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Abstract: This study utilized 50 laboratory experiments to document the evolution of coral beaches
under varying regular wave conditions, including five distinct wave periods and ten wave heights.
Both the type of equilibrium beach and the shape of sand bars were used to represent beach evolution.
The evolution of coral sand beaches was then compared to quartz sand beaches. The experimental
results show that the predicted (modeled) equilibrium profile of a quartz sand beach was not
applicable to coral sand beaches. Compared to sand bars on quartz sand beaches, the distance from
bar crests to the beach berm in coral sand beaches was greater, whereas the erosional depth of sand
troughs was deeper. However, the grain size distribution of sand associated with the coral sand
beach under wave action was consistent with Celikoglu’s law. Both an equilibrium beach profile
classification model and a sand bar shape prediction model for coral sand beaches were developed
based on the experimental data.

Keywords: reef islands; coral sand beach; equilibrium beach profile; coral sand bar

1. Introduction

Coral reef islands form through the accumulation of reef-derived carbonate sediment
(i.e., debris from coral and other marine organism) of sand size (referred to herein as coral
sand) [1] on coral reef platforms by wave and current processes [2,3] (Figure 1). Reefs
and reef islands support important social and ecological systems. For example, coral reefs
serve as natural breakwaters [4] and provide economic services by allowing for urban
development [5] and tourism [6]. According to a recent global survey [7], coral reefs
generate USD 11.5 billion per year in tourism revenues and USD 6.8 million per year in
fisheries revenues and provide USD 10.7 billion in shoreline protection. However, exactly
how islands and the communities that inhabit them will respond over the next century
is still unclear, particularly given the potential sea-level rises (SLR) initiated by global
warming [8].

According to projections by Slangen et al. [9] and Kopp et al. [10], the global sea
level will increase by over 2 m by 2100. The rate of SLR is projected to exceed the rate of
vertical accretion of coral reef platforms (Figure 1) [11]. As a result, the hydrodynamic
conditions of reef flats will change, affecting the entire coral reef island [12]. Previous
studies have concluded that without any human armoring of shorelines, these reefs will
become uninhabitable, forcing people to migrate [13]. However, a survey of 709 atoll
islands in the Pacific and Indian Oceans showed that 73.1% of the reef islands have been
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stable in size over the past few decades; 15.5% and 11.4% had increased or decreased in
size, respectively [14]. Thus, these recent studies [15,16] indicate that coral reef islands are
morphodynamically resilient landforms and that the risk of inundation as a result of SLR is
(and will be) countered by adjustments in the morphology of ocean and lagoonal beaches
(Figure 1: num 4 and 7) associated with the coral reef islands. This natural adaptation of the
reef islands suggests that new predictions of the future trajectory of coral island beaches in
response to the impacts of SLR are needed [16].
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Figure 1. Conceptual diagram of the coral reef ecosystem. The red dashed area represents the research
area in this paper. Reproduced from Duvat et al. [14].

Masselink et al. [16] argue that coral reef islands need to be considered as a separate
type of island beach because of their different morphological characteristics. Therefore, a
recent trend is to quantify the responses of sandy beaches associated with coral islands to
varying hydrodynamic conditions. Unlike coral sand beaches, quartz sand beaches have
been extensively studied, and a series of empirical formulas have been proposed through
quantitative analyses to provide guidance for marine engineering projects [17–21].

Quartz sand beach evolution experiments, in which they are subjected to the continu-
ous action of waves, show that beach profiles develop an equilibrium state, referred to as
the equilibrium beach profile. A large number of studies have analyzed the morphology of
balanced beaches and constructed functions to describe them [19,20,22]. Recently, Marini
et al. [23,24] extended Dean’s model [19] to beaches of any profile in the presence or absence
of submerged breakwaters/bars. In addition, the transport patterns of quartz sand have
been analyzed using laboratory experiments and field surveys [17,25,26], allowing for
the classification of balanced shorelines on the basis of scouring and siltation [22,27,28].
Researchers have found from these studies that the presence of sand dams protects the
coast [29]. This has led scholars to study the morphological parameters [30], formation
theories [31], and movement trends of sandbars [32].

An interesting question arises as to whether the theoretical and empirical formulas
developed for quartz sand beaches can be directly applied to coral sand beaches. The same
problem arises with respect to the settling of coral sand particles [33], their threshold of
motion [34,35], and their subsequent dispersion [36]. These findings suggest that coral sand
particles, due to their special bio-skeletal structure and density, deviate significantly from
the values calculated for these parameters using predictive models for quartz sand.

For this study, wave flume experiments were conducted in which a coral sand beach
was subjected to varying regular wave conditions to assess differences in how quartz and
coral sand beaches respond to wave conditions. It provides a new set of experimental data
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on the evolution of coral sand beaches. The evolution of the beach with respect to wave
conditions was characterized on the basis of its classified equilibrium beach profile and sand
bar morphology, both of which were compared to the evolution of quartz sand beaches.
The distribution of coral sand grain sizes during beach evolution was also investigated.
The experimental data were ultimately used to modify the equations for an equilibrium
shoreline classification prediction model developed by Sunamura and Horikawa [28] and
the prediction equations for bar parameters by Günaydın and Kabdaşlı [30].

2. Methodology

Since the 1940s, many researchers have investigated the morphology and evolution
of shoreline profiles using experimental approaches and field measurements. The most
widely used method of classifying equilibrium beach profiles was proposed by Sunamura
and Horikawa [28]. As shown in Figure 2, they suggest that any beach profile can be
classified into three types: (1) type A profiles, which are associated with storm or winter
beaches that form erosional bars in the direction of the sea, (2) type B profiles, which are
found on transitional beaches (the shoreline advances and sand piles up offshore), and
(3) type C profiles, which are found on summer beaches (the shoreline progrades and no
sand deposition takes place offshore). In this study, we refer to Type A as an erosional
beach, Type B as a transient beach, and Type C as a depositional beach.
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Figure 2. Classification of equilibrium beach profiles (after Sunamura and Horikawa [28]). The brown
dashed line bit the initial beach profile, the brown solid line is the profile when the beach reaches
equilibrium under wave action, the blue solid line is the still-water level, and the black arrow is the
direction of sediment movement.

In the study of Sunamura and Horikawa [28], parameters that may control the motion
of oblique particle clouds dictate the type of beach profile, and can be expressed by:

Type of equilibrium beach profiles = f (H, L, D50, β) (1)

where H is the wave height in the deep sea, L is the wavelength in the deep sea, D50
is the mean diameter of sediment particles, and β is the foreshore slope. Furthermore,
Sunamura and Horikawa [28] argue that the dimensionless parameters can be defined as
H/L, D50/L, and tanβ; these parameters can be used to develop a predictive model for the
classification of equilibrium beach profiles (Table 1). Based on the results of Sunamura
and Horikawa [28], Xu [37] proposed a relationship (Equation (2)) between the dimen-
sionless parameter containing the settling velocity and the classification of the shoreline
profile. Parameters used to characterise sediment movement contain, in addition to the
median particle size, D50, the settling velocity of the particles, ω. This relationship can be
expressed as:
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Type of equilibrium beach profiles = f

(
H
l

,

√
gH
ω

,
gHT

v
,

√
gHT
d

, tan β

)
(2)

where g is the constant of gravitational acceleration, ν is the kinematic fluid viscosity, H/L is
the wave steepness, (gH)0.5/ω is the relative strength of wave action on the particle, gHT/ν

is the same as the Reynolds number in dimension ( gHT
ν ∼ uL

ν ), and
√

gHT
d is the relative

roughness at the sediment bed. Based on the findings of Jonsson [38], Xu [37] combined gHT
ν

and
√

gHT
d , which represents the bed friction coefficient under wave conditions. Wu [39]

believes that the impinging jet formed by the plunging waves is the main driving force
for sediment transport initiation. Thus, as shown in Table 1, he added wave breaking
parameters (ξ = tan β

(H/L)0.5 ) to the equilibrium beach profile classification model.

Table 1. Most used classification models for equilibrium quartz sand beach profiles.

Ref. Erosional Beach Transient Beach Depositional Beach Equation No.

Sunamura
(1975) [28] (H/L)(D50/L)−0.67(tan β)0.27 > 8

4 <
(H/L)(D50/L)−0.67(tan β)0.27 < 8 (H/L)(D50/L)−0.67(tan β)0.27 < 4 (3)

Xu
(1988) [37]

( H
L
)0.5
(√

gH
ω

)
( fw + tan β) > 0.29

( H
L
)0.5
(√

gH
ω

)
( fw + tan β) < 0.29 0.22 <

( H
L
)0.5
(√

gH
ω

)
( fw + tan β)

< 0.35
(4)

Wu
(2014) [39]

ξ > 0.556 (gH)0.5

ω ( fw + tan β) ξ < 0.556 (gH)0.5

ω ( fw + tan β) 0.394 (gH)0.5

ω ( fw + tan β) ≤ ξ

≤ 0.867 (gH)0.5

ω ( fw + tan β)
(5)

For an erosional profile, the sand bar is subjected to coupled hydrodynamic and
sediment transport processes which change its shape. In order to further investigate the
effect of waves on the shape of sand bars, researchers began to define the shape of sand
dams. The most common way to define a sand dam is shown in Figure 3. The geometric
characteristics of a sand bar are defined by the distance from the equilibrium point to the
original point (Xbe); the water depth at the equilibrium point (hbe); the distance from the
crest point to the original point (Xbc); the water depth at the crest point (hbc); the distance
from the closure point to the crest point (Xbd); and the water depth at the closure point
(hbd). In this paper, we do not consider the effect of coral sand grain size on coral sand
bars; thus, we only compare the models of Silvester and Hsu [40] as well as Günaydın and
Kabdaşlı [30] (Table 2).
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Table 2. Currently used equations for the determination of bar parameters.

Location Geometric Parameters Silvester and Hsu [40] Equation No.

Equilibrium point Xbe Xbe/L0 = 0.96(H/L)/ tan β (6)
hbe \

Bar crest
Xbc

Xbc/L0 = 0.022 + 1.508
(

H
L

)
/

tan β + 0.14
[(

H
L

)
/ tan β

]2
(7)

hbc hbc/(L tan β) = 0.0269 + 0.391Xbc/L (8)

Closure
point

Xbd \
hbd \

Location Geometric Parameters Günaydın and Kabdaşlı [30] EquationNo.

Equilibrium point Xbe Xbe/L = 113.98
(
tan β

√
H/L

)1.9762 (9)

hbe hbe/L = 11.87
[
tan β(H/L)0.5

]1.7626 (10)

Bar crest
Xbc Xbc/L = 64.966

(
tan β

√
H/L

)1.6754 (11)
hbc hbc/L = 3.2041

(
tan β

√
H/L

)1.413 (12)

Closure
point

Xbd Xbd/L = 1.4843(hbd/Xbd)
0.91 (13)

hbd hbd/L = 102.33
[
tan β(H/L)0.5

]1.1813
(14)

3. Experimental Setup

All experiments were conducted in a glass-walled wave flume in the hydraulics
laboratory at the Changsha University of Science and Technology, China. The wave flume
is 40.0 m long, 0.5 m wide, and 0.8 m high. A piston-type wave generator was installed at
one end of the flume, and a coral sand beach was constructed in the wave flume with its
toe 22.0 m away from the wave generator.

Coral sand particles from the South China Sea were used to create the coral sand beach
profile (Figure 1). This carbonate sand consists mainly of coral (95%) and the remains of
nearby organisms (e.g., gastropods and bivalves; 5%,), with a median diameter (D50) of
0.585 mm, a coefficient of nonuniformity (D75/D25) of 1.7, and a coefficient of graduation
(D30

2/(D60D10)) of 0.942.
The experimental setup was developed to reproduce the action of waves over a coral

sand beach environment. Considering the size of the laboratory flume and the wave-making
capacity of the wave maker, the experimental coral reef flat was generalized, but allows
for the evolution of the coral sand beach (Figure 1). A coral sand profile was built over the
flume platform. It was characterized by a slope of 5.5◦ (1:10), a length of 5.00 m, and a height
of 0.50 m (Figure 4). The water level was maintained at 0.3 m above the platform during all
experiments. The experiment did not simulate the specific environment of the coral sand
beach on the reef flat but was developed such that its parameters could be adjusted to scale
the physical model to a modern occurrence of a coral sand beach. As shown in Table 3,
the hydrodynamic characteristics over the reef flat exhibited a range in wave heights from
0.0 to 1.0 m, a water depth between 0.3 and 3.0 m, and a wave period ranging from 2.0 to
20 s. Yu et al. [1] analyzed the grain sizes of coral reef sediments from 25 different areas
located along the Chinese Nansha Islands. They found that the composition of sand mostly
consisted of gravelly coarse sand; the gravel (>2 mm in diameter) makes up 30–50% to, in
some areas, 50–80% of the sediment. Research conducted on Lady Elliot Island [41] found
that the slope of the coral sand beach on a reef flat is approximately 1:10.
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were obtained from the grey stippled area.

Table 3. Summary of hydraulic characteristics measured over the coral reef flats.

Ref. Research Location Wave Height (m) Water Depth (m) Wave Period (s)

Hardy and Young [42] The Great Barrier Reef 0.2~1.3 0.24~2.97 2.1~9.5
Nelson [43] John Brewer Reef 0.1~0.7 0.8~2.7 3.0~5.2

Lowe et al. [44] Kaneohe Bay 0.4~0.6 1.2~2.3 /
Vetter et al. [45] Ipan, Guam 0.0~0.6 0.3~0.6 /
Taebi et al. [46] Ningaloo Reef 0.0~0.5 1.0~2.0

Becker et al. [47]
The College of the Marshall Islands 0.0~0.3 0.4~0.8 6~23.7

Roi-Namur 0.0~0.2 0.4~0.8 4.3~20.9
Ipan, Guam 0.0~0.1 0.5~0.7 4.9~19.6

Pomeroy et al. [48] Ningaloo Reef 0.0~0.2 1.0~2.0 10~20
Lentz et al. [49] Red Sea 0.0~0.2 0.3~1.2 4~8

In this paper the main dynamic factor of sediment movement is wave action. Therefore,
scaling the experimental model mainly considered two aspects of wave motion, including
similarity and sediment motion similarity under wave action. Thus, the geometric scale
factor (NL = HPrototype/Hmodel = 4) and the time scale factor followed the Froude criterion
(NT = TPrototype/Tmodel = NL

0.5 = 2) and were set following the Froude similitude criterion.
Table 4 provides the wave conditions in the experiments, each of which was run for 3 h
(which was sufficient time to develop an equilibrium profile). The sediment sample area is
shown in Figure 4, and it was taken at the depth of 2 cm (to the seabed).

Table 4. Summary of scale-reduction factors for the experiments and utilized test conditions.

Parameters Natural Range Scale Factor Experimental Set Value

Sediment Particle size, D (mm) >2 4 0.585

Hydraulics
Wave height, H (m) 0.0–1.0 4 0.04, 0.05, 0.07, 0.08, 0.11,

0.12, 0.13, 0.14, 0.15, 0.16
Water depth, h (m) 0.3–3.0 4 0.3
Wave period, T (s) 2.0–20 2 1.4, 1.5, 1.6, 1.7, 1.8
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Wave gauges (ULS 80D, General Acoustics, Germany) were used to record the wave
data, whereas a topographic surveying system (RUI-III, Wuhan University, Wuhan, China)
was used to survey the topo-bathymetry of the beach profile. A camera (Sony IXM 586,
Sony, Japan) was used to record the morphological evolution at one-second intervals during
the tests. The particle size distribution of the coral sand particles was measured using
a laser particle sizer (Malvern Instruments MasterSize2000, Malvern Panalytical, United
Kingdom: It uses the technique of laser diffraction to measure the size of particles. It does
this by measuring the intensity of light scattered as a laser beam passes through a dispersed
particulate sample).

4. Results
4.1. Evolution of the Coral Sand Beach Profile

For all experiments, our observations revealed that a large amount of coral sand as
suspended sediment entered the water column from the sediment bed and started to move
as the waves entered the breaking phase. Six snapshots extracted from the video recordings
are shown in Figure 5 for waves characterized by h = 0.3 m, H = 0.07 m, and T = 1.8 s. Each
of these images shows the same field of view that starts at X = 1.5 m and ends at X = 2.9 m.
Figure 5a shows that the surface of the water remains still (calm) and the water is clear
before the waves reach the coral sand beach. Figure 5b subsequently shows that when the
wave peak reaches x = 2.0 m, the waveform begins to change. A turbid area appears in front
of the wave peak (the starting point of the turbid area is located at X = 2.05 m, Figure 5b),
indicating that the coral sand has become suspended in the water. The wave begins to break
when the peak reaches x = 2.3 m, at which point air bubbles enter the rolled wave, and the
starting position of the turbid region moves from X = 2.05 m to X = 2.15 m. As the seawater
recedes from the beach, the starting position of the turbid region moves (Figure 5e,f) until
it is stabilized at X = 1.6 m. In the wave breaking zone, the bed is scoured to form a sand
trough. Meanwhile, a beach berm is formed at the shoreward end and a smaller sand bar is
formed at the offshore end. As time increases, the area of the sand trough expands until the
morphology of the coral sand beach profile reaches an equilibrium (constant) state.

The initial coral sand beach profile and those after running several hours are plotted in
Figure 6 for two cases. In Figure 6b, local scour is observed between X = 1.3 and 2.8 m. The
extent of the sand trough increased with the duration of the test, and the depth of the trough
reached an equilibrium profile after 300 min. The beach berm appeared between X = 3.0
and 3.8 m. According to the classification of Sunamura and Horikawa [28] (Figure 2), the
developed equilibrium beach profile represents a deposition beach. In Figure 6a, the initial
beach reached equilibrium after 300 min. A beach berm was formed by siltation between
X = 2.8 and 3.8 m, whereas a sand trough was formed by scouring between X = 1.3 and
2.8 m.

When the beach profile reaches equilibrium, bed sands are sampled (blue area in
Figure 4) and changes in bed sand characteristics are recorded. The results are shown in
Figure 7. The median grain size of the sediment near the top of the shoulder beach and the
bottom of the sand channel becomes larger compared to the initial sediment. The median
grain size of the sediment near the wave-facing side of the shoulder beach and the sand
pattern in the offshore zone becomes smaller. Combined with a series of snapshots, Figure 5
shows that the turbulence increased after wave breaking and a large number of vortices
appeared leading to sediment starting. Coarse-grained sediment settles after initiation due
to the lack of current carrying capacity, meaning that the median size of the sediment near
the sand trough is larger. Fine-grained sediment becomes suspended in the water column
with the wave offshore transport movement and finally settles in the offshore area, meaning
the median particle size of sediment near the offshore sand grain is smaller. At the same time,
the upwelling current carries the bed sediment to the shore, and the coarse-grained sediment
is carried to the top. As the upwelling velocity decreases, the coarse-grained sediment is silted
up, so the median particle size of the sediment near the beach berm is larger.
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Figure 7. Changes in sediment grain size distributions and the bed elevation after being subjected
to regular waves (a,b). X0 and Y0 represent the location of the original point. The value of Y/Y0

indicates siltation and scour (Y/Y0 > 0 means siltation, Y/Y0 < 0 means scour). The value of X/X0

indicates the position relative to the mean water level (i.e., when X/X0 > 1.0 the position is above the
mean water level).

4.2. Classification of Equilibrium Coral Sand Beach Profiles

Independent tests of beach classification (Equations (3)–(5)) were performed using
our experimental data. Results of the observed experimental data (shown in Figure 8)
were classified using the types of equilibrium beach profiles proposed by Sunamura and
Horikawa (1975) (Figure 2). The distribution of the experimental classification data is
similar to the results of Sunamura and Horikawa [28], Rector [27], and Watts [50]. The
constant terms in Table 1 can be referred to as the coefficients of determination, α. Moreover,
the coefficient of determination, α, 4, 8 (the dash line shown in Figure 8a), proposed by
Sunamura and Horikawa [28] did not effectively classify the coral sand beach types. For
beaches characterized by siltation (type C), the coefficient of determination, α, is smaller
than the actual value. Moreover, the coefficient of determination, α, is greater than the
actual value for erosional beaches. This indicates that the transitional area of coral beaches
is smaller than that associated within quartz sand beaches.

When using the classification method of Xu [37] to predict the coral sand beach type,
the erosional beach can be accurately classified, but there are errors in the prediction of the
siltation and transitional beaches. As shown in Figure 8b, when α > 3.5, this area includes
data points for both siltation and transition beaches. When α is between 2.9 and 4.5, both
transitional and erosional beaches are present. Compared with the classification model
of Wu [39], α = 0.867 can distinguish siltation beaches and transitional beaches. However,
within the interval of 0.394 < α < 0.867, some of the siltation beaches were incorrectly
predicted to be transition beaches.

Comparing the trends in the experimental data on the different regime maps,
(H0/L0~(D/L0)0.67i−0.27 and (H0/L0)−0.5~(gH)0.5(fw + i)/ω), the slope of the dividing line is
most similar to the trends observed on a phase diagram for the same type of experimental
data in Sunamura and Horikawa [28]. Therefore, herein we propose an equilibrium beach
profile type prediction model that is applicable to coral sand beaches by parameter correct-
ing the predictive classification model of Sunamura and Horikawa [28] (Figure 8a), where:

(H0/L0)(D/L0)
−0.67(tan β)0.27 > 7.35, Type A¯Erosional Beach (15)

5.05 < (H0/L0)(D/L0)
−0.67(tan β)0.27 < 7.35, Type B¯Transient Beach (16)

(H0/L0)(D/L0)
−0.67(tan β) < 5.05, Type C¯Depositional Beach (17)
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equilibrium beach profiles. (a) Classification by means of Equation (3) of Sunamura and Horikawa
(1975) [28]; (b) classification conducted using Equation (4) of Xu (1988) [37]; (c) classification using
Equation (5) of Wu (2014) [39].

4.3. Geometric Characteristics of Offshore Coral Sand Bars

Figure 9 compares the distance from the wave crest point to the original point (Xbc) and
the water depth at the bar crest (hbc) with the value derived from the quartz sand prediction
equation used by Günaydın and Kabdaşlı [30]. The water depth at the bar crest is greater
for the coral sand bar compared to the quartz sand bar under the same regular wave action.
Coral sand bars are located further from the berm. Thus, the depositional location of coral
sand particles is further from the berm than for a quartz sand beach. Moreover, with an
increase in the dimensionless parameter, tanβ (H0/L0)0.5, Günayd’s model predictions
follow the same trend as the measured values obtained during our experiments.

In order to compare the applicability of the predictive model for a quartz sand bar
to a coral sand bar, the predictive models proposed by Günaydın and Kabdaşlı [30] and
Silvester and Hsu [40] were parametrically corrected. The equations determined by non-
linear regression and their correlation coefficients are shown in Table 5. Figures 10–12 show
the experimental geometric characteristics of coral sand bars and the modified predictive
models based on quartz sand bars in relation to the unfactored particle diameters. The
figures illustrate that the functional relationship (polynomial structure) obtained through
the experiments on the quartz sand bars also applies to the features of coral sand bars.
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The regression coefficients for each of the predictive equations are shown in Table 5
(columns 4 and 6). A comparison of the results of the corrected model developed by
Günaydın and Kabdaşlı [30] with that of Silvester and Hsu [40] shows that the structure of
the model of Silvester and Hsu [40] is applicable to the geometrical characteristics of the
crest of the coral sand bar. The model structure of Günaydın and Kabdaşlı [30] was applied
to the geometric characteristics of the equilibrium and closure points of coral sand bars.
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Table 5. Modifications of equations for geometric parameters of coral sand bars based on models
provided by Günaydın and Kabdaşlı [30] and Silvester and Hsu [40].

Location Geometric
Parameters Silvester and Hsu [40] R2 Günaydın and Kabdaşlı [30] R2

Equilibrium
point

Xbe Xbe/L = 0.6(H/L)/ tan β 0.75 Xbe/L = 72.51
(
tan β

√
H/L

)1.433
0.89

hbe \ hbe/L = 11.792
[
tan β(H/L)0.5

]1.555
0.88

Bar crest
Xbc

Xbc/L = 0.012 + 1.219
( H

L
)
/

tan β − 0.804
[( H

L
)
/ tan β

]2 0.75 Xbc/L = 8.113
(
tan β

√
H/L

)0.78
0.72

hbc hbc/(L tan β) = −0.0249 + 0.7719Xbc/L 0.74 hbc/L = 0.219
(
tan β

√
H/L

)0.976
0.70

Closure
point

Xbd \ Xbd/L = 0.058(hbd/Xbd)
−0.937 0.96

hbd \ hbd/L = 25.343
[
tan β(H/L)0.5

]1.651
0.86

5. Discussions

During the initial stages of beach evolution under regular wave action, the waves
gradually deform by creeping up the slope, creating a wave-generated flow at the bed
surface and driving coral sands on the beach into the water column (Table 4, Figure 5b). It
is worth noting that the turbid zone occurs before the wave crest and the turbidity is low
during this phase. When the wave reaches the region shown in Figure 5c, it begins to break
and form an impinging jet [51]. Under the action of the impinging jet, irregular vertical
vortices appear at the crest of the wave and descended obliquely [52]. These vortices drive
a large amount of coral sand upward, creating the turbid zone, including that at the back
of the wave crest. As the impinging jet enters the water column, tumbling occurrs on the
free surface (Figure 1d), and a region of high turbidity occurrs between x = 2.45 and 2.75,
which indicates that a large number of coral sand particles are lifted into the water column
at this stage. This type of sediment movement has been observed in previous studies of
quartz sand banks [17], indicating that coral sand beaches are similarly affected by wave
movement mechanisms as quartz sand beaches. In addition, as suggested by Çelikoğlu
et al. [53], the smaller particles of sediment are easily entrained by a current caused by
infiltration into the pore space between the coarse particles. During the return phase of the
current, a thin, high-speed layer of water removes coarse particles from the bed surface
sediment, while the fine particles remain stationary because of the shading effects by coarse
particles. As a result, the median particle size of the bed sediment near the shoreline
becomes smaller. In the offshore area, due to the emergence of the breaking waves, strong
turbulence leads to a decrease in the sand-carrying capacity of the water current, and the
coarse particles of sediment settle rapidly. Thus, the median particle size of sediment in
the siltation area becomes larger. This suggests that the pattern of bed sediment sorting of
coral sandy beaches under regular wave action is similar to that of quartz sand beaches.

However, the results of equilibrating beach classification show that the existing pre-
dictive model for the classification of quartz sand beaches is not applicable to coral sand
beaches. This is because the dimensionless parameters from Sunamura and Horikawa [28]
consider only the effects of wave steepness, wave intensity, and bank slope while ignoring
the characteristics of sediment movement (starting flow velocity, settling velocity, etc.).
Previous studies [33–35] have shown that coral sands are irregular in shape and have a
high porosity, which leads to different settling velocities, starting velocities, and diffusion
patterns for coral sand particles in comparison to quartz sand. These particle properties in
turn affected the rate of coral sand transport from the shore to offshore and cause varia-
tions in the coral sand shoreland delineation boundary coefficients. It is worth noting that
while the classification prediction models of Wu [39] and Xu [37] include particle settling
velocity, the classification of beach type is unclear (Figure 4b,c). This may be due to the
fact that particle settling velocity formulas are not applicable to coral sand particles and
that the existing settling formulas for coral sand particles are single particle-dominated.
The applicability of these formulas for a large number of particles in motion needs to be
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investigated. Meanwhile, it is worth noting that the R2 of the modified bar top prediction
model is only around 0.7 to 0.8. This suggests that the two forms of formulations do not
fully correspond to the physical evolution of the coral sand beach. This phenomenon also
occurs when modeling the prediction of coral sand particle initiation velocities [34,35] and
settling motions [33]. Moreover, beach profile changes are the result of the complex motions
of multiple particles, so in this paper only parameter corrections are used to propose a
prediction model applicable to coral sand beach profiles. The predictive models are only ap-
plicable to experimental data in regular wave conditions. In the future, it will be necessary
to collect field data to test the applicability of the predictive models.

6. Conclusions

In this study, a set of laboratory experiments were conducted to investigate changes
in coral sand beach profiles under specified regular wave conditions. A total of 50 runs
were performed with regular waves consisting of ten different wave heights and four wave
periods. The water depth and initial slope angle, tanβ, were assumed to be constant and
equal to 0.3 m and 0.1, respectively, limiting our understanding of sediment deposition
on coral sand beaches by regular waves. The following conclusions were drawn from
the experiments:

(1) Observations of hydrodynamic processes and the movement of coral sand on the bed
surface suggest that the evolution of a coral sand beach is similar to the evolution of a
quartz sand beach. The morphological characteristics of the sand bar show that the
erosion depth of a coral sand beach is deeper than that of a quartz sand beach. The
location of sand bar formation is further from the horizontal plane than the quartz
sand beach. These differences are related to sediment transport and depositional
processes, such as the starting flow rate and settling velocity of coral sand particles,
among other parameters.

(2) The results show that the predictive model for the classification of the type of quartz
beach profile is not applicable to coral sand beaches. A classification prediction model
for coral sand beaches was proposed through parameter modification.

(3) Geometrical features of coral sand bars on erosional beaches were obtained and
compared with a prediction model for a quartz sand bar. The results show that
the prediction model for a quartz sand bar is not applicable to a coral sand bar. A
prediction model for a coral sand bar was proposed through parameter modification.

Although this paper investigates the effect of regular waves on the evolution of coral
sand beaches and compares the prediction models of previous quartz sand beaches, only
the evolution of stable coral sand islands and one water depth were considered in this paper.
Two other commonly observed cases in which coral sand islands are located in tidal shoals
and the sandbar stage were not considered. In order to further study the evolutionary
mechanism of coral sand islands under SLR, the model should be generalized for these two
stages in the future. That is, beach evolution should be studied when the sand island is
becoming submerged and once it becomes completely submerged.
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