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Abstract: In seaports, the automatic Grab-Type Ship Unloader (GTSU) stands out for its ability to
automatically load and unload materials, offering the potential for substantial productivity improve-
ment and cost reduction. Developing a fully automatic GTSU, however, presents a unique challenge:
the system must autonomously determine the position of the cargo hold and the coordinates of the
working point and identify potential hazards during material loading and unloading. This paper
proposes AI models designed to detect cargo holds, extract working points, and support collision
risk warnings, utilizing both the LiDAR sensor and the camera in the GTSU system. The model for
cargo hold detection and collision warning was developed using image data of the cargo hold and
grab, employing the You Only Look Once model. Concurrently, the model responsible for extracting
the coordinates of working points for the GTSU system was designed by integrating the cargo hold
detection and point cloud processing models. After testing the AI models for the lab-scale GTSU,
the results show that the cargo hold detection and collision warning models achieve an accuracy of
approximately 96% and 90%, respectively. Additionally, the working point coordinates extracted
from the sensor system show a deviation of 5–10% compared to traditional measurements.

Keywords: smart port; automation machine; grab-type ship unloader; YOLO; image processing;
point cloud

1. Introduction

Automation uses technology, specifically computers and software, to oversee and exe-
cute operations, frequently diminishing or substituting human involvement. The adoption
of automation has significantly increased in recent times, mostly due to advancements in
artificial intelligence (AI), robots, and data analytics. However, primitive types of automa-
tion can be traced back to the early 20th century, such as manufacturing assembly lines [1].
Automation in factories leads to increased production levels, generating consistent, depend-
able, and high-quality products while reducing energy consumption. This, in turn, leads to
cost savings and improved productivity [2]. Consequently, the automation trend is rapidly
growing, establishing itself as a crucial factor in the worldwide economic environment.
The industrial automation industry has had significant expansion throughout the years,
and it is projected to reach a worth of USD 459.51 billion by 2032 [3]. The advancement
of technology has accelerated numerous transformations in several sectors, introducing
a period where automation, effectiveness, and environmental friendliness serve as the basis
for expansion. The marine sector, particularly port operations, is significantly affected by
this revolutionary wave.

Seaports are crucial nodes in the maritime transportation network, playing a vital
role in the reception, unloading, and transshipment of commodities and minerals. Sta-
tistically, almost 80% of the total volume of worldwide commerce trade is conducted via
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maritime transportation [4]. The process of transferring raw materials from seaports to
industries is performed through mechanical systems such as the Grab-Type Ship Unloader
(GTSU) system, stackers, and reclaimers. This involves the loading and unloading of the
commodities. Specifically, the GTSU system is crucial in seaport operations. The GTSU
system exemplifies specialized mechanical innovation designed specifically for the mar-
itime sector. Its purpose is to efficiently offload dry bulk cargo from vessels, a procedure
that previously required significant manual labor and consumed a considerable amount of
time. The main mechanism relies on a sturdy grasping apparatus, as implied by its name.
Depending on its design and size, this grab penetrates the cargo hold of the ship, securely
collects a significant quantity of bulk material, and efficiently delivers it to the subsequent
stage of the logistical chain, such as hoppers, conveyors, trucks, or rail wagons. Crane
operators, winches, and cables are essential elements in the picking process, alongside
bucket design [5]. The GTSU system offers numerous advantages. First and foremost, it
provides unmatched efficiency. The conventional techniques for offloading cargo were
not only physically demanding but also lacked accuracy. This system also exemplifies
adaptability. The versatility of ports in handling several cargo types, such as grains, coal,
and ore, makes flexibility in terms of modifying the grab size or unloading speed extremely
significant. The GTSU system’s versatility allows it to accommodate various sorts of freight
while maintaining efficiency. Nevertheless, GTSU systems were operated through manual
means or with limited technical involvement. A proficient workforce would oversee the
operation of the machinery, guaranteeing the efficient transfer of bulk cargo such as coal,
grains, or minerals from ships to the port. Although manual operation can be effective, it
frequently presents difficulties such as longer processing times, higher labor expenses, and
occasional mistakes that could lead to material loss or, in more severe cases, accidents.

Yang et al. presented several technologies and obstacles involved in the automation
of equipment at seaports in the context of creating intelligent ports [6]. For example,
positioning and obstacle avoidance algorithms for automatic guided vehicles (AGV) were
proposed by Pratama et al. [7], and analysis and evaluation of the motion of steel container
cranes based on structural health monitoring was presented by Kaloop et al. [8]. To
complete the process of building smart seaports, proposals for designing automatic GTSU
systems for the transportation of raw commodities like coal or iron ore at seaports need to
be researched and developed. The automated GTSU system provides secure functioning,
providing financial advantages and diminishing carbon emissions as a result of their energy-
efficient characteristics in contrast to conventional systems. This system should leverage
cutting-edge sensor technologies, artificial intelligence, big data, and the Internet of Things.
This integration aims to substitute human tasks with a sophisticated network of sensors and
control systems. These automated components will meticulously monitor and manage the
trolley’s movements and the grab’s functionality within the port environment. However, in
order to build an effective automatic GTSU system, problems such as self-identification of
the cargo hold, determination of the coordinates of the operating point, and provision of
collision risk warning during operation must be solved.

This paper has developed AI models that utilize a LiDAR sensor and camera to
accurately detect the cargo hold, calculate work point coordinates, and develop collision
warnings for the lab-scale GTSU system. The cargo hold detection model is developed
by evaluating, filtering, and annotating cargo hold image data obtained from a camera
system in a lab-scale GTSU system. The You Only Look Once (YOLO) v3 algorithm was
selected for the development of the cargo hold detection model. During the model training
phase, design factors such as learning rate and iteration were adjusted to find the most
effective settings to improve model performance. The work point extraction model was
developed by combining LiDAR sensors and cameras to help determine the coordinates
of materials in the ship’s compartment, thereby sending this information to the control
system to perform the loading and unloading material process. This algorithm is designed
to prioritize the selection of places with abundant reserves to exploit materials. The camera
is used to determine the position of the ship’s compartment in combination with LiDAR
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sensors to measure depth and provide information about the distribution of materials
in the ship’s compartment. This helps evaluate the condition of the material and extract
the coordinates of the work point at the location containing the most material. The anti-
collision model is designed to warn of potential collisions between the grab and the cargo
hold, serving as a measure to protect the GTSU system. To minimize the potential risk
of collision during the operation of the GTSU system, this model has been applied with
camera technology and the YOLO algorithm to continuously monitor the position of the
grab and the cargo hold. Warning conditions for collision risk in the GTSU system are then
set into the model to recognize and issue warnings according to the position between the
grab and the cargo hold.

As a result, the cargo hold detection model is capable of accurately detecting the cargo
hold in real time, achieving a 96% accuracy rate during testing on a lab-scale GTSU system.
In the same way, the working point extraction model shows the capability to accurately
extract real-time working points, with a minimal error range of 5–10% when compared to
hand measurements. Ultimately, the anti-collision model has been proven to effectively
deliver real-time crash alerts with a success rate of about 90%. The findings of this study
will be utilized to create a completely automated GTSU system.

2. Design of a Cargo Hold Detection Model for the Lab-Scale GTSU System
2.1. Design of the Lab-Scale GTSU System

The lab-scale GTSU system consists of a 146 cm × 146 cm cargo hold mostly filled with
stones used to develop AI models, as shown in Figure 1. The grab and trolley mechanism of
the GTSU is both adaptable and moveable, accurately mirroring its true functionality. In this
configuration, the sensor system, consisting of cameras and LiDAR sensors, is installed in
a lab-scale system. Figure 2a and Table 1 present specific information regarding the camera’s
technological attributes, including an impressive 80-degree field of view and a QHD
resolution of 2592 × 1944 pixels. LiDAR, an acronym for ‘Light Detection and Ranging’, is
an advanced remote sensing technique that uses pulsed laser light to measure distances.
A LiDAR sensor can accumulate extensive amounts of precise data about the Earth’s
surface by emitting many laser pulses each second. The high-resolution observations are
transformed into 3D models, resulting in detailed topography maps [9]. Initially employed
primarily in the fields of geology and forestry, LiDAR has recently expanded its range
of applications to include fields such as the development of autonomous vehicles, urban
planning, and environmental monitoring. LiDAR continuously transforms the methods of
gathering and analyzing data through constant technical progress, providing an unmatched
blend of accuracy and detail. The study employs the VLP-16 LiDAR sensor, as shown
in Figure 2b, which possesses a scanning angle of 360 degrees. The device is outfitted
with 16 lasers, each offering a vertical range of vision spanning from −15 degrees to
15 degrees [10]. Table 1 provides detailed information on the specifications of the Velodyne
LiDAR VLP-16 sensor.

Table 1. Specifications of the sensor system in the lab-scale GTSU system.

Sensor Parameter Value

APC930 QHD
Webcam

Resolutions

QHD (2592 × 1944 pixels)
2K (2048 × 1536 pixels)

FHD (1920 × 1080 pixels)
HD (1280 × 720 pixels)
SD (640 × 480 pixels)

Pixel 5 megapixels

Angle of view 80 degrees

Frame 30 fps

Lens type Glass lens
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Table 1. Cont.

Sensor Parameter Value

Velodyne LiDAR
VLP-16

Number of channels 16 channels

Measurement range 100 m

Range accuracy Up to ±3 cm (typical)

Field of view (vertical) +15.0 degrees to −15.0 degrees

Angular resolution (vertical) 2.0 degrees

Field of view (horizontal) 360 degrees

Angular resolution
(horizontal/azimuth) 0.1 degree to 0.4 degree

Rotation rate 5 Hz–20 Hz

Laser wave length 903 nm
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2.2. Collection and Data Processing of the Cargo Hold Image

The grab operation of the GTSU system undergoes distinct stages, and the transition
toward automation and intelligence involves overcoming various challenges. Initially,
accurately detecting and locating materials is challenging due to variations in forms and
sizes and the presence of obstructions. Transitioning to the gripping planning stage,
challenges encompass securely holding objects with irregular shapes, preventing harm, and
ensuring a dependable grip. Implementing sophisticated algorithms and adaptive grasping
mechanisms is crucial. The lifting and transporting materials stage introduces challenges
related to payload weight, stability, and safe lifting practices. Safe and effective navigation
requires that obstacle avoidance be paid the utmost importance. Challenges encompass
detecting planning paths and implementing procedures to avoid collisions in real time. The
drop-off or placement stage entails meticulous positioning, ensuring avoidance of collisions
during release, and responding to alterations in the destination environment. To design
an automatic GTSU system, the initial step is to determine the specific cargo hold where
supplies are housed for loading and unloading. Hence, the cargo hold detection model was
developed by employing vision AI technologies, object identification models, and image
processing. To create and train the cargo hold detection model, a dataset comprising sample
images of cargo holds and their corresponding labels was required. The provided images
were obtained by a camera system that captured the cargo compartment of the lab-scale
GTSU system. Figure 3 displays a subset of these photographs, whereas the complete
dataset consists of approximately 570 images captured by the laboratory’s camera system.
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Figure 3. Sample image of the cargo hold.

The provided photos underwent analysis and filtration, employing various approaches
to produce additional image data about the cargo hold. Data augmentation is a widely
used technique in computer vision to prevent deep learning models from overfitting [11].
Figure 4b–d showcase various data augmentation techniques employed in computer vi-
sion, including flipping, color manipulation, and cropping. Following the completion of
data augmentation processing, it is necessary to assign labels to these data. The authors
employed labelImg, a tool for image annotation, to assign labels to data [12]. Afterward,
the dataset was divided into training and testing sets for the cargo hold recognition model.
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2.3. Design of a Cargo Hold Detection Process

The construction of the cargo hold recognition model involved the utilization of
example photos from the cargo hold dataset and a specialized detection technique. The
advancement of computer hardware, particularly GPUs, has expedited the computational
advancements of deep learning models. This has played a crucial role in the development of
object detection algorithms in the domain of computer vision [13]. Deep learning employs
two primary approaches for target detection: the two-stage detection method and the
one-stage detection method. The two-stage approach, sometimes referred to as the area-
based method, comprises two primary stages. In the initial phase, region suggestions are
generated using algorithms such as Selective Search or Region Proposal Networks (RPN).
In the subsequent phase, the features of the area proposals from the first stage are extracted
for classification and regression [14]. The accuracy of this method in object detection tasks is
often higher compared to the single-stage method. Nevertheless, the process of identifying
objects is time consuming due to the method’s requirement of calculating and processing
additional information.

The second method is referred to as the one-stage detection approach. The popularity
of this computer vision technique has increased since it prioritizes real-time efficiency while
maintaining a high level of accuracy. One-stage detectors differ from two-stage approaches
in that they immediately and concurrently anticipate the object class and bounding box
coordinates without the need for region proposal and subsequent classification. This
eliminates the intermediate stage of region suggestion, hence accelerating the detection
procedure. This technique is shown by notable algorithms such as You Only Look Once
(YOLO) and the Single Shot MultiBox Detector (SSD). The methods in question efficiently
and comprehensively gather a large number of candidate bounding boxes from feature
maps, covering a wide range of sizes and aspect ratios [15]. By doing this, they effectively
manage objects of various sizes within photos. Although one-stage detectors may have
slightly lower accuracy compared to certain two-stage detectors, they are preferred in
situations where real-time processing is crucial, such as autonomous driving and video
surveillance, because of their fast inference capabilities. One-stage detection algorithms
provide a favorable trade-off between speed and accuracy in object detection tasks. Figure 5
displays the relationship between the speed (measured in milliseconds) and accuracy
(measured by average precision) of the object detection method on the Common Objects
in Context (COCO) dataset [16]. The YOLOv3 method showcases exceptional accuracy
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and remarkably swift real-time object identification speed, surpassing existing object
detection algorithms.
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The YOLOv3 algorithm, a third version of the initial YOLO algorithm, introduced
numerous improvements. Initially, it utilized the Darknet-53 architecture, which is a more
complex neural network that led to enhanced feature extraction, thus enhancing accu-
racy [17]. Furthermore, YOLOv3 implemented three distinct detection scales, thereby
mitigating one of the initial model’s limitations in recognizing smaller objects. The model
accomplished this by employing three different sizes of anchor boxes at each detection scale,
enhancing its ability to identify objects with different dimensions. In addition, YOLOv3
enhanced the class prediction method by utilizing separate logistic classifiers instead of
relying on Softmax. This allows for the identification of several object categories within
a single bounding box. The YOLOv3 algorithm has improved upon its predecessor by not
only maintaining real-time detection capabilities, but also greatly increasing accuracy. As
a result, it is now considered one of the most efficient object detection algorithms in the
current AI field.

The YOLOv3 model’s architecture is illustrated in Figure 6, employing the Darknet-
53 framework. The design comprises 53 convolutional layers, which enable enhanced
feature extraction by using the integration of YOLOv2, Darknet-19, and ResNet. The
primary elements of YOLOv3’s architecture consist of 1 × 1 and 3 × 3 convolution kernels
accompanied by ResNet-inspired skip connections [18]. Figure 7 illustrates the primary
steps of the YOLOv3 algorithm as it is used to detect cargo holds. The algorithm will
partition the image into SxS grids. Every grid will forecast the positions of bounding boxes
and the likelihood of different categories. Ultimately, the system generates a conclusive
prediction to ascertain the cargo hold [19].
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Therefore, in order to meet the requirement for quick and accurate identification
of ship compartments in real time, the authors chose to employ the YOLOv3 algorithm
for this research. Figure 8 depicts the main stages of the YOLOv3 model development
process for object detection. The YOLOv3 method utilizes both the cargo hold image
and its corresponding labeling data as inputs for the detection procedure. The input data
for this algorithm were generated by the collection and analysis of sample image data
from the cargo hold. Table 2 provides a detailed overview of the specific parameters and
the corresponding values that were used to configure the environment of the cargo hold
detection model. The YOLOv3 model was trained using Google Colab.
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Table 2. Configurations of the cargo hold detection model environment.

Hyper Parameter Value

Learning rate 0.001
Iterations 2000

Number of classes 1
Optimizer Adam
Activation Linear, Leaky
Filter size [64, 128, 256, 512, 1024]

Mask 0–8
Decay 0.0005

2.4. Accuracy Evaluation of a Cargo Hold Detection Model

Intersection over Union (IOU) is a crucial metric in computer vision, specifically in
object detection tasks, that is used to assess the accuracy of predictions. The Intersection
over Union (IOU) metric measures the degree of overlap between the predicted bounding
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box and the ground truth bounding box. It provides valuable information on the accuracy of
a model’s object detection by assessing how well the anticipated location coincides with the
actual location of the object [19]. To calculate the IOU, the initial step involves determining
the intersection area between the two bounding boxes. This value is then divided by the
size of their union. The IOU value is mathematically derived using Equation (1).

IOU = Area of Intersection
Area of Union (1)

Figure 9 provides a more comprehensive explanation of the process for calculating
the IOU value. The resulting value falls within the range of 0 to 1. A score of 1 signifies
a complete overlap or correspondence, indicating that the predicted bounding box and the
ground truth bounding box are exactly the same. On the other hand, a score of 0 signifies
that there is no overlap.
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Within several object detection frameworks and challenges, such as the PASCAL VOC
or MS COCO, it is common to establish the IOU threshold at 0.5 [20]. If the IOU value
between a predicted bounding box and the ground truth is 0.5 or higher, the forecast
is generally deemed accurate. However, in more rigorous applications or benchmarks,
elevated thresholds may be employed. Hence, the target of the IOU threshold score in this
study is 0.75. Figure 10 illustrates the progression of IOU over the training period of the
cargo hold identification model.
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In addition, the loss function quantifies the discrepancy between the anticipated value
generated by the network and the true value of the output. It is employed to evaluate the
accuracy of the model’s predictions. YOLOv3 implements a change in its methodology for
classification, deviating from previous iterations that utilized mutually exclusive labels.
Instead, it employs the approach of multi-label classification. Within this framework,
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a logistic classifier is utilized to calculate feature scores for every bounding box. YOLOv3
differs from previous versions by utilizing binary cross-entropy loss for classification during
training, instead of the mean square error commonly used in earlier iterations [19]. The loss
function utilized in the parameter optimization of YOLOv3 is mathematically represented
as Equation (2) [19].

L(sn) =

{
−log(sn), gn = 1
−log(1 − sn), gn = 0

(2)

where n is the sample index, sn is the objectness score predicted by the network, and gn is
the ground truth.

Figure 11 displays the loss function value of the training model after 2000 iterations in
total. In the initial iterations, the loss value is significantly high, as depicted in Figure 11a.
This is attributed to the early stages of the training model, where it is just beginning to learn
and identify objects from the dataset. From iteration 300 onwards, there was a substantial
improvement in the model’s performance. After approximately 2000 iterations, the loss
value of the trained model was around 0.04, as illustrated in Figure 11b.
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Furthermore, the confusion matrix is an essential evaluation tool that clarifies the
performance of image classification algorithms in the field of vision AI. The matrix presents
the anticipated and real categorizations of datasets in a tabular format, facilitating a distinct
comparison between them [21]. It not only offers an understanding of accurate predictions,
but also emphasizes cases where the algorithm may mistake one category for another.
A confusion matrix assists developers in enhancing and upgrading their vision AI models
for improved accuracy and effectiveness by visually representing both misclassifications
and successful detections. The structure of the confusion matrix is shown in Figure 12.
This matrix contains four parameters. A True Positive (TP) result occurs when the model
correctly predicts an image as a cargo hold when it is indeed a cargo hold. If the model
incorrectly predicts that a picture is a cargo hold when it is not, this is known as a False
Positive (FP) result. A False Negative (FN) result occurs when the model predicts a different
class than the cargo hold for this category. A True Negative (TN) result refers to correct
predictions by the model that something is not a cargo hold.
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The matrix provides a direct means of deriving key metrics, such as precision and
recall. Precision is a quantitative measure of the accuracy of cargo hold predictions, namely
the proportion of predictions that are genuinely true. This value is calculated as shown
Equation (3) [22].

Precision = TP
TP+FP (3)

Recall = TP
TP+FN (4)

APclass =
∫ 1

0 P(R)dR (5)

mAP = ∑ APclass
nclass

(6)

The recall value, calculated using Equation (4), measures the proportion that indicates
the probability of the model accurately categorizing a picture as a cargo hold when it is
actually a cargo hold. The Average Precision (AP) value is calculated by the area under the
precision–recall curve that is followed by Equation (5) [22]. The Mean Average Precision
(mAP) value is commonly used to quantify the outcomes of multi-category detection [23].
It is calculated as the average of the AP scores identified in Equation (6).

Table 3 presents comprehensive performance outcomes of cargo hold detection when
evaluating the model using 90 photos. The results demonstrate that the trained model has
effective performance, with an accuracy rate of around 96% for the detection of cargo holds.

Table 3. Performance of the cargo hold detection model.

Parameter Value

Number of testing images 90
Precision (%) 98

Recall (%) 98
F1 score (%) 98

Mean Average Precision (%) 95.6

2.5. Result and Discussion of a Cargo Hold Detection Model

Following the training of the YOLOv3 model, the authors proceeded to utilize the
cargo hold picture data for testing purposes. Ultimately, the model was utilized to identify
cargo compartments in the laboratory prototype of the vessel. The findings depicted in
Figure 13 illustrate the exceptional efficacy of the YOLOv3 model, specifically its capacity
to precisely identify cargo holds in real time.
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The authors present a framework for identifying cargo compartments, which is essen-
tial for developing a fully automated GTSU system in seaports. After undergoing training
and evaluation, the YOLOv3 technique has demonstrated its exceptional ability and superi-
ority in accurately detecting cargo holds in real time. The utilization of the YOLOv3 model
assists the authors in precisely determining the location of cargo holds, which facilitates
the development of a recognition system for a fully automated GTSU configuration.

3. Design of a Working Point Extraction Model for the Lab-Scale GTSU System
3.1. Analysis and Data Processing of Point Cloud Data

In addition to a cargo hold detection system, the creation of an operational point
determination system for an automatic GTSU is a crucial undertaking in contemporary
seaport operations. The Programmable Logic Controller (PLC) system calculates and
manages the position of the trolley and grab for material loading and unloading. This
ensures that the GTSU runs with maximum efficiency and accuracy. The system optimizes
efficiency by automating the identification of the working location, reducing human error,
accelerating the cargo transfer procedure, and improving overall production. By integrating
cutting-edge technology like sensors and AI algorithms, this system can evaluate situations
in real time and adapt the operations of the GTSU in dynamic contexts. A well-calibrated
working point determination system is crucial for the smooth automation of the complete
GTSU operation. Thus, in order to develop a functional point extraction model, the authors
employed a LiDAR sensor to perform a scan of the material area. The data obtained from
the LiDAR sensor consisted of point clouds, as depicted in Figure 14. A point cloud refers
to a set of data points that exist in space. Point clouds are commonly utilized in computer
graphics, computer vision, and geospatial sciences [24]. These points generally depict
the outer surfaces of things, offering a three-dimensional representation. Point clouds,
which are essential for creating digital 3D models of real-world settings or objects, are
produced through the use of 3D scanners or photogrammetry tools that analyze aerial
photos. Consequently, this can facilitate the provision of information regarding the state of
materials in the ship’s hold.
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Figure 14. Point cloud data.

Point cloud processing employs algorithms and software tools to analyze, enhance,
and modify these extensive datasets. This processing encompasses various activities,
including noise filtration, point cloud alignment, segmentation into distinct categories, and
conversion into alternative formats. With the advancement of technology, the processing of
point clouds is becoming increasingly efficient, allowing professionals in various industries
to utilize detailed geographical data in creative ways. This study involves the collection of
point cloud data and their conversion to identify the status of the raw material area. This
process aids in the development of a workable point extraction mode for building purposes.

3.2. Design of a Working Point Extraction Model Using the Camera and LiDAR Sensor

The working point extraction model was created by utilizing the cargo hold detection
model, which relies on cameras and point cloud data obtained from LiDAR sensors. Initially,
the authors employed Python to decipher the LiDAR sensor, enabling the extraction of
point cloud data. By decoding the data, it becomes possible to provide ongoing updates
on the condition of materials within the ship’s compartment using real-time point cloud
data. After extracting the point cloud data, it is crucial to convert these point picture
values into numerical values. Simultaneously, the authors utilized the cargo hold detection
model to identify specific regions where materials were located, establishing criteria to
isolate point cloud data that contain information about the material zone. The alignment
of the LiDAR sensor and the camera is then calibrated. Using this calibration, the authors
determine the condition of the material. The working point refers to the nearest point of
proximity between the LiDAR sensor and the substance. Figure 15 illustrates the procedure
for determining the operating point of the GTSU system.
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3.3. Results and Discussion of a Working Point Extraction Model

The authors evaluated the working point extraction model on the lab-scale GTSU sys-
tem. The outcomes indicate that the model adeptly identifies the material area’s coordinate
position and the working point, as shown in Figure 16. The LiDAR sensor was used to
capture point cloud data, as depicted in Figure 16a. The goal was to ascertain the coor-
dinates of the operational location inside the designated raw material region. Figure 16b
presents a two-dimensional graphic that visually represents the material zone in a storage
compartment. The image consists of paper boxes and stones placed in a way that simulates
the distribution of materials. The designated operational location for the GTSU system is
positioned at the highest point of a paper box. After applying the point extraction model,
the coordinates of point clouds, material areas, and working points are separated and
retrieved, as shown in Figure 16c. Figure 16d presents the coordinate data for the raw
material region and working coordinates, which are obtained from the point cloud. The
working point coordinate is the red point. Table 4 displays the coordinates of the working
point obtained from the model, which were compared with measurements taken using
a ruler. The error of this model is about 5–10% when compared with manual measurements.
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Table 4. The coordinate of the working point.

Coordinate of the Working Point LiDAR Ruler

X (cm) 13.7 12.8
Y (cm) 274 270
Z (cm) −24 −21.5

In addition, experiments were conducted to assess the model’s effectiveness in de-
termining operational conditions for the GTSU system when the cargo hold shifts due
to underwater currents, changes in cargo load, or other external variables, as depicted
in Figure 17. The results indicate that the model is capable of accurately determining
the working point, even in cases where the cargo compartment is displaced from its
original position.
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Figure 18 displays the extracted working point coordinates after shifting the lab-
scale cargo hold from its initial position. Figure 18a,b present the point cloud data of the
cargo hold at the starting position and the coordinates of the working point and material
area, respectively. Nevertheless, in practical scenarios, the location of the cargo hold can
be altered by substantial oceanic waves. The authors relocated the lab-scale cargo hold
model to a different position, as shown by the data point cloud in Figure 18c. Once the
products have been relocated, the point extraction model may still accurately determine
the coordinates of the working point and the material area, as depicted in Figure 18d. The
information about the x, y, and z coordinate values of the working point was extracted at
the old position of the cargo hold and the new position of the cargo hold due to the impact
of environmental factors, as described in Table 5.

Compared to iSAM’s system [25], our system leverages AI and combines the camera
and LiDAR sensor to determine the operating area. This enables an automated operational
solution through intelligent learning. Similarly, Tessa V van Kol et al. provide information
about an intelligent grabbing system that refers to the system of Bewley et al. [26,27]. Their
system is used to calculate the load volume in the bucket using point cloud data and
the iterative closest point algorithm. It is important to note that this system is designed
for open shell buckets, catering to mining operations at mines. The design of open shell
buckets differs from that of grabs with a closed opening and closing mechanism in the
GTSU system. Therefore, the effectiveness of their method has not been confirmed for the
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GTSU system. In another piece of research, M. Javad Mohajeri et al. proposed a study
titled ‘A Validated Co-simulation of Grab and Moist Iron Ore Cargo: Replicating the
Cohesive and Stress-history Dependent Behavior of Bulk Solids’ [28]. In their study, the
researchers utilized point cloud data to capture the surface of bulk material, employing the
Screened Poisson Surface Reconstruction method developed by Michael Kazhdan et al. [29].
However, their method faces challenges in choosing the optimal screening threshold, which
involves a trade-off between fidelity and noise reduction. It is also sensitive to the quality
of input, necessitating preprocessing, and involves expensive computations, especially
when dealing with large point cloud datasets.
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Figure 18. Results of extracting the coordinate of the working point: (a) point cloud data at the
old position; (b) the coordinates of materials and the working point at the old position; (c) point
cloud data for the new position; (d) coordinates of material zones and the working point for the
new position.

Table 5. The coordinate of the working point when the cargo hold moves.

Coordinate of the Working Point Old Position of Cargo Hold New Position of Cargo Hold

X (cm) 61.3 26.3
Y (cm) 276 278
Z (cm) −14.8 −24.5

In the authors’ system, the AI solution self-identifies and provides information about
working coordinates for grabs equipped with opening and closing mechanisms to load
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and unload goods based on material density in ship compartments. Additionally, the
system continuously monitors the ship’s compartment position, offering information about
material coordinates even if the ship’s compartment is moved from its original position.
Therefore, the working point extraction model was implemented to automate the deter-
mination of working point coordinates within the cargo hold, streamlining the material
loading and unloading processes for the automatic GTSU system.

4. Design of an Anti-Collision Notification Model for the Lab-Scale GTSU System
4.1. Collection and Data Processing of the Cargo Hold and the Grab Image

Camera-based anti-collision systems represent a notable advancement in enhancing
safety and operational effectiveness in several industries. The technology employs sophis-
ticated image processing algorithms to promptly identify potential obstructions or risks,
enabling fast actions to avert accidents. Especially in the automotive and industrial fields,
these camera-based systems are included to continuously observe the environment and
offer immediate input to operators or autonomous systems. By utilizing sophisticated
analytics, the system can differentiate between stationary and moving objects and adapt its
response accordingly. The ongoing technological advancements are anticipated to signif-
icantly improve the accuracy, velocity, and dependability of camera-based anti-collision
systems. This will result in a safer environment in various settings, including industrial
and everyday situations. Figure 19 illustrates a forklift anti-collision system that utilizes
camera technology. The system will provide a warning if it detects a potential collision
between the forklift and an object by creating a designated warning zone and utilizing
camera technology to identify objects.
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As seaports witness a rise in cargo activity, it becomes crucial to prioritize the safety of
equipment, cargo, and workers. The GTSU system, which is accountable for the effective
transportation of materials, needs to function flawlessly in the face of numerous potential
hindrances and difficulties. A reliable collision avoidance system guarantees that the GTSU
can carry out its duties without any harm or interruptions. The GTSU is equipped with real-
time spatial awareness technology, which allows it to navigate complicated surroundings.
This technology reduces downtime and greatly minimizes the chance of costly equipment
damage or safety accidents. This proactive strategy not only protects assets, but also
enhances operational efficiency and dependability. Hence, the incorporation of an anti-
collision system is crucial in the advancement of an automated GTSU system. Figure 20
depicts the design idea of a collision avoidance system for the GTSU system, which is
designed to prevent collisions between the grab and the cargo hold by utilizing camera
technology. This concept proposes the utilization of cameras to detect both the grab location
and the storage area for goods. Upon detecting a certain situation, conditions and warning
zones are formed to proactively anticipate probable crashes.

This study utilizes a dataset including example photographs of both the grab and the
cargo hold. These photographs were captured utilizing a camera system that records images
from a lab-scale GTSU system. Figure 21 displays a sample of picture data depicting the
grab and cargo hold. The labelImg tool was utilized to process, filter, and label these photos.
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Figure 21. Sample images of the cargo hold and the grab.

4.2. Design of an Anti-Collision Notification Model Process

Similar to the process of designing a cargo hold detection model, the anti-collision alert
system was created by utilizing sample images of the cargo hold and grab together with
the YOLOv3 methodology. The photos were collected and labeled using an annotation tool.
Table 6 displays the parameters and settings employed in the environment of the YOLOv3
model. The training of this model took place on Google Colab. Ultimately, preventative
measures were installed to detect possible conflicts between the cargo hold and the grab in
the lab-scale GTSU system.

Table 6. Parameters of the anti-collision model environment.

Hyper Parameter Value

Learning rate 0.001
Iterations 4000

Number of classes 2
Optimizer Adam
Activation Linear, Leaky
Filter size [64, 128, 256, 512, 1024]

Mask 0–8
Decay 0.0005
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The YOLOv3 model underwent training for a total of 4000 iterations. In this step, the
IOU value was utilized to quantify the degree of overlap between the actual and predicted
bounding boxes. A higher IOU value indicates improved accuracy in model detection. The
progression of IOU throughout the training is illustrated in Figure 22. Furthermore, in order
to assess the efficiency of the cargo hold detecting model, the loss function was computed.
The loss was roughly 0.07, as depicted in Figure 23. Additionally, the performance of the
trained model in identifying the grab and cargo hold was evaluated using an image dataset,
achieving an accuracy of 90%, as shown in Table 7.
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Table 7. Performance of the anti-collision notification model.

Parameter Value

Number of testing images 135
Precision (%) 94

Recall (%) 93
F1 score (%) 93.5

Mean Average Precision (%) 90

4.3. Results and Discussion of an Anti-Collision Notification Model

The anti-collision notification mechanism was utilized to identify collisions between
the grab and the cargo hold in the lab-scale GTSU system. Real-time data generated by the
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camera were then processed by a central control unit. This unit employed algorithms to
analyze incoming data, identifying potential collision risks and assessing spatial relation-
ships between the cargo hold and grab. The efficiency of this processing is critical, directly
impacting the system’s ability to provide timely warnings or take preventive actions. When
a potential collision threat is detected, the anti-collision system engages in a series of actions
aimed at avoiding or mitigating the impact. Figure 24 illustrates the model’s ability to
accurately identify the location of both the grab and the cargo hold, detecting potential
collision risks. The model monitors the location of the cargo hold and grab and then
issues warnings based on predetermined criteria. If the grab position is located outside
the working area during GTSU operation, the system triggers visual and auditory alerts to
GTSU operators, providing crucial information for corrective actions. Alternatively, it can
send signals to the control system to verify information and regulate the grab to a secure
operational location. The goal is to ensure that equipment operates harmoniously, avoiding
collisions that could result in damage to cargo and equipment or pose risks to personnel.
Therefore, the significance of the anti-collision system in seaport cargo handling opera-
tions is paramount. Beyond preventing accidents, it enhances operational efficiency by
facilitating the seamless flow of cargo. The system minimizes downtime due to collisions,
reducing the risk of delays and ensuring goods are handled in a timely and secure manner.
This efficiency leads to reduced costs and a general enhancement in the productivity of the
port. Hence, this model will play a crucial role in advancing automated GTSU systems in
the future.
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5. Conclusions

The authors of this study designed three AI models to design an automated lab-scale
GTSU system. These models include the identification of cargo holds, the extraction of
working points, and the anti-collision model. The cargo hold detection model excels at
promptly identifying and pinpointing the location of cargo holds in real time. The image
data of cargo holds, obtained from the lab-scale GTSU system using a camera system,
are subjected to analysis, filtration, and annotation. The YOLOv3 method is crucial in
determining the structure of the cargo hold identification model. During the training
phase of the model, different parameters that affect performance, such as learning rate and
iterations, were adjusted to determine the best values. After 2000 iterations, the trained
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model had a loss function value of about 0.04. By employing a careful methodology,
the precision, recall, and F1 score values all reached 98%, demonstrating the excellent
performance of the training model. The model also achieved an accuracy rate of 96%,
thereby facilitating the instantaneous identification of cargo holds.

The working point extraction model, which combines camera and LiDAR sensor
technologies, is highly effective in accurately identifying material locations and relaying
these data to the central control system. The algorithm of the system thereafter assigns
priority to regions with ample reserves to extract materials. By using camera data to initially
locate materials, the LiDAR sensor then measures the depth of the materials, allowing
for an evaluation of their states and the development of accurate coordinates for working
points. When tested on the lab-scale GTSU system, this model exhibited its effectiveness in
extracting real-time working points, with a marginal error range of 5 to 10% compared to
ruler measurements.

The third type focuses on anti-collision notifications between the grab and cargo hold,
serving as a protective barrier for the GTSU system. This device utilizes camera technology
and the YOLO algorithm to continuously monitor the positions of the grab and cargo
hold to mitigate the inherent danger of collisions during GTSU operations. Embedded
inside are pre-established conditions that indicate probable collisions, enabling prompt
identification and alerting of collision hazards. Through 4000 iterations, the trained model
had a loss function value of about 0.07. The performance evaluation values of the anti-
collision notification model, namely precision, recall, and F1 score, were 94%, 93%, and
93.5%, respectively. Empirical experiments conducted on the lab-scale GTSU system have
confirmed its potential to deliver real-time collision alerts with a success rate of 90%.

Overall, the experimental results obtained from the lab-scale GTSU system provide
strong evidence of the impressive effectiveness and accuracy of the three proposed models.
These groundbreaking ideas show potential for future incorporation into GTSU systems,
potentially leading the advancement of automated control systems in maritime logistics.
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