the algorithm, a policy entropy term was

incorporated into the loss function of the actor network, with a coefficient set at 0.01.
8. Linear learning rate decay was utilized to improve the training process’s stability in

later stages and enhance training effectiveness.

The modified PPO algorithm is referred to as PPO-Max in this paper and was com-
pared to the classic PPO algorithm in the experimental analysis.
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4.2. Results

In this section, the results of an experiment on simulation effects are presented and
evaluated. Specifically, the performance of three ship agents—the classic PPO algorithm,
the PPO algorithm with a dual-core parallel module, and the PPO-Max algorithm with
a dual-core parallel module—are compared for the Imazu problem. After training for
4000 episodes, the collision rate of the three ship agents significantly decreased. The
training reward curve is shown in Figure 10.
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In Figure 10, the shadow curve and solid line represent the original and the smooth
moving average rewards, respectively, for the three algorithms after 4000 episodes of
training. The reward curve trend for each algorithm transitioned from a sudden increase to
a gradual increase and ultimately converged. Notably, the PPO classic algorithm with the
dual-core module did not exhibit a significant difference in the reward curve. Since PPO
does not require data communication between the actor and critic agents during operation,
there is no effect on experimental performance from setting the two modules to function on
the GPU and CPU, respectively. However, it substantially improved the training speed by
48.70% (from 7.68 it/s to 11.42 it/s), resulting in considerable time savings. The PPO-Max
algorithm with the dual-core module, utilized in this study, demonstrated a significantly
enhanced training effect compared to the previous two algorithms. The incorporation of
high-efficiency tricks, such as learning rate decay, resulted in a linear decrease in the ship’s
learning rate during navigation resumption phases. This ultimately allowed the OS to get
the final reward of reaching its destination, while maintaining the characteristics of the
ship’s navigation with little change in course. As illustrated in Table 3, the fluctuations in
collision avoidance success rate observed during the training process follow a similar trend
to that of the reward curve. Figure 11 illustrates the ship’s trajectory in the Imazu problem.

Table 3. Collision avoidance success rate during the training process.

Episode 0–1000 1000–2000 2000–3000 3000–4000

Success rate 35.7% 69.9% 88.2% 98.6%

In the Imazu problem, a total of 21 ship collision avoidance cases are examined and
categorized into four groups based on the type of collision: head-on, crossing, overtaking,
and other. By quantifying the COLREGs for head-on, crossing, and overtaking situations,
the vessel’s trajectory in these situations is found to be in compliance with applicable
regulations and practical conditions, rendering it a useful reference for ship collision
avoidance in real scenarios.
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The Imazu problem in the head-on situation, as presented in Figure 12, is selected
for this study. To avoid collisions, the OS altered its course to starboard so that it would
pass on the port side of the TS. In the event of multiple vessels approaching, the OS takes
collision avoidance measures based on the CRI. Figure 12b shows the distance and CRI
curves between the vessels in the head-on situation. At the start of the head-on encounter,
there is a rapid decrease in the minimum distance between the two vessels, indicating a
high risk of collision. Subsequently, the OS utilizes collision avoidance action based on
the output from the algorithm, leading to a decrease in the distance between the vessels
followed by an increase. The CRI curve displays the opposite trend, peaking in the range
[0.6, 0.8] during the critical moment of the encounter. Ultimately, the collision avoidance
process is accomplished, and the vessels maintain a safe encounter distance, indicating the
safety and effectiveness of the collision avoidance decision making.
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During the crossing situation in the Imazu problem, as presented in Figure 13, the OS is
obligated to turn right in accordance with the COLREGs, while the target vessel maintains
its speed and course. After the collision risk is eliminated, the OS passes behind the TS
to avoid it. The entire collision avoidance process is safe and effective. Furthermore, the
collision avoidance behavior during the multi-vessel crossing encounter is also compliant
with the COLREGs, with the CRI peak fluctuating around 0.8.

In the Imazu overtaking problem, as presented in Figure 14, the OS takes a right turn
at the initial stage to pass the TS’s stern on the starboard side. After that, the OS maintains
the new heading and proceeds forward. The TS being overtaken maintains its original
course to sail. As the risk decreases, the OS returns to its original course and completes the
overtaking. In occurrence 7, due to the encounter with TS2, the conditions for overtaking
are no longer met, and the OS steers towards its destination.
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In the crossing situation, when the TS approaches from the left side of the OS, the
COLREGs specify that the TS as the giving-way vessel should take action to avoid collision.
In this study, the TS is considered as the object for collision avoidance decision making,
while allowing the OS to continue on its course. The experimental results for this scenario
closely resemble those obtained in the previous section, which involved cross encounters.

To enhance the diversity of the experiments and simulate more complex situations
that may arise in actual navigation, this study incorporates special scenarios from the
COLREGs into the experimental design. Specifically, vessels with emergency tasks or those
that are difficult to avoid are included, and the OS is required to take action to avoid a
collision. The introduction of such scenarios allows for a more comprehensive evaluation
of the performance and robustness of ship collision avoidance algorithms and strategies,
enhancing the credibility and practicality of the research findings.

According to Rule 8 of the COLREGs, a vessel that is required to give way and must
not impede the passage or safe passage of another vessel is expected to take prompt and
appropriate action, as necessary under the current circumstances, to ensure that there is
ample space for the other vessel to pass safely. In this situation, the OS must avoid collision
based on the vessel’s domain and maximum safe distance, as presented by occurrences 4, 9,
16, and 18 in Figure 15. At CPA, the OS selects the action that would result in the maximum
reward, passing behind the target ship at a relative bearing of [0, 67.5◦]. In occurrence
16, the OS immediately encounters another overtaking situation after avoiding the TS1.
Considering the limitations of ship action and fuel economy, the OS chooses to directly
initiate an overtaking behavior, which is reasonable and in compliance with ship actions.
Overall, the behavior exhibited by the OS in Imazu problem is deemed appropriate for
collision avoidance, with Figure 16 showing the minimum passing distance in the Imazu
problem between the OS and TS.

Figure 16 classifies the ships based on the encounter situation and records the mini-
mum passing distance between the OS and the TS. Different safe distances are established
for various encounter situations: a safe distance of 0.9 nm is set for head-on and crossing
situations, a safe distance of 0.6 nm is set for overtaking situations, and for other situations,
a safe distance of 1.1 nm is set based on the Closest Point of Approach in the ship’s domain.
The minimum passing distance between the OS and the TS all exceed the established
safe distance.

In this study, we executed a series of simulation experiments to compare and analyze
the performance of various models trained with distinct algorithms in designated test
scenarios. For instance, in Figure 17 occurrence 4, notable behavioral discrepancies were
observed. The PPO algorithm, lacking pre-training via behavior cloning, manifested a
tendency towards more conservative course correction maneuvers during decision-making
processes. In contrast, the continuous action space model employed by Sawada, Ryohei
favored long-distance course adjustments to circumvent potential conflicts [30]. Compared
to these approaches, the PPO-max model proposed in our research not only aligns more
closely with maritime collision avoidance regulations but also exhibits significant efficiency
gains in path strategy formulation.

In order to assess the generalization capability of the training model, a test scenario
was constructed. To execute the experiment, five target ships were selected randomly from
the variety of target ships in the Imazu problem, and a collision was simulated at a fixed
coordinate after 30 min. The OS was required to avoid the randomly appearing target ships
and navigate towards its destination using an appropriate course. The trajectory of the OS,
as depicted in Figure 18a, confirms that the trained model was able to acquire an effective
method for collision avoidance, thus providing evidence of the model’s generalization
capability. To ensure a safe and adequate distance between the OS and the TS under various
environmental, the safe distance was set to the maximum ship domain of 1.1 nm. As
shown in Figure 18b, the minimum passing distance in this experiment was 1.264 nm. It
is noteworthy that the trend in the distance between the OS and the TS changed from
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decreasing to increasing after 43.5 min, indicating that the OS had effectively avoided the
five target ships and entered the navigation resumption phase.
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Out of the 1000 random experiments conducted, the OS successfully reached its
destination in 763 cases. In cases of failure, some are due to collisions, primarily occurring
in the fourth type of encounter situation. Due to the dense arrangement of vessels in some
random scenarios, the safe distance setting makes it easy for vessels to be deemed to have
collided. Another cause is the failure to reach the destination in a timely manner after
collision avoidance, primarily occurring in the overtaking situation. The conflicts between
overtaking the TS and reaching the destination resulted in the OS being unable to arrive
at its destination on time. Further research will be conducted to improve the algorithm’s
generalizability based on these issues.

4.3. Discussion

The validation experiments were carried out on same vessel types, but the core prin-
ciples of this method are equally applicable to different types of ships, requiring only
adjustments to the vessel’s configuration parameters. Despite the potential of DRL in
collision avoidance applications for ships, several challenges remain in terms of safety guar-
antees, predictability, and reproducibility. To ensure practical applicability, the algorithm
must accurately define ships and their behaviors in various scenarios. Furthermore, the
continuous action space training algorithm often has low heading stability, limiting the
reliability of the collision avoidance obtained from the current algorithm. As a result, the
proposed method can only be utilized as a reference route for ship collision avoidance in
practical applications.

In the subsequent phase of our research, we aim to further optimize the algorithm
through enhancements in state vectors, multi-agent architectures, reward design, and the
development of a coordinated vessel collision avoidance model to address scenarios includ-
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ing vessel speed and heading variations. Moreover, to ensure the practical applicability
of our model, future endeavors will explore sim2real strategies to successfully transfer
policies trained in simulation to real-world environments.

5. Conclusions

The present study proposes a method for ship collision avoidance using the DRL
algorithm with a continuous action space. To ensure optimal performance, appropriate
reward functions were designed for different encounter situations, in compliance with the
COLREGs. Furthermore, the reward function was tailored to account for the ship collision
avoidance risks, actual ship navigation norms, and navigation resumption. In the event of
multiple ship encounters, the proposed approach incorporates a judgment mechanism to
assess ship danger and determine whether the navigation should be resumed. To facilitate
this, the latest navigation resumption element variable was included in the state set of
the algorithm.

The simulation optimized the Imazu problem to assess the effectiveness and generaliza-
tion capability of the proposed algorithm. Additionally, the study innovated improvements
to the DRL algorithm. Specifically, the algorithm incorporated techniques like behavior
cloning, residual networks, and CPU-GPU dual-core parallel processing modules, using
appropriate tricks to optimize the algorithm’s performance. As a result, the algorithm’s
performance and operational efficiency were significantly enhanced. The experimental
results indicate that the proposed method effectively addresses various ship encounter
situations in the Imazu problem. This confirms the effectiveness of incorporating different
encounter situations and relevant factors into the reward function of the algorithm, which
guides the OS to adhere to the COLREGs.
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Appendix A

Table A1. The setting of Imazu problem.

Target Ship 1 Target Ship 2 Target Ship 3

Occurrence X (nm) Y (nm) φt (◦) X (nm) Y (nm) φt (◦) X (nm) Y (nm) φt (◦)

1 0.000 12.000 180
2 6.000 6.000 −90
3 0.000 1.800 0
4 −4.243 1.757 45
5 0.000 12.000 180 6.000 6.000 −90
6 1.042 0.091 −10 4.243 1.757 −45
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Table A1. Cont.

Target Ship 1 Target Ship 2 Target Ship 3

Occurrence X (nm) Y (nm) φt (◦) X (nm) Y (nm) φt (◦) X (nm) Y (nm) φt (◦)

7 0.000 1.800 0 4.243 1.757 −45
8 3.000 0.804 −30 6.000 6.000 −90
9 −1.553 0.204 15 6.000 6.000 −90

10 3.000 0.804 −30 −6.000 6.000 90
11 0.000 12.000 180 4.243 1.757 −45 −1.042 0.091 10
12 0.000 12.000 180 −4.243 1.757 45 −1.042 0.091 10
13 6.000 6.000 −90 4.243 1.757 −45 1.042 0.091 −10
14 6.000 6.000 −90 4.243 1.757 −45 0.000 1.800 0
15 6.000 6.000 −90 −2.970 3.030 45 −6.000 6.000 90
16 −1.042 0.091 10 0.000 1.800 0 4.243 1.757 −45
17 4.243 10.243 −135 1.553 0.204 −15 3.000 0.804 −30
18 4.243 10.243 −135 1.553 0.204 −15 −1.553 0.204 15
19 6.000 6.000 −90 1.553 0.204 −15 0.000 1.800 0
20 6.000 6.000 −90 1.553 0.204 −15 −1.553 0.204 15
21 6.000 6.000 −90 3.000 0.804 −30 0.000 1.800 0
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