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Abstract: Okadaic acids (OAs) are causative agents of diarrhetic shellfish poisoning, produced by the
dinoflagellates Dinophysis spp. and Prorocentrum spp. Microcystins (MCs) are cyclic heptapeptide
hepatotoxins produced by some cyanobacteria genera, including Microcystis spp. Traditionally,
toxicity detection and quantification of these natural toxins were performed using a mouse bioassay
(MBA); however, this is no longer widely employed owing to its lack of accuracy, sensitivity, and
with regard to animal welfare. Therefore, alternative toxicity analyses have been developed based on
MCs’ and OAs’ specific inhibition of protein phosphatase 2A (PP2A), using p-nitrophenylphosphate
(p-NPP) as a substrate. The assay is simple, inexpensive, ready for use on site, and can be applied
to several samples at once. For OA detection, this assay method is appropriate for widespread
application as a substitute for MBA, as evidenced by its alignment with the oral toxicity of MBA.
In this review, we summarize the structure and function of PP2A, the inhibitory activities of OAs
and MCs against PP2A, and the practical applications of the PP2A assay, with the aim of improving
understanding of the PP2A assay as an OAs and MCs detection and quantification method, as well
as its suitability for screening before confirmatory chemical analysis.

Keywords: protein phosphatase 2A(PP2A); diarrhetic shellfish poisoning (DSP); okadaic acids (OAs);
microcystins (MCs); PP2A inhibition assay

1. Introduction

Marine natural toxins are causative agents of seafood poisoning, including puffer-
fish poisoning (PFP), ciguatera fish poisoning (CFP), diarrhetic shellfish poisoning (DSP),
amnesic shellfish poisoning (ASP), and paralytic shellfish poisoning (PSP). The chemical
structures and biological functions of these toxins have already been described in detail [1].
Monitoring of these toxins in seafood was traditionally performed using a mouse bioassay
(MBA) based on lethality from intraperitoneal (i.p.) injection, and toxicities were explained
in mouse units. In addition, oral administration was employed to assess the toxicities of each
analog. Concerns for animal welfare and requirements for high accuracy, sensitivity, and
rapidity fueled a shift toward alternative methods. Various analytical methods, including
structure-based methods such as instrumental analysis using liquid chromatography–mass
spectrometry (LC-MS) [2–6] and an enzyme-linked immunosorbent assay (ELISA) [7–11],
functional assays such as cell-based assays measuring cytotoxicity [12–18], and a protein
phosphatase (PP) inhibition assay [11,19–25], have been developed to detect okadaic acids
(OAs), which are responsible for DSP, and microcystins (MCs), hepatotoxins in the form
of cyclic heptapeptides generated by cyanobacteria. In this review, we focus on the PP
inhibition assay, which is simple, cost-effective, field-ready, and capable of handling several
samples simultaneously. PPs comprise serine/threonine and tyrosine phosphatase families.
PP2A is a representative serine/threonine phosphatase in eukaryotes, from yeast to mam-
malian cells [26–29]. Reversible protein phosphorylation, controlled by protein kinases and
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phosphatases, plays a major role in the regulatory mechanism of cellular activities in eukary-
otic cells. PP2A plays pivotal roles in cellular processes such as metabolism, transcription,
translation, cell cycle, and signal transduction. Thus, the interception of the control functions
of PP2A activity has been linked to diseases such as cancer [30–32] and neurodegenerative
disorders [33,34]. OAs and MCs are the best studied phosphatase inhibitors, specifically
binding to PP2A and strongly inhibiting its activity [19,35–37]. A colorimetric assay for
inhibiting PP2A, relying on its specific inhibitory effect, was suggested for the detection of
OAs and MCs, utilizing p-nitrophenylphosphate (p-NPP) as a substrate [11,20,22–24,38,39].
PP2A hydrolyzes p-NPP, a colorless artificial substrate, producing p-NP (p-nitrophenol),
which is yellowish. The color intensity is proportional to the enzyme activity, and its ab-
sorbance is measured at 405 nm. The concentration of these toxins in the samples can
be calculated from a calibration curve prepared using reference solutions of the toxins.
Several other natural toxins and antibiotics have also been demonstrated to inhibit PP2A,
e.g., cantharidin [40], calyculin-A [41], fostriecin [42], tautomycin [43], and nodularin [44].
Thus, the PP2A inhibition assay could be a valuable tool for detecting these toxins. This
review focuses on the potential of the PP2A inhibition assay as a detection and quantification
method for OA group and MC and its variants (MCs), as well as its suitability for screening
before confirmatory chemical analysis.

2. Okadaic Acids as Causative Agents of DSP

DSP is a gastrointestinal disease caused by ingesting bivalves (e.g., scallops, mussels,
oysters, short-necked clams) containing lipophilic toxins produced by dinoflagellate, Dino-
physis spp., and Prorocentrum spp. [45–47]. Its representative component is OA, a carboxylic
acid with multiple ether rings (molecular formula: C44H68O13), and its analogs, dinophysis-
toxins (DTXs). Collectively, they are known as OAs because of their structural similarities:
OA, dinophysistoxin-1 (DTX1 = 35-R-methyl OA), dinophysistoxin-2 (DTX2 = 31-demethyl-
35-S-methyl OA), and their 7-O-acyl esters (dinophysistoxin-3: DTX3) (Figure 1). Regarding
the origin of the toxins, it was initially demonstrated that the planktonic dinoflagellate
Dinophysis fortii and seven related Dinophysis species were capable of producing OA and
DTX1 [46,48], followed by the confirmation of DTX2 in Dinophysis acuta [45]. DTX3 is a
group of metabolites in bivalves that are esterified forms of OA, DTX1, and DTX2 at C7-OH
with fatty acids [49–51]. While the toxicity of DTX3 is less than that of the parent com-
pounds, it has the potential to undergo hydrolysis by lipases and other enzymes, thereby
releasing free-form OAs into the gastrointestinal tract during human digestion [52–55].
Dinoflagellates are distributed worldwide, and plankton-feeding animals such as bivalves
feed on them. When dinoflagellate blooms, these animals accumulate OAs that become
toxic, and consumption of them may cause DSP [36]. Likewise, the benthic dinoflagel-
late Prorocentrum lima has been identified as a producer of OAs [47]. In addition to their
diarrheagenicity [56], the health risks for DSPs are further aggravated by the potential
tumor-promoting activity of OAs [57]. DSP is a global issue for both public health and the
shellfish industry. Unlike fish farming, bivalve farming does not impose any significant
burden on the environment due to feeding and can be performed with relatively simple
facilities and techniques, which explains its rapid expansion. However, the presence of DSP
toxins has also increased, and monitoring them has become a global issue. The extensive
geographic prevalence, frequent incidence, and notable health hazards have established
DSP as a highly urgent issue in seafood safety [57]. Three methods can assess the harmful
effects of OAs: MBAs, cell bioassays typically on neuro-2a cells [17], and the PP inhibition
assay based on the strong and specific action of OAs in inhibiting PP2A [38,39]. MBA has
been replaced by the LC-MS/MS method, which quantifies OAs with high accuracy and
is employed for regulatory inspections [58]. However, to evaluate hazardous effects, the
method must use OA equivalents defined for each respective OA derived from mouse
lethality measured through either intraperitoneal (OAip) or oral administration (OAor).
Consequently, total OA equivalents are utilized to ascertain the compliance of shellfish
under the current regulatory system (0.16 mg/kg OA equivalent in whole meat) [55,59].
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3. Microcystins from Toxic Cyanobacteria

MCs are a group of cyclic heptapeptide hepatotoxins composed of five common
amino acids and a pair of variable L-amino acids. The common chemical structure is
cyclo-(D-alanine1-L-X2-D-MeAsp3-L-Z4-Adda5-D-Glu6-Mdha7), where MeAsp stands for
erythro-β-methyl-aspartic acid, Mdha for N-methyldehydroalanine, Adda for 3-amino-9-
methyl-2,6,8-trimethyl-10-phenyldeca- 4,6-dienoic acid, and X and Z denote two amino
acids with variable identities [60]. Variations in structure have been reported for each of the
seven amino acids, with the most common alterations involving demethylation at positions
3 and 7, as well as the replacement of L-amino acids at positions 2 and 4 (designated as
X and Z) [60,61]. For example, MC-LR contains the amino acids leucine (L) and arginine
(R) at these positions (Figure 2). MCs are produced by toxic cyanobacteria (blue–green
algae) such as Microcystis and others [60]. Microcystis aeruginosa is the most common and
widespread cyanobacterial species found in freshwater environments [62]. MC-LR is the
representative and the most toxic MC variant; recent research has reported an increasing
frequency of MC-producing M. aeruginosa blooms with climate change [63]. To date, ≥270
structural MC variants have been characterized from bloom samples and cultured strains of
cyanobacteria [60,61,64,65]. Almost all MCs are highly toxic to aquatic organisms, wildlife,
livestock, and humans, among others. Some intoxication events have been reported due
to the ingestion of MC-contaminated water, including human poisoning [66], livestock
poisoning [67], and mass mortality of wildlife [68]. For instance, the death of >50 patients
with renal dysfunction in Caruaru, Brazil, was linked to the presence of MCs in water used
for hemodialysis [66,69]. Accordingly, the World Health Organization has recommended
a maximum allowable level of 1 µg/L MC-LR or its equivalent in water [70]. There are
various detection methods for MCs in water [71]: biological (MBA), biochemical (PP2A
inhibition assay and ELISA), and chemical methods (LC-MS, high-performance capillary
electrophoresis, and gas chromatography), as well as novel biosensors. The traditionally
used MBA, as a qualitative method to detect MC toxicity present in samples, is not an
appropriate technique because of its lack of accuracy, sensitivity, and regard for animal
welfare. High-performance liquid chromatography and LC-MS methods, developed as an
alternative to MBA, are used for the quantification and identification of known MCs [2,3].
Recently, fast detection strategies of cyanobacterial blooms and associated cyanotoxins
combining remote/proximal sensing technology with analytical/biotechnological analyses
have been developed [72,73]. These methods require the reference materials of all MC
analogs to quantify and/or identify. However, only a few are commercially available,
namely MC-LR, -RR, -YR, -LF, and -LW. As a concrete example, in a previous study focused
on monitoring MCs in environmental water resources using LC-MS, we needed to isolate
and identify some MC variants from cultured strains and bloom samples of cyanobacteria
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before analysis due to the lack of commercially available reference material [74]. On the
other hand, the PP2A inhibition and ELISA assays are used for the rapid detection and
quantification of total MCs using only one reference material of the representative analog.
In addition, as a sample for the PP2A inhibition assay, health foods made of cyanobacterial
products have appeared on the market. Many of these products are sold in the form of
tablets, powders, or capsules. There exists a possibility for the products to be contaminated
with microcystins because, in some cases, cyanobacteria are harvested from open water
such as a lake [75–77]. The existence of MCs in food supplements containing spirulina,
which were sold in the United States, was confirmed, and the Oregon Department of
Agriculture, in 1997, established a safe threshold for MCs in blue–green algae supplements
at 1 µg/g [78]. More than 100 samples of cyanobacterial products have been detected by
different methods, including a PP2A assay which analyzed and reported contaminations
of MCs [77]. The application of the PP2A inhibition method using rhPP2A should also be
evaluated for these samples.
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into four families of unrelated proteins: PR55/B [80], PR61/B′ [81], PR72/B″ [82], and PR93 
or PR110/B′′′ [83] (Figure 3). Regulatory B subunits control the enzymatic activity and sub-
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Figure 2. Chemical structure of MCs. (a) General structure of MCs. R1 and R2 are H or
CH3; R3 = H, CH3, or C3H6OH; R4 = H, CH3, or COCH3; X and Z are variable L-amino acids.
(b) Variable chemical groups in MCs. Adda = (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethl-10-
phenyldeca-4,6-dienoic acid; d-MeAsp = erythro-β-methyl-d-aspartic acid; Dha = dehydroalanine;
Mdha = N-methyldehydroalanine; Dhb = dehydrobutyrine; Mdhb = N-methylhydrobutyrine; (6Z)
Adda = stereoisomer of the ∆6 double bond; Hty = homotyrosine.

4. Structure and Function of PP2A and Inhibition by Natural Toxins

PP2A is a major enzyme in eukaryotic cells that dephosphorylates the serine/threonine
residues of proteins and is one of the four major classes (PP1, PP2A, PP2B, and PP2C)
of eukaryotic serine/threonine phosphoprotein phosphatases [26,79]. PP2A exists as a
holoenzyme and contains a core dimer (PP2AD) consisting of a highly conserved 36 kDa
catalytic subunit (PP2Ac) and a 65 kDa scaffold A subunit (PR65/A). This dimer can
constitute the holoenzyme by associating with a third, variable, regulatory B subunit
divided into four families of unrelated proteins: PR55/B [80], PR61/B′ [81], PR72/B′′ [82],
and PR93 or PR110/B′ ′ ′ [83] (Figure 3). Regulatory B subunits control the enzymatic activity
and substrate specificity of PP2A, and the intercellular localization and tissue specificity of
the holoenzyme [29,84]. The regulatory mechanisms of PP2A holoenzyme formation and
pharmacological PP2A activation in cancer therapy have been well studied [85–88], and
the noncatalytic function of PP2A as a contribution of PP2A to chromosome assembly is
also known [89]. Several natural toxins and antibiotics, including OAs and MCs, inhibit
PP2A [19,35–37,40–44]. The overall architecture of the PP2A core enzyme bound to OA
and MC-LR and the PP2A holoenzyme was revealed by its crystal structure, revealing
that despite their different chemical structures (Figures 1 and 2), OA and MC-LR bind
to the same surface pocket on PP2Ac [90–93]. The methylation of Dha (dehydroalanine)
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at position 7 in MC-LR is important for PP2A inhibition. Similarly, cys269 in PP2Ac and
Mdha (N-methyldehydroalanine) at position 7 in MCs play crucial roles as interactive sites
between PP2A and MCs [18]. Structurally, OA, DTX1, and DTX2 differ in the number
and position of a methyl group (Figure 1). DTX-1 has a 35-methyl group in the equatorial
position, whereas DTX-2 has a 35-methyl group in the axial position [45,94]. Molecular
modeling indicated that the axial 35-methyl in DTX-2 may cause unfavorable interactions
in the PP2A binding site, explaining its lower toxicity [95]. The methyl group at the
hydrophobic end of OA is accommodated in the hydrophobic cage in PP2Ac, one end of
the binding pocket [92]. Therefore, the different inhibitory potency of OAs on PP2A might
be due to differences in the number and position of the methyl group in the backbone
structure of OAs, which might be important for PP2A inhibition similar to that in MCs.
These possibilities have provided insights into the structural basis for understanding PP2A
holoenzyme assembly, substrate recruitment, inhibition by natural toxins, and regulation
by phosphorylation and methylation.
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Figure 3. PP2A core dimer (PP2AD) and heterotrimeric holoenzymes. One scaffold A subunit (A)
binds to one catalytic subunit (PP2Ac) (C) to form an A/C core dimer (PP2AD). This dimer can
constitute the holoenzyme by associating with a third, variable, regulatory B subunit (B), comprising
four families of unrelated proteins: PR55/B, PR61/B′, PR72/B′ ′, and PR93 or PR110/B′ ′ ′.

5. PP2A Inhibition Assay for Detection of OAs and MCs

Based on the specific and strong PP2A inhibitory action of OAs and MCs, a colorimetric
PP2A inhibition assay using p-NPP as a substrate was developed [11,20–25,38,39]. PP2A
hydrolyzes p-NPP (colorless) and produces p-NP (yellow) (Figure 4). Figure 5a shows an
example image from the PP2A inhibition assay performed on a 96-well microplate. The
color intensity is proportional to the enzyme activity, and the absorbance was measured at
405 nm. An example of a dose-dependent curve constructed from the absorbance date is
shown in Figure 5b.

The concentration of these toxins in samples can be calculated from the calibration
curve prepared using the respective reference materials of the toxin classes. In early
studies, colorimetric PP2A inhibition assays employed a native PP2A extracted from
human hepatocytes, human red blood cells [22], or rabbit skeletal muscle [23]. However,
this approach was not widely applied because of fluctuations in enzyme quality, given the
importance of having a PP2A product of high purity and good stability for practical use.
Although several recombinant protein expression systems, such as bacterial, yeast [96,97],
and mammalian [98,99] expression, had been used to produce an active recombinant PP2Ac
(rPP2Ac) at high yield, these systems did not produce high-quality PP2A. For use in assay
kits, genetic engineering techniques employing the baculovirus expression system and
High Five insect cells can be utilized to generate active rPP2A [100,101]. Furthermore, an
optimized methodology was introduced for the high-yield production of rPP2Ac with high
activity that is achieved at a lower temperature (19 ◦C) compared to the conventional culture
conditions (27 ◦C), employing the baculovirus expression system [101], and its suitability
for use in a microplate assay was evaluated previously [21,25,102]. The recombinant human
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PP2A catalytic subunit (rhPP2Ac) was purified in a simple step with good reproducibility
(Figure 6a). Recombinant baculoviruses encoding His8×-tagged human PP2Ac (vHis-
PP2Ac) were produced using the Bac-to-Bac baculovirus expression system (Invitrogen)
according to the manufacturer’s protocols and amplified using Sf9 (Spodoptera frugiperda)
cells. To obtain active recombinant PP2A, His8×-tagged rhPP2Ac was expressed in High
Five insect cells and purified from cell lysates using ethanol precipitation and affinity
purification with Ni–NTA agarose, as shown in Figure 6 [100,101].
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Using rhPP2Ac and p-NPP, assay kits for the rapid detection of OAs and MCs were
developed [21,25,103]. In the kits, a calibration curve for quantification can be created using
OA and MC-LR as standard substances. This curve can be utilized to calculate and express
the concentrations of OA and MC in the samples as OA or MC-LR equivalents. For OAs,
the measurable range in the PP2A inhibition assay was determined based on the calibration
curve established using the certified reference material (CRM) of OA, as shown in Figure 7.

Matrix blanks, both unhydrolyzed and hydrolyzed, were prepared using mussel and
scallop extracts devoid of OAs to determine the limit of detection (LOD) and the limit of
quantification (LOQ) for OA detection [16,25,102]. The LOD was estimated as the sum of the
average of matrix blank values and three times the value of the standard deviation (SD, 3xSD),
and the LOQ was estimated as the sum of the average of matrix blank values and 10 times
the value of SD (10xSD; Table 1). As officially recommended, a hydrolysis step is required
to detect the presence of DTX3 [55] because this very weak PP2A inhibitor [25,104,105] can
only be detected in the PP inhibition assay as free OAs with an alkaline hydrolysis step. For
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MCs, the assay can detect MC-LR in water at 0.005–5 ng/mL [21]. These values are below the
WHO-recommended level of 1 µg/L; the water sample could be directly applied to the assay
without concentration.
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Figure 6. Purification scheme of recombinant human PP2A catalytic subunit (rhPP2Ac). (a) Recombi-
nant human PP2Ac (rhPP2Ac) was synthesized in High Five insect cells by infection of recombinant
baculovirus encoding His8×-tagged human PP2Ac and purified from cell lysates using ethanol pre-
cipitation and affinity purification with Ni–NTA agarose. (b) After purification, the recombinant
protein was subjected to 12% SDS–PAGE and visualized using Coomassie brilliant blue R staining
according to the method described in the reference [101].
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Figure 7. Calibration curve using the net absorbance of OA standard solutions. The PP2A inhibition
assay was performed using OA standard solutions (0, 0.5, 1.0, 1.5, 2.0, 2.5, 5.0, and 10.0 ng/mL)
prepared from OA CRM (CRM-OA-d, NRC Canada) according to the method described in the
reference [16]. Each point in the calibration curve represents the mean (n = 3) with an RSD of 2.5%.

Table 1. Limits of detection (LOD) and quantitation (LOQ) for okadaic acids in shellfish using PP2A
inhibition assay.

Matrix LOD (µg/g) LOQ (µg/g) Reference

Mussels
Unhydrolyzed 0.0387 0.0765 [16]

0.0424 0.0725 [25]
Hydrolyzed 0.0646 0.0989 [16]

0.0476 0.0932 [25]
Scallops

Unhydrolyzed 0.0217 0.0372 [25]
0.0262 0.0470 [102]

Hydrolyzed 0.0274 0.0415 [25]
0.0432 0.0780 [102]
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The current regulatory level of OAs is 0.16 mg/kg OA equivalent in the whole meat
of bivalve [55,59], and the guidance level of MCs in water is 1 µg/L MC-LR or its equiva-
lent [70]. The concentration of each analog obtained using instrumental analysis, such as
LC-MS, should be converted into OA or MC-LR equivalents using toxicity equivalency
factors (TEFs). The 50% inhibitory concentration (IC50) values of each OA and MC ana-
log for inhibiting rhPP2Ac provides the OA equivalent (Oapp2a) and MC-LR equivalent,
respectively (Table 2). The relative ratios (OApp2a) for OAs [16] and conversion factors
for MCs [18], based on the IC50 values, allow for the calculation of the total OAs or MCs
concentration in the samples as the OA equivalent and MC-LR equivalent, respectively,
when using the instrumental analysis method. The assay kits used OA or MC-LR as stan-
dards and quantified the total OAs or MCs concentration in the samples, as OA or MC-LR
equivalents, respectively. Compared to instrumental analysis, the PP2A inhibition assay
has the following advantages: no need to prepare all analog reference materials, toxicity
evaluation not requiring TEF as it uses OA or MC-LR as standards, ready to use as a kit,
and adaptability to both OAs and MCs by simply changing the reference material. So far,
we have evaluated the PP2A inhibition assay for the detection of OAs in the whole meat
and digestive gland of bivalves and of MCs in environmental waters.

Table 2. IC50 values of okadaic acids (OAs) and microcystins (MCs) in the PP2A inhibition assay.

Toxins PP2A Inhibition Reference

OAs IC50 (nM) OApp2a a

OA 0.14 1 [16]
DTX1 0.09 1.6 [16]
DTX2 0.45 0.3 [16]

MCs IC50 (nM) Conversion factor b

MC-LR 0.032 1.000 [18]
MC-RR 0.056 0.571 [18]
MC-FR 0.069 0.464 [18]
MC-LF 0.096 0.333 [18]
[D-Asp3]MC-HtyR 0.098 0.327 [18]
[D-Asp3, (Z)-Dhb7]MC-HtyR 0.110 0.291 [18]
MC-LW 0.114 0.281 [18]
[D-Asp3, (E)-Dhb7]MC-HtyR 0.122 0.262 [18]
MC-YR 0.125 0.256 [18]
MC-LA 0.161 0.199 [18]
[D-Asp3, (Z)-Dhb7]MC-LR 0.164 0.195 [18]
[Dha7]MC-LR 0.167 0.192 [18]
MC-WR 0.179 0.179 [18]
[D-Asp3, (E)-Dhb7]MC-LR 0.201 0.159 [18]
[D-Asp3, Dha7]MC-RR 0.220 0.145 [18]
[D-Asp3, Dha7]MC-LR 0.254 0.126 [18]
[Dha7]MC-RR 0.293 0.109 [18]
[D-Asp3]MC-RR 0.300 0.107 [18]
[Dha7]MC-YR 0.379 0.084 [18]
Nodularin 0.540 0.059 [18]
[6-(Z)-Adda5]MC-RR 10.126 0.003 [18]

a OA equivalent based on PP2A inhibition activity. b MC-LR equivalent based on PP2A inhibition activity.

6. Conclusions

This review summarized the principles and uses of a PP2A inhibition assay for the
rapid detection of OAs and MCs. To manage the health risk posed by these toxins, rapid,
sensitive, and inexpensive methods to monitor the levels of OAs in shellfish and of MCs in
aquatic environments or drinking water are urgently needed. Since these toxins strongly
and specifically inhibit PP2A, they can be used to assay MCs and OAs. The method is
simple, cost-effective, field-ready, and suitable for processing numerous samples, making it
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a viable replacement for MBA. Additionally, combining the PP2A inhibition assay with LC-
MS analysis offers an efficient monitoring approach for rapidly assessing the environmental
and health risks associated with hepatotoxic cyanobacteria producing MCs and toxic
dinoflagellates producing OAs [74,106]. HPLC and LC-MS are employed for quantifying
and identifying known OAs and MCs through instrumental analysis, whereas the protein
PP2A inhibition assay is utilized for the swift detection and quantification of the total
content of these toxins. PP2A not only plays a pivotal role as a protein phosphatase in
important cellular events but also serves as a valuable tool in the rapid detection of natural
toxins such as OAs and MCs.
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