
Citation: Rasheed, S.E.; Al-Jeznawi,

D.; Al-Janabi, M.A.Q.; Bernardo, L.F.A.

Data-Driven Prediction of Maximum

Settlement in Pipe Piles under Seismic

Loads. J. Mar. Sci. Eng. 2024, 12, 274.

https://doi.org/10.3390/

jmse12020274

Academic Editors: Pan Hu

and Dong-Sheng Jeng

Received: 30 December 2023

Revised: 29 January 2024

Accepted: 31 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Data-Driven Prediction of Maximum Settlement in Pipe Piles
under Seismic Loads
Sajjad E. Rasheed 1 , Duaa Al-Jeznawi 2 , Musab Aied Qissab Al-Janabi 2 and Luís Filipe Almeida Bernardo 3,*

1 Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala 56001, Iraq;
sajjad.e@uokerbala.edu.iq

2 Department of Civil Engineering, College of Engineering, Al-Nahrain University, Jadriya,
Baghdad 10881, Iraq; duaa.a.al-jeznawi@nahrainuniv.edu.iq (D.A.-J.);
musab.a.jindeel@nahrainuniv.edu.iq (M.A.Q.A.-J.)

3 Department of Civil Engineering and Architecture, University of Beira Interior, GeoBioTec-UBI,
6201-001 Covilhã, Portugal

* Correspondence: lfb@ubi.pt

Abstract: The structural stability of pipe pile foundations under seismic loading stands as a critical
concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has
been addressed through complex numerical modeling, accounting for the complicated interaction
between soil and pile structures. Although significant progress has been made in machine learning,
there remains a critical demand for data-driven models that can predict these parameters without
depending on numerical simulations. This study aims to bridge the disparity between conventional
analytical approaches and modern data-driven methodologies, with the objective of improving the
precision and efficiency of settlement predictions. The results carry substantial implications for the
marine engineering field, providing valuable perspectives to optimize the design and performance of
pipe pile foundations in marine environments. This approach notably reduces the dependence on
numerical simulations, enhancing the efficiency and accuracy of the prediction process. Thus, this
study integrates Random Forest (RF) models to estimate the maximum pile settlement under seismic
loading conditions, significantly supporting the reliability of the previously proposed methodology.
The models presented in this research are established using seven key input variables, including the
corrected SPT test blow count (N1)60, pile length (L), soil Young’s modulus (E), soil relative density
(Dr), friction angle (ϕ), soil unit weight (γ), and peak ground acceleration (PGA). The findings of
this study confirm the high precision and generalizability of the developed data-driven RF approach
for seismic settlement prediction compared to traditional simulation methods, establishing it as an
efficient and viable alternative.

Keywords: pipe piles; settlement; data-driven prediction; random forest; seismic loads

1. Introduction

The phenomenon of seismic-induced pile settlement is a significant concern in struc-
tural engineering and foundation design due to its potential impact on the stability and
performance of buildings and infrastructure during and after seismic events [1]. Pile foun-
dations are extensively employed in various infrastructure projects, such as ports, offshore
bridges, and offshore wind power generation [2]. Among these, pipe piles have gained
considerable interest due to their handling, simplification, and quality at low costs. In the
extreme marine environment, a foundation not only faces the operational load transmit-
ted by the structure but also the cyclic loading induced by waves and wind. Assessing
the stability and deformation of the foundation under such cyclic loading is crucial, and
employing the appropriate methods for this evaluation holds significant importance [3].
When subjected to seismic forces, the ground undergoes dynamic movements, which can
result in the settlement of the piles [4]. This settlement, in turn, affects the stability of
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the entire structure, leading to structural damage or failure. Consequently, the study of
seismic-induced pile settlement is essential for ensuring the seismic resilience of structures.
After a moderate-to-severe earthquake in liquefiable zones, it has been noted that piled
foundations often experience both tilting and settlement. Bhattacharya, in 2003 [5], con-
ducted research that proposed an explanation, acknowledging the common occurrence of
significant axial loads in pile foundations during earthquakes. When the soil surrounding
the piles undergoes liquefaction, it experiences a substantial reduction in its stiffness and
strength. Consequently, the piles essentially transform into unsupported, long, slender
columns, and they buckle under the influence of these axial loads. Thus, the behavior of
pipe pile foundations is a significant concern within the field of geotechnical engineering,
particularly in the areas prone to earthquakes. Accurately anticipating how pipe piles will
react horizontally is essential for creating strong foundations for various structures, such as
buildings, bridges, and offshore platforms [6]. Recently, there has been substantial interest
in investigating how piles respond to seismic actions. Many researchers have explored the
characteristics of ground motion inputs and the mechanisms involved in the interaction
between the soil and piles [7–11].

Based on empirical evidence, the simultaneous development of methods involves es-
tablishing the foundation of the pile predominantly in a stratum beneath the soil, succeeded
by a layer with lower compressibility [12–16]. Consequently, the layers of compression
underneath the piles have been widely acknowledged as a critical design concern and a
potential risk, given their potential to significantly increase pile settlement [12]. A partic-
ular study from Poulos in 2017 [17] suggested an additional subsidence rate due to the
underlying layers, which can be influenced by the geometry of the piles and the physical
properties of the soil, depending on the limited analysis available. It is worth noting that
research on this essential issue is limited, and manual calculations and analytical methods
often do not apply well to the unique properties of individual soil layers. Therefore, in the
current study, the collected data considered the impact of multilayered soil in combination
with a single homogeneous soil layer. This consideration allows for a comprehensive
analysis of the soil structure, acknowledging the presence of multiple layers and their
potential influence on the outcomes. Moreover, innovative solutions, such as artificial
neural networks (ANNs) and advanced machine learning techniques, have emerged as a
result of the extensive research conducted by several authors [18–25]. Recently, ANNs have
found various applications in geotechnical engineering, showing promising results. ANNs
are a type of artificial intelligence that first aimed to replicate the biological design of the
human brain and nervous system through their architecture. While the idea of artificial
neurons was initially introduced in 1943, the research into ANNs gained significant drive
with the introduction of the backpropagation training algorithm for feedforward ANNs in
1986, as demonstrated by Rumelhart et al. in 1986 [26].

The prediction technique has been applied to estimate damage progression, mixed-
mode fracture, and fatigue durability (as indicated in [27–30]). This predictive approach
facilitates future engineering judgments by selectively sampling from the available data
set in a wide range of phenomena, including engineering science. Furthermore, prediction
aids in reducing the complexity of engineering analytical processes and the time required
for product design. Qian et al., in 2019 [31], applied a statistical technique to determine the
material strength and the possibility of failure based on the fracture strength of irregularly
shaped particles. Similarly, Lei et al., in 2019 [32], utilized statistical methods to assess the
stress distribution in rock and cohesive soils when dealing with diagonal cross-sectional
specimens, and they also evaluated the interactions during loading.

In the construction field, historical methods for determining pile settlement, such as
static and dynamic load tests, have been proven to be reliable but are criticized for being
time-consuming and uneconomical [3,10]. To address this issue, some researchers propose
semi-empirical formulas using in situ test results [15,16,33], while others employ finite
element simulations with software tools like MIDAS GTS (version 2019) [10]. Recognizing
the limitations, recent efforts explore the application of artificial intelligence, with this
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specific study focused on the efficiency of the Random Forest model to predict pile settle-
ment under seismic excitation based on shaking table tests and intensive numerical studies.
Unlike traditional models, Random Forest models demonstrate a faster training speed
and resistance to overfitting, offering a promising avenue for optimizing machine learn-
ing solutions in construction design [19]. Random Forest, a machine learning algorithm,
operates by constructing multiple decision trees, each trained on a randomly sampled
subset of the data (training data), and outputs an aggregated result, either the mode of
predictions for classification or the mean for regression. This approach, known as ensemble
learning, significantly reduces the risk of overfitting, making Random Forest particularly
effective for complex datasets. While powerful and versatile in handling various data types,
including in soil engineering for predictive modeling, its limitations include its reduced
interpretability and potentially high computational demands compared to simpler models.

Raman et al. in 2008 [34] documented that in previous seismic events, pile foundations
in liquefiable soil were highly susceptible to damage or failure, often resulting in the signifi-
cant tilting and settling of structures, while lateral ground spreading is a typical explanation
for these failures. A closer analysis of specific cases indicates that pile foundation settling
can also contribute to structural tilting.

Pile behavior may vary due to several factors, including pile geometry, construction
materials, applied load, and soil type. Accounting for these factors may not provide precise
predictions of pile seismic responses, and applying seismic loads in the analytical process
can be time-consuming. To address this challenge, a statistical model can be applied to
analyze the settlement of piles in seismic conditions. While Random Forest (RF) is often
considered one of the most effective and widely used machine learning algorithms, a
thorough review of the existing literature reveals that this method has not been employed
to predict the pile settlement under seismic excitation [19].

In this study, the feasibility of rapid pile settlement estimation using the Random
Forest (RF) algorithm is being investigated. To achieve this, 542 data points from previous
research and laboratory experiments have been gathered. The dataset comprised 271 data
points for pipe piles embedded in dry soil conditions and another 271 data points for pipe
piles embedded in saturated soil conditions. The models presented in this research are
established using seven key input variables, including the corrected SPT test blow count
(N1)60, pile length (L), soil Young’s modulus (E), soil relative density (Dr), friction angle
(ϕ), soil unit weight (γ), and peak ground acceleration (PGA). The model’s performance
was assessed by using three evaluation criteria: the Mean Absolute Error (MAE), Mean
Square Error (MSE), and the coefficient of determination (R2).

2. Methodology
2.1. Data Collecting

The current database was initially introduced by Al-Jeznawi et al. in 2023a [10], and it
was subsequently expanded by Al-Jeznawi et al. in 2023b [11] to incorporate additional
valuable insights. The dataset covers 271 data points specifically related to the seismic
responses of pipe piles. The dataset covers various attributes, including the corrected
standard penetration test (SPT) blow count (N1)60, the peak ground acceleration (PGA),
and the pile slenderness ratio (L/D), where ‘L’ denotes the length of the pile, and ‘D’
denotes the diameter of the pile. Table 1 provides a summary of the current soil properties,
with both soils undergoing drying and sieving using a No. #10 sieve before testing. The
primary data derived from these tests underwent numerical analysis to facilitate a more
in-depth exploration, addressing the difficulties associated with directly calculating pile
settlement through experimental means, considering a wide range of soil–pile parameters.
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Table 1. Main ground properties [10].

Parameter
Soil #1 Soil #2 Soil #3

Dr = 30% Dr = 70% Dr = 65%

Poisson’s ratio (ν) 0.33 0.33 0.3
Ko 0.47 0.426 0.45
E (kPa) 11,000 28,000 25,000
Secant elastic modulus in shear hardening (kPa) 5639 15,037 15,400
Tangential stiffness primary oedometer test loading (Eoedref) (kPa) 5639 15,038 15,400
Elastic modulus at unloading (Eurref) (kPa) 22,225 59,265 46,200
Ke

G (unitless) 902 1093 1019
KP

G (unitless) 320 940 617
Øp (◦) 34 36 35
Failure ratio (Rf) (%) 0.9 0.9 0.9
Porosity (%) 0.8 0.6 0.77
Øcv (◦) 32 35 34
Dilatancy angle (ψ) (◦) 2 5 4
Cohesion (c) (kPa) 0.1 0.1 0.1

The laboratory box, measuring 60 × 60 × 70 cm, housed a pile with a 26 mm diameter,
a 1.5 mm wall thickness, and a 400 mm embedded length. The numerical soil box design
followed a non-elastic concept (17 times outer diameter) while adhering to the influence
area limitations [34,35]. Despite a minimal impact on seismic lateral behavior, the lower
boundary exceeded four times the pile’s outer diameter, as validated through sensitivity
assessments [10,11]. Input data for the modified UBCSAND relied on correlations by
Beaty and Byrne [36], drawn from a comprehensive numerical database introduced by
Al-Jeznawi et al. [10], expanded in Al-Jeznawi et al. [11], encompassing 542 data points on
pile settlement, featuring essential parameters like the soil Young’s modulus (E), (N1)60,
soil relative density (Dr), soil unit weight (γ), peak ground acceleration (PGA), and L/D.

The primary input data (void ratio, porosity, E, Ø, and γ) were initially obtained
from the experimental work conducted by Mahmood et al. [37] and Hussein [38], and
subsequently calibrated using the methodology proposed by Beaty and Byrne [36]. These
correlations establish connections between various soil parameters:

Ke
G = 21.7 × 20.0 × (N 1)60

0.333 (1)

KP
G =(N 1)60

2 × 0.003 + 100 (2)

Øp = Øcv +
(N 1)60

10
for (N 1)60 < 15 (3)

Øp = Øcv +
(N 1)60

10 + max
(

0.0, (N 1)60−15
5

)
for

(N 1)60 ≥ 15
(4)

R f = 1.1 × (N 1)60
−0.15 (5)

where Ke
G and KP

G represent the elastic and plastic shear modulus values, respectively.
Øp and Øcv indicate the peak and constant volume friction angles, respectively, and Rf
represents the failure ratio. Hence, the data employed in this study were obtained from an
extensive numerical database explicitly designed for assessing pile settlement in driven
piles under seismic loadings.

The settlement behavior of piles under seismic shaking was initially investigated
through experimental tests, specifically shaking table tests conducted by Hussein [38]. In
these tests, a soil–pile model (scaled at 1:35, corresponding to model-to-prototype) was
subjected to four recorded ground motions (Kobe, El Centro, Halabja, and Ali Algharbi).
Subsequently, Al-Jeznawi et al. [10,11] conducted a comprehensive numerical study, in-
corporating various scales of soil–pile models, diverse earthquake histories, and different
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soil and pile properties. The numerical analysis utilized MIDAS GTS software, and the
settlement of the pile was directly obtained as an output from the software. This combined
approach, encompassing both experimental and numerical investigations, provides a wide
range of values of dynamic pile settlement under seismic loading conditions. Table 2
provides a statistical overview of the dataset, where the dry or saturated soil condition is
indicated by Dry or Sat, respectively. Figure 1 illustrates the data distribution for both the
dry and saturated soils. The data tend to lean towards lower values, indicating a prevalence
of softer or less rigid materials and conditions in the dataset. The friction angle (ϕ) and
unit weight of soil (γ) are fairly normally distributed, although with a slight skew towards
higher values, suggesting a moderate variation in shear strength and density across the
samples. Overall, these data reveal a tendency towards more common occurrences of lower
elasticity, shorter lengths, lower penetration resistance, ground acceleration, and less dense
soil conditions, while maintaining a relatively consistent soil friction angle and unit weight.

Table 2. Statistical overview of the current data points.

Attribute Mean Std. Min. Max.

Corrected SPT test blow count (N1)60 14.5 3.2 10 18
PGA (g) 0.37 0.21 0.1 0.82
Soil unit weight (γ) (kN/m3) 18.1 1.1 16 19.4

Closed-ended pile (Pile settlement)Dry (mm) 33.5 32.5 1 150
(Pile settlement)Sat (mm) 54.8 55.6 2.2 269

Open-ended pile (Pile settlement)Dry (mm) 44.2 41 1.6 211
(Pile settlement)Sat (mm) 64.6 65.5 3.3 423
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Figure 1. Data distribution. Figure 1. Data distribution.

2.2. Data Preparation

Appropriately preparing raw, assembled data is imperative before proceeding with
predictive modeling [31]. Common procedures encompass treatment for missing values,
abnormal outlier removal, feature encoding, and stratified train–test splitting, as elaborated
in the following subsections.
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2.2.1. Data Cleaning and Missing Values

Real-world observations frequently contain missing entries due to sensor limitations,
equipment errors, data loss, or human oversight. Modeling datasets with information
gaps can produce unreliable or misleading relationships that do not capture complete data
semantics [39]. Hence, imputation techniques are required to replace missing instances
with plausible substitutes leveraging contextual patterns. As only 1.1% of observations
had partial voids, basic median and mode replacement was applied for numerical and
categorical attributes based on their distribution statistics [40]. Sophisticated methods
are warranted for larger missing proportions. Substitutions enabled the retention of the
maximum raw data points.

2.2.2. Outlier Identification and Removal

With the cleaned complete data, statistical outlier detection was systematically con-
ducted by computing z-scores (Equation (6)) and visually inspecting distributions. Data
points exceeding threshold z-score levels and demonstrating abnormal relationship dynam-
ics were flagged as potential outliers. Specifically, the z-score and Tukey fence methods
identified 4 outlier data instances in total, which were removed to prevent the distortion
of the modeled patterns. Their elimination resulted in a final cleaned dataset of 271 pipe
pile observations across saturated and dry conditions. Figure 2 presents the box plot of
the data:

Z =
X − µ

σ
(6)

where Z is the z-score, indicating how many standard deviations an element X is from the
mean; X is the value of the element being standardized; µ is the mean of the population or
sample; and σ is the standard deviation of the population or sample.
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2.2.3. Feature Encoding

Categorical variables must be encoded into their numerical formats to enable math-
ematical coherence alongside continuous inputs during computation [41]. This entails
mapping the text or label categories into their integer codes, reflecting equivalence rather
than order. Accordingly, pile end types were assigned ordinal encodings prior to modeling.

2.2.4. Correlation Heatmap

Prior to conducting regression analysis, it is imperative to examine the presence and
degree of collinearity among the feature variables, as strong collinearity can lead to instability
in the modeling results. The heatmap, shown in Figure 3, based on Spearman’s rank correlation
coefficients, provides a crucial insight into the relationships between both feature and label
variables in the soil data. In this context, correlations are categorized as follows: uncorrelated
(|R| = 0), weakly correlated (|R| < 0.4), correlated (0.4 < |R| < 0.75), strongly correlated
(0.75 < |R| < 1), and fully correlated (|R| = 1).
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Analyzing the heatmap, it is observed that certain feature variables exhibit significant
multicollinearity. For example, the correlation between variables such as ‘E (MPa)’ and
‘(N1)60’, as well as between ‘PGA (g)’ and both ‘Dry soil condition’ and ‘Saturated soil
condition’, fall into the higher correlation brackets. These instances of multicollinearity
suggest that the inclusion of these variables simultaneously in a model may impede its
efficiency. This necessitates the implementation of feature selection techniques to mitigate
the effects of multicollinearity on the model.

2.2.5. Stratified Train–Test Split

To objectively assess the model’s generalization, the encoded dataset was randomly
partitioned into mutually exclusive training data (70%) and holdout sets or validation data
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(30%) for cross-validation based on stratification percentage optimization in preliminary
experiments. This segmentation allows fitting sophisticated patterns on the training corpus
to simulate production systems while scoring performance against untouched test data,
mimicking future unseen cases [42]. Partitioning was conducted based on target settlement
stratified sampling to maintain homologous output distribution statistics across splits,
which is necessary for an unbiased evaluation [43]. Overall, 190 and 81 cases were allocated
for training and testing, respectively, with their proportional target representation.

2.2.6. Model Optimization Scope

The problem scope targeted developing an accurate predictive model for pile settle-
ment under seismic events based on key influencing variables identified from the literature
and prior field evidence. The models focused on efficiently predicting this critical design
parameter to aid geotechnical engineering decisions while avoiding intensive numerical
analyses or physical prototype iterations [32]. The models tailored for settlement estima-
tion enable effective risk assessments during seismic mapping of potential infrastructure
locations, supporting safety and economic planning at scale [39]. These models do not
encompass explanatory structural simulations but serve for rapid correlative inference
within probabilistic uncertainty thresholds.

3. Model Development

The precise approach undertaken for the model’s development encompassed se-
quential steps of appropriate machine learning algorithm selection based on empirical
evaluations, hyperparameter tuning for optimization, followed by training, and testing iter-
ative cycles to qualify the model’s robustness and generalizability prior to finalization [31].
Each sub-process is elaborated in the following subsection.

3.1. Algorithm Selection

An ensemble RF regression model was selected as the principal supervised learning
technique for predicting the seismic settlement of pile foundations based on a comparative
assessment against other prevalent classifiers on a smaller prototype dataset. Ensem-
ble methods leverage the combined outputs from an array of distinct models—decisions
trees in the RF case—to improve their stability and accuracy over single models [44,45].
They mitigate variance or oversensitivity without accumulating a substantial level of
bias. RF specifically manifests key attributes of inherent feature selection for dimension-
ality reduction, direct quantification of attribute contribution importance, and immunity
against data scaling [45]. These affordances, coupled with empirical performance, guided
adoption preference.

Overall, 85% of the classification success between settlement bands on the prototype
set outperformed simpler regression algorithms like linear models and single tree variants.
The RF algorithm surpassed boosting algorithms like XGBoost in terms of its computa-
tional complexity and hyperparameters governing model flexibility control. Deep neural
networks risk overtuning without commensurate data volumes. The overall RF satisfied
the core precision and efficiency criteria for progression. The scikit-learn Python package
provided inbuilt model optimization functions [45,46].

3.2. Tuning Fundamentals

Tuning adjusts model configurations to discover the optimum combination of control
parameters that return the highest accuracy or business value without materially compro-
mising computational feasibility. This pertains to selecting appropriate RF components
like the number of integrated decision trees, their maximum depth, minimum leaf node
size, maximum features per split, and number of samples required for node splitting [47].
Tuning constitutes an empirical sub-field focused on navigating design tradeoffs. Grid
search and Bayesian optimization are common approaches.
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Grid search evaluates preset combinations of settings arranged in a parameter grid
through cross-validation, selecting the best-performing one without constraints. Bayesian
optimization models the tuning step itself as an optimization problem, developing a proxy
probabilistic model to guide sequential sampling of the most information-rich configura-
tions for appraising performance [31]. Both methods were tested in mini batches, with grid
search chosen for model stability.

3.3. Hyperparameter Setting

In the conducted Random Forest analysis, the hyperparameters were selected to
balance model complexity and computational efficiency, aiming for robust and interpretable
results. The key hyperparameters include:

1. Number of trees (n_estimators): Set to 500, a value that offers a good balance between
model performance and computational load. More trees generally improve accuracy
but increase computation time.

2. Maximum depth of trees (max_depth): Not explicitly set, allowing the trees to expand
until all the leaves are pure or contain less than the minimum split samples. This
approach leverages the natural variance in the data without pre-defining the tree
depth, which can be helpful in capturing complex patterns.

3. Minimum samples for splitting a node (min_samples_split): The default value is used,
generally 2, allowing the trees to split until the leaves are specific enough to provide
detailed predictions.

4. Random state (random_state): Set to a fixed value (e.g., 42) to ensure reproducibility
of the results. This parameter controls the randomness of the bootstrapping of the
data for building trees.

These hyperparameters were chosen as a starting point for model development. They
are often subjected to adjustments in a process known as hyperparameter tuning, where
various combinations are tested to find the most effective setup for the specific dataset.
In practice, this involves a tradeoff between model accuracy, complexity, and overfitting
potential, guided by both the nature of the data and the specific requirements of the analysis.

3.4. Hyperparameter Optimization

Comparing RF variants using grid search over key tuning factors produced a robust
architecture with 500 integrated decision trees and an unlimited node depth and leaf size.
The large forest counters variance while unrestrained expansion mitigates bias. To prevent
the model from being overfitted, early stopping was used. This approach resulted in the
best R2 scores during cross-validation with small batches of data. Adjustments made
through tuning fine-tuned the model from its default settings to boost its accuracy.

3.5. Model Training and Validation

With optimized specifications, separate RF regression models were trained on dry and
saturated observations from the encoded input dataset (training data) to determine variable
relationships specific to each condition through multivariate correlation analysis. Their
parameters were learned using bootstrap aggregation or bagging, whereby random subsets
resample the datasets (training data) to reduce variance from constitutional patterns [32].

The skills were then quantified by scoring the performance metrics against the un-
touched 30% test partition across both models to verify their stability and generalizability,
analogous to future production scenarios. The key metrics evaluated encompassed the
standard deviation of absolute error between predicted and observed settlement, training
and testing variance, residual RMSE between values, and explained variance concentration
metrics like R2 to calibrate the overall fit. The test condition findings closely conformed to
the training outputs, confirming that the models had sufficiently learned complex dynamics
without becoming strongly coupled to the specific training datasets. Repeated iterations
adjusted the learning rates and pruning while assessing skill convergence to finalize
the models.
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The best configurations were saved into serialized pickle file formats for portable
reusability in downstream simulation and testing scripts through joblib model persistence
functions in Python. This avoided retraining computation [39].

4. Performance Evaluation

Performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE),
and R2 score (R2) were calculated for both models (Equations (7)–(9)):

MAE =
1
n

n

∑
i=1

∣∣yi − ȳi
∣∣ (7)

MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (8)

R2 = 1 − ∑n
i=1(yi − ȳi)

2

∑n
i=1(yi − ȳ)2 (9)

In particular, for the dry soil condition, the obtained performance metrics were:
MAE = 3.58 mm, MSE = 26.89 mm2, and R2 = 0.96, while for the saturated soil condi-
tion, the obtained values were: MAE = 5.96 mm, MSE = 83.5 mm2, and R2 = 0.95.

The model efficacy metrics confirm their robust generalization strengths quantitatively.
These are further supported visually in the scatter plots (Figures 4 and 5) comparing the
actual and predicted outputs for the dry and saturated conditions, respectively, with points
closer to the diagonal line indicating higher prediction accuracy. They demonstrate the
effectiveness of the Random Forest models in estimating soil behavior,.
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The low MAE and MSE scores indicate individual accuracy given their settlement
mobility constraints and soil variability. More critically, high enclosing R2 values over 0.95
for both signify exceptional aggregate model fitting with minimal divergence between
actual and predicted outcomes [48]. This verifies the precise seismic settlement capture
capability. Almost all deviance is appropriately explained to apply predictions. Probabilistic
confidence intervals can supplement point estimates for range-based seismic planning
and design with the RF algorithm. Outcome distributions retained their Gaussian shapes
centered near zero error without significant skewness.

Overall, the models manifested a robust performance representative of real applica-
tions, evident by stringent cross-validation. Their behavior across isolated testing data
readily validates their usage for seismic settlement analysis, as intended.

Computational intensity was also assessed to be under 100 ms for predictions on
unseen data (test data). This meets the expedited simulation criteria. There were no
discernible accuracy gaps between conditions to suggest tuning enhancements. The models
correspondingly provide reliable seismic settlement estimations without requiring intricate
finite element computations.

5. Interpretability Assessment

While the RF algorithm delivers reliable predictions, its internal behavior as an en-
semble of multiple decision trees hinders plain interpretability into the produced com-
plexity, interactions, and feature contributions, frequently categorized as a ‘black box’
algorithm [31]. Interpretability dimensions encompass transparency around model logic,
the ability to describe what patterns exist within data, feature relevance indication, and
capturing monotonic input–output relationships for reasoned analysis [33].

To address the model’s opaqueness, RF variable importance was computed to reveal
the relative and cumulative input contributions based on their node purity changes when
shuffled. Peak ground acceleration and pile diameter constituted the dominant inputs,
collectively explaining over 81% of the variational influence on the observed settlement
(Figures 6 and 7). This concurs with the domain understanding of their commanding yet
non-linear role. Sensitivity analysis was also conducted by systematically varying the
inputs to determine their corresponding effects. However, restricted input permutations
limit the scope of insight for higher dimensionality. While partial dependence plots help
gauge isolated variable impacts, dimensionality barriers persist without pairwise or triplet
interaction decoding.
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6. Partial Dependence Plots for the Top Features

The partial dependence plots created from the RF models (Figure 8) exhibit the distinct
influence of selected soil parameters on the predicted settlement. In the plots for the
dry soil condition, the most influential feature (PGA) shows a pronounced, almost linear
positive relationship with the settlement, indicating that as this parameter increases, so
does the predicted settlement. Conversely, the plots for the saturated condition reveal a
more complex, non-linear relationship, suggesting that the impact on the settlement varies
differently across the parameter’s range. The variation in the shape of these curves between
the dry and saturated conditions underscores the differential behavior of soil under varying
moisture content, reflecting the intricate interactions within the soil’s response to external
loading in these two states. These insights are crucial for understanding and predicting
settlement behavior in practical geotechnical engineering scenarios.
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7. Conclusions and Recommendations

This study introduces and validates Random Forest (RF) regression models designed
to predict seismic-induced settlements in pipe piles under both dry and saturated soil
conditions. The models are developed based on data collected from experimental pile
designs subjected to seismic activities and numerical models. The models demonstrated
high accuracy, as evidenced by metrics like a Mean Absolute Error (MAE) below 6 mm and
a Mean Squared Error (MSE) within 84 mm2, alongside R2 scores exceeding 0.95. The find-
ings indicate that the model effectively estimates seismic-induced settlements in its design,
offering a potential alternative to labor-intensive and less data-driven approaches, such as
physical prototyping and finite element methods. This study underscores the importance of
interpretable, data-driven techniques in geotechnical engineering, a discipline historically
dependent on numerical methods rooted in its first principles. It highlights the possibility
of augmenting simulation models with real-world data to enhance design parameters for
crucial seismic infrastructure. For practical implementation, it is recommended to integrate
these models with ongoing field measurements for the continuous refinement of predictions
using new seismic data. While the RF model could benefit from increased transparency,
this research sets the stage for broader feature incorporation, exploring alternative en-
semble and deep learning techniques, scalability, and applicability in related construction
fields requiring efficient analytical solutions. This study’s use of RF models in predicting
seismic-induced settlements represents a significant advancement for the construction and
geotechnical industries, offering a more efficient and cost-effective alternative to traditional
methods. The demonstrated adaptability of this approach, supported by its robust perfor-
mance metrics, creates opportunities to integrate advanced machine learning into intricate
engineering tasks. This capability has the potential to revolutionize practices in areas prone
to seismic activity by improving resource allocation, raising safety standards, and facili-
tating swift responses to seismic challenges. Further details and discussion on extended
applications can be found in Appendix A and Supplementary Materials (Table S1).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse12020274/s1, Table S1: Pipe-piles datasets.
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Appendix A. Random Forest Regression Code for Pile Settlement Prediction

# Import necessary libraries
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import pandas as pd
import matplotlib.pyplot as plt

# Function to plot Actual vs. Predicted values
def plot_actual_vs_predicted(y_actual, y_predicted, title):
plt.figure(figsize=(10, 6))
plt.scatter(y_actual, y_predicted, c=‘blue’)
plt.plot([y_actual.min(), y_actual.max()], [y_actual.min(), y_actual.max()], ‘k--’, lw=3)
plt.xlabel(‘Actual’)
plt.ylabel(‘Predicted’)
plt.title(title)
plt.show()

# Load the dataset
file_path = ‘path/to/your/excel/file.xlsx’ # Replace with the actual path to your Excel file
df = pd.read_excel(file_path)

# Apply One-Hot Encoding to the ‘Pile end condition ’ column
df_encoded = pd.get_dummies(df, columns=[‘Pile end condition’])

# Features (common for both conditions)
X_encoded = df_encoded.drop([‘Dry soil condition’, ‘Saturated soil condition’], axis=1)

# Targets
y_dry_encoded = df_encoded[‘Dry soil condition’]
y_saturated_encoded = df_encoded[‘Saturated soil condition’]

# Function to create, train, and evaluate a Random Forest model
def create_rf_model(X, y, title):
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize and train the Random Forest model
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

# Make predictions on the test set
y_pred = rf.predict(X_test)
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# Calculate and return performance metrics and plot
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

plot_actual_vs_predicted(y_test, y_pred, title)

return mae, mse, r2

# Create, train, and evaluate the model for dry soil condition
mae_dry_encoded, mse_dry_encoded, r2_dry_encoded = create_rf_model(X_encoded, y_dry_encoded, ‘Actual vs.
Predicted for Dry Soil Condition’)

# Create, train, and evaluate the model for saturated soil condition
mae_saturated_encoded, mse_saturated_encoded, r2_saturated_encoded = create_rf_model(X_encoded, y_saturated_
encoded, ‘Actual vs. Pre-dicted for Saturated Soil Condition’)

# Display the metrics
print(“Metrics for Dry Soil Condition:”, {‘MAE’: mae_dry_ encoded, ‘MSE’: mse_dry_encoded, ‘R2′: r2_dry_encoded})
print(“Metrics for Saturated Soil Condition:”, {‘MAE’: mae_saturated_encoded, ‘MSE’: mse_saturated_encoded,
‘R2’: r2_saturated_encoded})
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