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Abstract: To minimize the temperature of the propulsion motor and reduce flow loss in the water-
cooling structure during the operation of an underwater unmanned vehicle, this paper employs a
multi-objective genetic algorithm to optimize the dimensions of the inner and outer dual-channel
water-cooling structure as well as the flow rate of the cooling water. Firstly, the influence of design
variables on response variables was examined through sensitivity analysis. Subsequently, a model
sample library for simulating the coupled temperature and flow fields of the motor was constructed,
and a response surface model between the variables was developed. Finally, appropriate sample
points were selected from the Pareto solution set to verify the validity of the optimization results
through CFD simulation and error analysis. The sensitivity analysis results indicate that the cooling
water flow rate had the greatest impact on both the maximum motor temperature and the flow losses
of the water-cooling structure, with values of 77.79% and 99.84%, respectively. On the other hand, the
optimal design parameters for the four dimensions of the channel and the cooling water flow rate
were obtained. Compared with the initial dimensions of the water-cooling structure, the maximum
temperature of the motor decreased from 332.86 K to 331.46 K. Simultaneously, the flow loss of the
water-cooling structure decreased from 100.02 kPa to 59.58 kPa, with a maximum reduction rate of
40.43%. The optimization effect of the motor cooling system is significant, which provides valuable
insights for system design under the premise of ignoring multi-objective interactions.

Keywords: permanent magnet synchronous motor; multi-objective genetic algorithm; response
surface model; dual-channel water-cooling structure; optimal design

1. Introduction

With the rapid advancement of modern science, technology, and marine equipment,
unmanned underwater vehicles (UUVs) are increasingly utilized in ocean exploration,
environmental monitoring, and national defense and security [1-3]. Electric drive technol-
ogy is increasingly becoming the preferred propulsion method for UUVs due to its high
efficiency, reliability, and low noise levels [4-6]. However, the motor generates significant
heat during prolonged operation under high loads and power, particularly in the confined
underwater environment. The accumulation of heat can lead to reduced motor efficiency,
overheating damage, shortened service life, and other serious issues that affect the overall
performance of the system [7,8]. Therefore, designing an efficient cooling system is essential
for the long-term stable operation of UUVs [9]. Given the structural characteristics of UUVs
and the constraints of the workplace, water-cooling systems offer remarkable advantages.
Compared with traditional cooling solutions, water cooling not only effectively controls the
temperature of the heated motor within a safe range, but also meets the strict requirements
of low noise and stealth for the UUV in the complex underwater environment.
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The water-cooling system typically comprises several components that work together
to ensure efficient heat dissipation and stable operation [10]. A core component is the water
channel designed within the motor housing, which directs cooling water to the surfaces
of the motor or other equipment needing heat dissipation. These channels are often de-
signed in ring, spiral, or multi-channel structures to promote uniform heat transfer [11-13].
Zhang [14] et al. investigated the cooling capacity of a 150 kW water-cooling permanent
magnet synchronous motor and its influencing factors. Their study focused on analyzing
how the combination of Reynolds number, flow rate, cooling temperature, and the number
of channels affected the cooling performance and efficiency of the spiral shell water jacket.
Ou [15] et al. proposed a self-adjusting cooling system for a UUV propulsion motor that
could utilize fluid dynamic pressure to pump seawater into the housing water channel.
Chen [16] et al. designed a structure with water-cooling plates and investigated the effect
of various channel shapes on the heat dissipation effect. Their results indicated that this
structure significantly enhanced the temperature tolerance range and cooling performance
of the motor. Additionally, Lee [17] et al. proposed a novel U-shaped water-cooling design
for the in-wheel motor in electric vehicles, which improved coil life by 83.9% compared to
conventional designs.

In the design of a water-cooling system, it is necessary to consider the layout of the
water channel, the material selection and flow control, and other factors to ensure the
optimization of the cooling effect. A reasonable layout of the channel can maximize the
contact area between the cooling water and the motor surface, preventing heat accumulation
and ensuring effective heat removal. Meanwhile, optimizing the flow path of the cooling
water helps reduce flow resistance. Li [18] et al. developed a coupled flow and temperature
field numerical model for an annular channel cooling motor from a small electric vehicle,
and the simulation results showed that the channel height had a large effect on the coolant
flow loss and a small effect on the temperature reduction. Baojun [19] et al. investigated
a high-pressure cooling two-speed motor and found that the cooling performance of the
annular spiral channel was superior to that of the axial S-type channel. However, they noted
that increasing the number of axial S-type channels could lead to higher fluid resistance,
which might interfere with cooling effectiveness. Additionally, research on cooling channels
encompasses not only traditional fluid dynamics and heat transfer but also extends into
areas such as intelligent control, innovative cooling media, and biomimetic design. This
interdisciplinary approach fosters advancements toward smarter, energy-saving, and more
efficient cooling solutions [20-22].

Currently, the research focus still generally tends to start from the structural and geo-
metrical parameters of liquid cooling to explore their influence on the cooling effect [23-25].
Through experiments and numerical simulations, many researchers have been able to
analyze the differences, advantages, and disadvantages of various designs, subsequently
proposing improvements to achieve more efficient water-cooling systems. The optimized
design of the cooling system should be evaluated based on metrics such as temperature,
field distribution of motor, temperature rise suppression rate, and geometrical size parame-
ters to assess the effectiveness of the cooling design solution [26-28].The optimal design of
UUV propulsion motor cooling systems typically involves multi-objective optimization
aimed at simultaneously enhancing factors such as performance, efficiency, heat dissipation,
and cost [29]. In this context, the agent model is widely employed as an effective approach
for optimizing complex systems [30,31]. Based on a limited set of experimental sample data,
the agent model translates the relationship between design variables and response variables
into a mathematical framework, approximating complex simulations and replacing finite
element analysis with its predictive results. Obviously, this approach significantly reduces
the computational workload while maintaining result accuracy. Considering computational
time cost and universality, the agent model is well-suited for the optimization design of
motor systems [32]. Bittner [33] et al. focused on a permanent magnet motor for electric
vehicles, using the mass of the magnet and the motor torque as optimization objectives.
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They established a Kriging agent model to relate these objectives to the motor parameters,
and employed a particle swarm algorithm to optimize the motor structure.

Based on the use of an appropriate agent model, it is necessary to select an optimiza-
tion algorithm to achieve multi-objective optimization. Effective optimization algorithms
can address the complex interrelationships among multiple objectives and assist designers
in finding the optimal balance among various metrics [34,35]. The computational results
obtained from multi-objective optimization problems are not solely deterministic solutions.
Typically, through the artificial imposition of specific constraints on the objectives, a combi-
nation of available solutions is ultimately derived, known as the Pareto solution set [36,37].
Li [38] et al. employed a multi-objective optimization algorithm to determine the optimal
structural parameters of the cooling system and investigated a motor cooling scheme that
incorporated both internal oil circulation and external water circulation. Hendre [39] et al.
optimized the cooling performance of a water-cooling jacket with a diesel engine using
coupled field analysis. The study used the Latin hypercube method to analyze parameters
such as the mass flow rate of the coolant and the inlet temperature, ultimately determining
the input parameter values for maximum cooling performance. Song [40] et al. analyzed
the motor heat dissipation process based on the LPTN method and executed an optimiza-
tion based on the Kriging agent model, where the optimization objective function was
the difference between the predicted temperature of the model and the experimentally
measured temperature, with results indicating that the model demonstrated high predictive
accuracy. Thanks to the introduction of modern intelligent computing technology and
advanced simulation tools, the efficiency and reliability of multi-objective optimal design
have significantly improved, providing a solid foundation for basic design [14,41-43].
However, despite substantial progress in the multi-objective optimal design of motors in
recent years, challenges remain in addressing the design and analysis issues of complex
motors, necessitating further in-depth research.

In summary, existing research on the optimized design of heat dissipation for motors
primarily focuses on the traditional machinery industry. However, as the application
of motors expands into emerging fields such as UUVs, the conventional motor cooling
methods have proven inadequate for meeting the cooling requirements in underwater
environments. Meanwhile, there is a relative scarcity of optimized heat dissipation designs
tailored to specific operating conditions. To ensure the efficient operation of motors under
complex underwater conditions, there is an urgent need to develop more adaptive cooling
solutions, such as efficient water-cooling systems. Moreover, optimizing the design of the
propulsion motor cooling system to achieve a more effective cooling solution has become
a critical aspect of UUV design. In this process, it is essential to focus not only on the
cooling performance but also to comprehensively evaluate other factors, including the
volume, weight, cost, and integration into the motor. By systematically analyzing cooling
requirements and design variables, more adaptable cooling systems can be developed to
enhance overall efficiency and long-term stability.

Many existing studies continue to rely on full-scale simulations, which are compu-
tationally expensive and inefficient. In contrast, the development of agent models can
reduce computational costs and accelerate the optimization iteration process. Furthermore,
most studies tend to focus on traditional water-cooling designs, lacking the exploration
and optimization of new water channel configurations, which limits improvements in heat
dissipation efficiency and flow performance. This paper investigates the propulsion motor
of a UUV as the research subject, selecting a dual-channel water-cooling method that com-
prises the water channel between the motor housing and the UUV housing. Utilizing the
Latin hypercube sampling method and the response surface agent model, a multi-objective
genetic algorithm was employed, with the design objectives of minimizing the maximum
motor temperature and flow loss in the water-cooling structure. This approach aimed
to derive the Pareto solution set for multi-objective optimization, and the validity and
reliability of the optimization results were confirmed through CFD simulation and error
analyses. The method employed in this study offers a novel approach and effective solution
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for designing a motor cooling system, addressing the limitations of existing research and
serving as a valuable reference for optimizing UUV propulsion motor cooling. The multi-
objective optimization design flowchart presented in this paper is illustrated in Figure 1.
Starting from the preparatory stage, a sensitivity analysis of the relevant design variables
was initially conducted to examine the trends and relative importance of changes among
the variables. Subsequently, a sample library of surrogate models was constructed, which
included the development of agent models between design variables and response vari-
ables, along with accuracy validation. Once a qualified sample library had been obtained,
the Pareto solution set was derived by combining the defined objective function and the
constraints. Finally, the results were verified and analyzed to identify the design solution
with optimal performance.

[ Sensitivity analysis of design variables ]

|

Design of experiments and construction of
a sample library of agent models

Construction of response surface agent model with
design and response variables

Guidelines related to the
addition of data points

Accuracy
testing of agent
models
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[ Determination of objective function and constraints ]
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[ Pareto optimal solutions for agent optimization ]

Accuracy check
of optimization
results

unqualified Guidelines related to the ]

addition of data points
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[ Optimal motor cooling system design solutions ]

Figure 1. Flow chart of multi-objective genetic algorithm optimization of the cooling system.

2. Problem Description
2.1. Motor Model and System Parameter

The UUV propulsion motor studied in this paper is a custom-designed permanent
magnet synchronous motor (PMSM) with a rated power of 90 kW and a rated speed of
3000 rpm, and the specific structural parameters of the motor are presented in Table 1 [11,15].
The thermophysical parameters of the motor components are essential for motor analysis
and cooling system design. Accurate knowledge of the physical parameters such as thermal
conductivity and the specific heat of materials provides a data foundation for subsequent
analytical strategies. The relevant parameters of the motor discussed in this paper are
presented in Table 2 [11,15]. The losses of PMSM during normal operation, resulting from
an inability to achieve 100% energy conversion between electrical and mechanical energy,
primarily lead to a rise in motor temperature, affecting both efficiency and operational safety.
By simulating the electromagnetic field of the motor under rated operating conditions [11],
the loss values for each heating component under load conditions could be obtained, as
shown in Table 3. Among these, winding losses represented the largest proportion, at
2.78 kW, followed by stator and rotor core losses of approximately 0.97 kW, while permanent
magnet eddy current losses constituted the smallest share. Mechanical losses are typically
challenging to obtain directly through electromagnetic field simulation or experimental
measurements, and were estimated to be 2% of the total power. Using the loss values and
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the effective volume of the heat-generating components, the corresponding heat generation
rate could be calculated, which provided data support for the simulation of the motor
temperature field coupled with the flow field.

Table 1. Structural parameters of the UUV motor.

Parameter Values Parameter Values

Rated power (kW) 90 Rated speed (rpm) 3000

Stator inner diameter (mm) 177 Rotor inner diameter (mm) 129

Stator outer diameter (mm) 237 Rotor outer diameter (mm) 156

Stator length (mm) 150 Air gap length (mm) 25
Slots 72 Winding pitch 5
Magnet thickness (mm) 8 Parallel branches 2
Magnet width (mm) 37.5 Pole pairs 6
Pole-arc coefficient 0.83 Turns 2

Table 2. Thermophysical parameters of the motor components.

Motor Material Specific Heat Density Thermal Conductivity
Components (J/kg-K) (kg/m®) (W/m-K)
Axial: 233
Winding Copper 390 8978 Radial: 2.82
Tangential:2.82
Axial: 1.97
Stator 50WW350 460 7800 Radial: 25
Tangential:25
Rotor Stainless steel 502 8030 16.27
Magnet Nd2Fe14B 460 7500 7.60
Potting insulation Epoxy resin 1500 1200 0.22
Air gap Air 1000 1.29 0.15
Motor housing Aluminum 924 2790 193

Table 3. Heat data of the motor components at rated operating conditions.

Motor Component Loss Effective Volume Heat Generation Rate
W) (m3) (kW/ m?)
Stator 967.70 0.00206 469.89
Rotor 0.17 0.00087 0.19
Winding 2781.27 0.00129 2156.27
Magnet 2.30 0.00051 4.49

Considering the space limitation of the UUV energy compartment section and the
drawbacks of conventional liquid-cooling structures, which are prone to leaks and unstable
cooling performance, this study adopted a spiral water channel connected between the
PMSM housing and the UUV housing as the cooling device. The inner and outer water
channel were linked by pipelines, with the structural schematic diagram illustrated in
Figure 2. To simplify the problem while maximizing the constraints of fluid-liquid heat
transfer efficiency, the machining feasibility of the overall device, and the structural as-
sembly rationality, the water channel was designed with a rectangular cross-section. Its
overall cross-section is shown in Figure 3a. In this diagram, Wa and Wb represented the
width and height of the outer channel inside the UUV housing, respectively. Na and Nb
denote the width and height of the inner channel inside the motor housing, respectively,
and d indicates the depth of the channel within the cooling structure inside the motor
housing. One of the most frequently used parameters in the study of motor cooling systems
is the maximum temperature of the motor. The maximum temperature is the maximum
value measured in the temperature distribution of the internal components of the motor
during operation, which is usually found in the parts of the motor where the internal heat
load is most concentrated, especially in the winding region of the motor. The maximum
temperature of a motor is a critical parameter in thermal management and performance
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evaluation, which directly affects the efficiency, long-term operational reliability, and ser-
vice life of the motor. In the optimized design of the water-cooling system, it is essential to
analyze not only the temperature field distribution and temperature rise data but also to
comprehensively consider the fluid flow rate and flow losses, with the aim of reducing the
cost of the research and component selection [44—46]. A flow rate that is too low will hinder
effective heat transfer, leading to reduced cooling efficiency, while an excessively high flow
rate may significantly increase flow losses. The key to integrating the flow losses of the
water-cooling structure into the design evaluation is to monitor the pressure difference
between the inlet and outlet of the cooling water within the system. This value quantifies
the flow resistance and facilitates the assessment of the cooling efficiency relative to the
overall performance of the system. Based on the above analysis, the design variables for
the subsequent multi-objective optimization included Na, Nb, Wa, Wb, d, and the cooling
water flow rate Qw. The response variables were the maximum temperature of the motor,
Tynax, and the flow loss in the water-cooling structure, P,,. To ensure the structural strength
and appropriate flow parameters of the motor, the initial design variables were set as
Na =24 mm, Nb = 10 mm, Wa = 24 mm, Wb = 10 mm, d = 5 mm, and Qw = 11 L/min. The
range of values for each design variable is shown in Figure 3b, where the width of the inner
and outer channel is 16~32 mm, the height is 8~12 mm, the depth of the inner channel
groove is 4~6 mm, and the cooling water flow rate is 8~14 L/min.

Thrust Rectangular cross-section ( d)

(a) Power module section Rudder plate

N

UUV housing g

b) UUV housing
( ) spiral channel (C)
Motor housing
spiral channel

Shaft

Bearing Winding

Magnet Outer channel

Stator core

Rotor -~ s ==7"""  _ _ _ _ _ __ Inner channel

Figure 2. Schematic diagram of the cooling structure of the UUV propulsion motor: (a) overall
structure of the UUV; (b) the structure of the dual-water-channel system; (c) the structure of the inner
and outer water channel; (d) rectangular cross-section of the dual water channel.

Outer wall —+
UUV housing Wa g l
Nb -
12 g
£ —
Na g
e
w —
1 d Motor housing ov -

1 0 3 10 15 20 25 30 35
Inside wall

Variable value range (mm)
(@) (b)

Figure 3. Parameters involved in the water-cooling system: (a) cross-sectional and dimensional
parameters of the dual-channel water-cooling structure; (b) range of values of the design variables
for multi-objective optimization.
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2.2. Mathematical Model
2.2.1. Control Equations

The coolant in the cooling system should satisfy the three conservation laws regard-
ing the conservation of mass, the conservation of momentum, and the conservation of
energy [1,47]. In the steady-state process, these can be expressed mathematically as

d(pu) n 9(pv) n d(pw)

ox ay 0z =0 @
o(udt + 0%t +wd) = 34 (L4 + 244+ 24)
p(ud+oR +wl) =~ +u (T3 + 25+ 53) @)
(e +ole i) =~ o+ (2 + 58+ 28)
oT T . 9T T  PT 9T
pcp(uagc+va]/+waz> = Ke<ax2+ay2+azz> 3)

where u, v, and w are the velocity of the fluid in the x, y, and z directions, respectively, and p
is the density of the fluid. P is the pressure exerted on the fluid, i, is the effective viscosity
of the fluid, ¢, denotes the constant pressure-specific heat capacity of the fluid, T is the
temperature of the fluid, and K. is the thermal conductivity of the fluid.

Since the coolant in the channel is usually in a turbulent state, the SST k-w model can
effectively capture the flow characteristics of the fluid in complex geometries and optimize
the convective heat transfer efficiency [15]. At the same time, this model is able to balance
the assessment of heat and pressure drop loss to ensure that the overall performance of
the heat dissipation system is improved. The transport equation for the turbulent kinetic
energy k of the fluid in this paper can be expressed as

dok  d(puk) 0 ok
SF + o Py — Bpkw + a[(ﬂ + ‘Tkﬂt)a] (4)

where ¢ is the flow time, P is the turbulence generation term, w is the specific dissipation
rate, and B is an empirical constant. y is the molecular viscosity, y; is the turbulent viscosity,
and oy is the Prandtl number of turbulent kinetic energy, which is usually taken as 1.

The transportation equation for the specific dissipation rate w is

d(pw) = I(puw) _ Y ow pow ok dw

0
_ 2, 9 9w _p\Plw
5 + I kpk B1Bw +ax [(V—l—awyt) ax} +2(1—-F) o 3% 9 (5)

where « and B; are model constants and o, is the Prandtl number of the turbulence specific
dissipation rate, which is usually taken to be 0.5. F; is the mixing function that determines
the weighting of the model in the near-wall region and in the free region.

The turbulent viscosity u; can be calculated using the following equation

park
max(way, SF)

pr = (6)
where a; is the model constant, usually taken as 0.31. S is the strain rate and F; is the
mixing function used to determine how the model behaves in different regions.

The effect of radiant heat transfer on the motor temperature is slight compared to heat
conduction and convection heat transfer [48]. Therefore, in this study, the heat transfer
inside the motor is mainly through heat conduction, while convection and the effect of
radiant heat transfer was neglected. The heat conduction is calculated as

Q= -AA-- (7)
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where Q is the thermal conductivity flow per unit time. A is the thermal conductivity area,
A is the thermal conductivity coefficient, and ‘3—5 is the temperature gradient.

The heat transfer between the motor housing or UUV housing and the fluid in the
cooling channel is controlled by convective heat transfer in accordance with Newton's laws
of cooling

Qy = h(Tuc_Tw) 8)

where Q; is the amount of heat transfer per unit area, and & is the convective heat transfer
coefficient which determines the heat transfer capacity between the fluid and the wall.
T, is the temperature of the surface of the shell, and T, indicates the temperature of the
cooling water.

For the heat transfer model in the solid region of the motor system, the energy conser-
vation equation can be expressed as follows

2T, 2T, 9T,
ks<ax2+ay2+az2)+q_o 9)

where k; is the thermal conductivity of the solid material, T is the temperature of the solid
region, and 4 is the calorific value per unit volume of the solid part.

2.2.2. Multi-Objective Optimization

Sensitivity analysis is used to investigate the degree of change and trend of the
response variable by changing the values of the design variables within a certain range, in
order to determine the degree of influence of each design variable on the response variable.
After determining the range of values of the design variables, the sensitivity analysis of
each variable is carried out based on the results of the CFD simulation

SA; = _ fmax(xi) _fmin(xi) (10)
Z[fmax(xj) _fmin(xj)]

]

where SA; denotes the sensitivity of a certain design variable to the response variable.
fmax(x;) and fmin(x;) denote the maximum and minimum value of the response variable for
all ranges of values, respectively, and 7 is the total number of samples.

A response surface model (RSM) is a regression model widely used for solving motor-
related multi-objective optimization problems [35]. The specific mathematical description
of the second-order polynomial response surface agent model is shown in Equation (11),
which mainly obtains the approximate optimal solution of the optimization objective by
determining the proportional relationship between multidimensional design variables and
weight coefficients

k k
Yo = But Y Bixi+ Y Bixi + Y Bijxixj + 8 (11)
i=1 i=1 <)

where y, is the response variable and x; is the design variable. B is the constant term of
the model, which represents the response value when all independent variables are zero.
Bi is the linear coefficient, f;; is the quadratic coefficient, and B;; is the interaction term
coefficient. ¢ denotes the error term of the model. Based on the problem of the optimized
motor cooling system in this paper, in order to better explore the effects caused by changes
in the design variables on the response variables, a special form of RSM, namely, curve
fitting, was used with the following expression

Yo = Pot+Brxj+- 4 Bux"+& = Y Bix/ +8 (12)
i=1
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The accuracy of the agent model can be verified by analyzing the fitting effect of the
RSM. At present, the evaluation indexes commonly used for error analysis mainly include
the coefficient of determination R2, the maximum absolute error MAE, and the root mean
square error RMSE, which can be expressed in the form of Equations (13)-(15), respectively.

Ntest . 2 Ntest N
L 1(%‘—3/1') '21(% )
1= 1=
R =t = ' (13)
Py (vi—v) Py (vi—v;)
i=1 i=1
MAE = Max|y; — i (14)
1 Ntest 2
RMSE = /- ) (i~ 9:) (15)

i=1
where y; denotes the actual simulation value of the test sample point. #; denotes the
predicted value of the agent model and ¥; denotes the actual simulation mean value. 71y is
the number of test samples.
Moreover, the multi-objective optimization problem can be described using exact
mathematical expression [49]

minf(x) = [fi(x), fa(x), .., fu(2)]"
SE g

|

X1,X2,- - ~rx‘rl)

where f(x) is the set of objective functions to be solved. m is the number of objective
functions. g;(x) and /;(x) denote the inequality constraint functions and the linear equality
constraint functions, respectively. p and u indicate the number of two different types of
constraint functions. x, is the decision variable.

3. CFD Coupling Simulation
3.1. Numerical Conditions and Grid

In the water-cooling process of the motor, convective heat transfer is the primary
mechanism for transferring heat from the motor to the cooling water, based on the principle
outlined in Equation (8). The SST k—w model effectively captures the details of the turbulent
boundary layer near the wall, particularly in the cooling channel, and correctly simulates
rapid changes in local flow characteristics to ensure calculation accuracy, thereby effectively
assessing the heat transfer capacity of the cooling system. Water, as the cooling medium,
was treated as an incompressible flow. In this paper, mass-flow-inlet was employed as the
inlet boundary condition for the cooling water channel, with the flow rate set according
to the cooling demands of the actual system and the characteristics of the fluid pump.
To facilitate effective heat dissipation, real-time temperature transfer between the inlet
and outlet wall surfaces of the water-cooling structure was achieved using the built-in
user-defined function (UDF) in FLUENT software, enabling inlet and outlet temperature
coupling through wall number identification. Both the cooling water channel and the solid
inner wall were designated as no-slip walls, meaning the fluid velocity at the wall was
zero, which was in line with the actual physical phenomenon. In this paper, FLUENT
software 2022 R2 version was used for numerical simulation, and the solver employed a
coupled algorithm for pressure-velocity coupling to ensure convergence and the stability
of the calculations. A second-order upwind scheme was chosen for the discretization
method to enhance computational accuracy, while the convergence criterion was set to
residuals less than 10~¢. Considering the complex geometry, the unstructured grid was
utilized for meshing to ensure the accuracy of the flow field and heat transfer processes. To
capture subtle flow characteristics near the wall, a boundary layer mesh was implemented
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C

at the water channel surface, maintaining y* values between 1 and 5. Additionally, the
smooth transition of the mesh was preserved throughout the meshing process to minimize
numerical errors and enhance the stability of the calculations. Figure 4 illustrates the
meshing of the cooling channel and the motor model presented in this paper [11].

(b)

Figure 4. Mesh division: (a) mesh of the internal cooling structure of the motor; (b) mesh of the
entire motor.

3.2. Numerical Validation

To ensure the accuracy of the simulation results, the grid independence validation of
the cooling process in the dual cooling channel of the motor was conducted. Initially, a
coarser mesh was used, and the density of the grid was gradually increased. Ultimately,
six different grid quantities were selected for comparative analysis, with the results pre-
sented in Table 4 (the number in parentheses indicate the difference between the current
results and those of the previous working condition). T;, Ty;, Ts, and T, denote the maxi-
mum temperature of the motor rotor, magnet, stator, and winding, respectively. It can be
observed that, as the number of grids increase, the results gradually stabilize. When the
grid count reached 5.5 x 10°, the maximum temperature error of each heat-generating com-
ponent of the motor was less than 0.2 K compared to the data obtained with 5 x 10° grids,
and the error in flow loss for the water-cooling structure was below 0.01 kPa. This indicates
that further increases in grid density had a negligible effect on the numerical simulation
results. To balance calculation accuracy and computational cost, 5.5 x 10° grids were
selected for subsequent calculations.

Table 4. Grid independence validation results.

Number of Grids

(><106) T, (K) T (K) Ts (K) Ty (K) Py (kPa)
2 317.112 318.771 328.381 328.727 12.053
3 317.838 (0.73) 319.550 (0.78) 329.854 (1.47) 329.593 (0.87) 12.449 (0.396)
4 318.501 (0.66) 320.669 (1.12) 330.645 (0.79) 331.280 (1.69) 13.155 (0.706)
4.5 319.636 (1.14) 321.195 (0.53) 331.801 (1.16) 333.762 (2.48) 13.978 (0.823)
5 319.851 (0.22) 321.628 (0.43) 331.931 (0.13) 334.009 (0.25) 14.283 (0.305)
5.5 319.896 (0.05) 321.714 (0.09) 332.110 (0.18) 334.082 (0.07) 14.292 (0.009)

To verify the reliability of the numerical model used, the simulation of the motor
cooling channel was compared with the data from Chen [11] et al. The results are presented
in Figure 5a, where the variable of interest is the maximum temperature of the motor
winding. Initially, a certain discrepancy was observed between the simulation results and
the experimental data. However, as the cooling process stabilized, the results of both



J. Mar. Sci. Eng. 2024, 12,2133

11 0f 24

IS &
5 &
S &

w
o
3

w
@
&

Maximum temperature of the winding/K
& =
g 2

=)
2
=]

approaches converged, with the final error not exceeding 1%. Overall, the established
numerical model demonstrates good accuracy and can be utilized in subsequent research
and optimization efforts.
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Figure 5. Validation of the numerical model: (a) validation result graph; (b) photograph of the
tested motor.

3.3. Numerical Results

The maximum temperature field distribution of the dual-channel motor system is
presented in Figure 6, where the study variables are taken as Na = 24 mm, Nb = 10 mm,
Wa =24 mm, Wb = 10 mm, d = 5 mm, and Qw = 11 L/min. The maximum temperature
in the motor occurred at the winding, reaching 322.86 K. It was attributed to significant
resistance heat generation and heat accumulation during operation, making winding the
primary area where heat was concentrated within the motor. Meanwhile, it was observed
that the temperature at the ends of the winding was lower compared to that in the middle,
and the temperature on the outer side of the winding ends was also lower than that on the
inner side. This phenomenon occurred because the stator, as the external structure of the
winding, effectively conducted heat and facilitated heat exchange with the cooling channel,
enhancing the heat dissipation capability of the middle part of the winding. Furthermore,
the inner water channel of the motor was spatially closer to the outer side of the winding,
allowing for more efficient heat conduction to the outer side than to the inner side, resulting
in a slightly lower temperature on the outer side compared to the inner side. Additionally,
the high temperature of the stator core was primarily localized in the teeth that were in
contact with the winding, where a more pronounced temperature buildup was observed.
However, the overall temperature difference within the stator was clearly reduced. Figure 7
illustrates the temperature field and pressure distribution of the cooling water in the water
channel. In Figure 7a, it can be observed that the maximum temperature of the cooling
water remained below 300 K, with the temperature in the inner channel generally higher
than that in the outer channel. The reason for this was that the cooling water first flowed
through the inner channel of the motor, where it exchanged heat generated by convective
heat transfer from the wall of the motor. The cooling water then entered the outer channel
of the UUV housing through the connection, where the heat was transferred to seawater via
the housing, facilitating the cooling process. Figure 7b displays the distribution of the total
pressure of the cooling water. The pressure in the inner channel was primarily concentrated
around 100 kPa, while the pressure in the outer channel was significantly lower than that in
the inner channel. Except for the outlet, the pressure distribution in the remaining locations
of the outer cooling water was relatively uniform, averaging around 60 kPa. Additionally,
the calculated pressure difference between the inlet and outlet was 100.02 kPa.
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Figure 6. Temperature field distribution of the water-cooling motor system: (a) the contour of the
motor system’s temperature field; (b) the contour of the temperature field for the heated parts of the
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Figure 7. Results of the cooling water in the dual channel: (a) the contour of the temperature field for

motor system.
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the cooling water; (b) the contour of the cooling water pressure.

4. Sensitivity Analysis

Before conducting multi-objective optimization, sensitivity analysis can elucidate the
degree of correlation between each design variable and the response variable, as well as the
change trends of these variables. This foundational understanding enables a more refined
optimization process focused on the key variable. Five design variables were considered,
the width of the inner cooling water channel Na, the height of the inner water channel Nb,
the width of the outer water channel Wa, the height of the outer water channel Wb, the
depth of the grooving in the inner water channel d, and the cooling water flow rate Qw. The
data were calculated through coupled simulations of the temperature field and flow field.
The influence of the dimensional parameters of the water-cooling structure and the cooling
water flow rate on both the flow loss of the water-cooling structure and the maximum
temperature of the motor was analyzed using Equation (10), with the results presented
in Figure 8. This figure shows the magnitude of the effect of all design variables on the
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response variable, with values closer to 1 indicating a stronger influence. It suggests that a
slight change in the design variable will lead to a more significant change in the response
variable. Among them, Qw had the greatest influence on both the maximum temperature
Tmax and the flow loss of the water-cooling structure Py, exhibiting sensitivities of 77.79%
and 99.84%, respectively. This indicated that Qw was the design parameter that should be
prioritized and optimized in the motor cooling system design for this study. Meanwhile,
Nb and d had the least influence on the sensitivity of Py, and T4y, with values of 0.51%
and 0.25%, respectively. Except for Qw, which significantly affected the flow loss of the
water-cooling structure, all other design variables had a lesser impact. Specifically, Na, Wa,
and Nb exhibited sensitivities of 10.60%, 9.05%, and 8.59%, respectively, for P;,. The depth
of grooving d had an even smaller effect on P, with a sensitivity of only 1.01%, making it
greater only than that of Nb. For the maximum temperature of the motor, in addition to
d, which had the least effect on it, the other four geometry variables had different degrees
of influence on Tyy. The sensitivity values for Wb and Nb were close, at 26.07% and
23.59%, respectively, indicating that their effects were weaker than those of both Qw and
Na. Furthermore, Wa had the smallest sensitivity value, at 4.8%. Overall, except for the
cooling water flow rate, the parameters of the inner channel generally exerted a greater
influence on the response variables than those of the outer channel. This was primarily
because the inner channel facilitated the transfer of heat generated by the motor to the outer
channel, where it was then dissipated to seawater through convection. Consequently, the
maximum temperature of the motor was more sensitive to the structural dimensions of the
inner channel. Additionally, the cooling water flow rate in the inner channel was typically
higher than in the outer channel, and minor changes in size can lead to larger hydraulic
losses, resulting in increased or decreased flow loss in the water-cooling structure.
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Flow loss of water- Maximum temperature
cooled structure of motor

Figure 8. Sensitivity analysis of design variables to response variables.

By analyzing the statistical relationship between the cooling water flow in the channel
and the response variable, a corresponding fitting curve could be constructed, as illustrated
in Figure 9. It is evident that P, and Qw exhibit a high correlation, with the sample data
points demonstrating a concentrated and more uniform distribution. In contrast, Ty
and Qw show a relatively lower correlation; however, the experimental sample points
still display a consistent strip-like distribution, which could be attributed to the trade-offs
and interactions between different objectives in the multi-objective optimization process,
resulting in the dispersion of the temperature distribution. Therefore, future research could
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focus on optimizing these localized regions and exploring ways to enhance the uniformity
and correlation of the temperature distribution through more refined design adjustments.
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Figure 9. Correlation fitting results of cooling water flow rate with response variables: (a) the
water-cooling structure flow loss Py; (b) the maximum temperature of motor Tgy.

5. Construction and Validation of the Agent Model
5.1. Construction of RSM

There were six design variables to be optimized in this paper, the upper and lower
value limits of which [Na, Nb, Wa, Wb, d, Qw] were [4,8,16] and [6,12,14,32], respectively.
This ensured that each design variable could be sampled more evenly within its respective
range of values to avoid the phenomenon of local aggregation of design variable values. On
the other hand, this approach aimed to prevent dimensionality issues that could complicate
the sample base construction for the agent model. Therefore, this study primarily employed
the Latin hypercube sampling method [50,51]. Based on the number of design variables
and the fundamental requirements for constructing the sample library of the agent model,
the number of sample points should be at least ten times greater than the number of design
variables. To ensure a sufficient number of sample points and maximize the predictive
accuracy of the agent model, a total of 120 sample points were generated for CFD simulation
coupling the temperature field and flow field in the design of the experiments. The
distribution of the sample points for each design variable is shown in Figure 10. This paper
focuses on the objective optimization of the motor cooling system. Due to the limited spatial
dimensions and the few design variables involved, the response surface agent model was
an ideal choice for achieving the optimization objectives, thanks to its high transparency
and strong adaptability. Based on the type of optimization objective and the number of
design variables, an appropriate type of response surface was selected, and the RSM was
developed using the sample library obtained through the design of experiments.

5.2. Validation of RSM

After creating the RSM based on the sample points from the agent model sample
library, it was essential to evaluate the fitting accuracy of the model in relation to the sample
data points. The fitting performance of the RSM was analyzed using Equations (13)—(15),
and the error data are presented in Table 5. The coefficients of determination R? for the
RSM regarding Ty and Py, are both above 0.99, nearly converging to 1. Additionally, the
values of maximum absolute error MAE and root mean square error RMSE are all in the
reasonable range. This indicates that the RSM created based on the agent model sample
library exhibits an excellent fitting performance and high accuracy. Figure 11 illustrates the
fitting effect of the RSM for the response variables Ty, and Py, further demonstrating that
the predicted values closely align with the sample library data points.
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Table 5. The response surface agent model error analysis results.
Evaluation Indicator R? MAE RMSE
Tinax 0.9952 0.0586 0.0552
Py 0.9984 4.5847 370.6325
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Figure 11. The fitting results of response

(a)

(b) comparison of fits for Py,.

Sample library data point/kPa

(b)

variables in the RSM: (a) comparison of fits for Tyy;

In addition to the aforementioned methods for evaluating the accuracy of the RSM,
the prediction accuracy could be further assessed by generating validation points. The
predictive capability of the agent model was verified by comparing the errors between
the CFD simulation results of these validation points and the theoretical values provided
by the agent model. A total of five sets of validation points were established to monitor
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the maximum temperature of the motor and the flow loss of the water-cooling structure
in real time. Ultimately, the actual response values were compared with the predicted
values to analyze and evaluate the magnitude of the errors. Figures 12 and 13 present the
results from the numerical simulations alongside the predicted values from the RSM for
Tmax and Py, respectively. The results indicate a close alignment between the two sets of
values. The average absolute error of T,y is only 0.052 K, while the average error of Py,
is 1.636 kPa, both falling within approximately 1%. Consequently, the validation values
from the simulations are consistent with the predicted values from the agent model. In
summary, the fitting results of the RSM against the sample pool data and the comparison
of the five validation points demonstrate that the model developed in this study exhibits
high predictive accuracy and fitting quality. It could be used for subsequent analyses.
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Figure 12. The case of Ty at the validation point: (a) the simulation results versus the predicted re-
sults of the RSM; (b) the absolute error of the simulated value versus the predicted results of the RSM.
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Figure 13. The case of Py, at the validation point: (a) The simulation results versus the predicted results
of the RSM; (b) the absolute error of the simulated value versus the predicted results of the RSM.

6. Optimization Results Analysis

Consistent with the creation of the RSM, the response variables in this section are
the maximum temperature of motor T4y and the flow loss of the water-cooling structure
Py. The design variables included Na, Wa, Nb, Wb, d, and Qw. The goal was to optimize
the dimensional parameters of the dual-channel structure and the cooling water flow
rate to minimize both the maximum temperature of the motor and the flow loss of the
water-cooling structure. After establishing the optimization objectives and constraints, the
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mathematical model for the multi-objective optimization problem of the heat dissipation
system can be formulated as follows:

16 mm < Na < 32 mm
8mm < Nb<12mm
16 mm < Wa < 32 mm
8mm < Wb <12 mm
dmm<d<6mm
8 L/min < Qw < 14 L/min

minimize{ Tyax, P} find{Na, Nb, Wa, Wb,d, Qu}s.t. 17)

Based on the validation of the RSM completed in Section 5.2, a coupled multi-objective
genetic algorithm was employed to minimize both the maximum temperature of the
motor and the flow loss of the water-cooling structure. The optimal solution was selected
according to actual requirements after obtaining the Pareto solution set, thereby completing
the design of the motor heat dissipation system. According to the above objective function
and constraints, the objective value of the optimization solution and the value range of each
design variable were set in the program, and the initial parameters of the multi-objective
genetic algorithm are shown in Table 6. Based on the agent model, T;;x and P, were taken
as the priority constraints, the objective function was defined to optimize the two objectives
at the same time, and the optimal solution was finally determined by solving the Pareto
solution set. In order to monitor in real time the trend of taking values in the optimization
process of the maximum temperature of the motor and the flow loss of the water-cooling
structure, five candidate points for the best selection were set, and the global optimization
search process of the sample points is shown in Figure 14. Furthermore, as shown in
Figure 15, the multi-objective genetic algorithm performed a global search within the
respective value ranges of the design variables to complete the iterative calculation process
of optimizing the target solution.

Table 6. Initial parameter settings of the multi-objective genetic algorithm.

Parameter Value

Initial sample size 6000

Number of samples per cycle 1200
Maximum allowable Pareto percentage 30
Maximum number of cycles 20
Maximum number of candidate points 5
Cross-probability 0.9
Mutation probability 0.1

The distribution of available sample points and the Pareto solution set for T};;sy and
P, under the specified constraints, were calculated through iterative loops of the multi-
objective genetic algorithm, as illustrated in Figure 16. The red section of the sample
points, located beneath the area of available sample point distribution, constituted the
Pareto solution set for the multi-objective optimization of T,y and Py,. The sample points
in region A focused on minimizing Ty, while the available sample points in region D
prioritized reducing Py,. Neither region accounted for the trade-off relationship with the
other variable, making the sample points in A and D suboptimal for this multi-objective
optimization. In contrast, the sample points between regions B and C effectively balanced
the interaction between T, and Py,. Consequently, this study identified five optimal
candidates for the maximum temperature of the motor and the flow loss of the water-cooling
structure, primarily located in the BC region. These points considered multiple optimization
objectives without exhibiting excessive bias towards any single objective. The distribution
of the five candidate points and the corresponding optimization results for the response
variables are presented in Table 7. Analysis of the data reveals that the optimal results for
Tinax and Py, achieved after numerous iterations, were 331.46 K and 59.58 kPa, respectively.
This point represented the best available sample for optimization, as determined with the
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multi-objective genetic algorithm in accordance with the distribution of the Pareto solution
set. Compared to the CFD calculation based on the initial parameters, T}, decreased from
332.86 K to 331.46 K, resulting in an overall temperature reduction rate of 0.42%. Although
the maximum temperature of the motor decreased, the improvement rate was relatively
low. On the other hand, P, decreased significantly from 100.02 kPa to 59.58 kPa, achieving a
maximum improvement rate of 40.43%. In general, although the optimization result showed
a limited reduction in Ty, it effectively ensured motor temperature suppression while
significantly lowering Py,. Unlike single-objective optimization, this approach balanced the
trade-off between Ty;4y and Py, allowing both to achieve lower values, thereby satisfying
the fundamental requirements of the multi-objective optimization problem.

333.1 200
3323 1160
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Number of sample points for optimization/(x10*)

Figure 14. Minimization optimization of Ty and Py.
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Figure 15. Minimized design variable optimization for Ty,,y and Py: (a) Wa sample point iterative
process; (b) Wb sample point iterative process (c) Na sample point iterative process; (d) Nb sample
point iterative process; (e) Qw sample point iterative process; (f) d sample point iterative process.
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Table 7. Optimization scheme for minimization of T,y and Py, with target response.
Optimization Initial Design Candidate Candidate Candidate Candidate Candidate Maximum
Variable Value Point 1 Point 2 Point 3 Point 4 Point 5 Improvement Rate
Wa (mm) 24 20.33 18.86 18.04 19.32 18.89 —15.29%
Wb (mm) 10 11.92 11.89 11.99 11.92 11.78 +19.20%
Na (mm) 24 17.78 17.08 17.00 17.22 17.39 —25.92%
Nb (mm) 10 9.10 9.25 9.05 9.43 9.08 —9.00%
D (mm) 5 5.13 5.70 5.42 477 5.66 +2.62%
Quw (L/min) 11 9.62 9.63 9.66 9.67 9.69 —12.55%
Thax (K) 332.86 331.46 331.48 331.49 331.48 331.49 —0.42%
Py, (kPa) 100.02 59.58 59.92 59.81 59.73 59.74 —40.43%

The design variable parameter settings for candidate point 1, which exhibited the best
optimization effect, were selected to establish the corresponding three-dimensional motor
temperature field model. The accurate numerical calculation of the coupled temperature
and flow fields were performed, with the resulting temperature field of the motor and the
pressure distribution of the water-cooling structure shown in Figure 17. From the contour,
it was evident that the highest temperature of the motor occurred at the end of the stator
winding, reaching a maximum value of 331.51 K. The maximum absolute error compared
to the target optimized value of 331.36 K from candidate point 1 was 0.05 K. The pressure
distribution of the water-cooling structure indicated a high pressure in the inner water
channel and a lower pressure in the outer water channel. In this case, the CFD calculation
of the flow loss of the water-cooling structure yielded a value of 59.16 kPa, resulting in a
maximum absolute error of 0.42 kPa compared to the target optimized value of 59.58 kPa.
Notably, the errors for both Ty, and Py, were below 1%. These results demonstrate the
significant predictive accuracy and precision of the multi-objective optimization method
employed in this study for optimizing the dual-channel cooling system for the motor. The
final results obtained for the optimum motor cooling system design for the best performance
of both T}4x and Py, for each of the design and response variables [Wa, Wb, Na, Nb, d, Qu,
Tax, and Pyl were [20.33 mm, 11.92 mm, 17.78 mm, 9.10 mm, 5.13 mm, 9.62 L/min,
331.46 K, and 59.58 kPal.
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Figure 17. CFD simulation results of the optimized scheme: (a) the contour of the temperature field
for motor system; (b) the contour of the cooling water pressure.
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7. Conclusions

This study focuses on the dual-channel cooling system of a UUV propulsion motor,
using the maximum temperature of the motor and the flow loss of the water-cooling
structure as optimization objectives. A multi-objective optimization design was performed
to match the dimensional parameters of the cooling structure and the cooling water flow
rate, utilizing the multi-objective genetic algorithm. This paper developed an RSM based
on sensitivity analysis and validated its effectiveness. By combining it with a multi-
objective genetic algorithm, suitable optimization candidate points were identified, and
the validity of the optimization results was confirmed through comparison with CFD
results. The objective was to optimize the heat dissipation system, enhancing its operational
efficiency and reliability. The methodologies employed and the results obtained in this
study contribute to the advancement of related technologies and hold significant practical
application value. The main conclusions are as follows:

(1) The sensitivity analysis results indicate that the cooling water flow rate Quw has the
most significant impact on both Ty, and Py, with sensitivities of 77.79% and 99.84%,
respectively. In contrast, the sensitivity of the cross-sectional dimensions of the inner
and outer channel on Ty, was approximately 20%, while their effects on P, were
relatively minor, generally below 10%.

(2) For the multi-objective optimization of the motor cooling system design, the response
surface agent model was constructed using Latin hypercube sampling. The prediction
accuracy was validated through test samples, revealing an average error of less than
1% between the predicted and verification values, which proved the validity and
reliability of this agent model in the optimization of motor cooling systems.

(38) Sample points were selected from the Pareto solution set and their comparison with
CFD simulations revealed that the maximum absolute errors of the response variables
were all below 1%. The optimized design variables for the cooling structure were [Wa,
Wb, Na, Nb, d, Qw] = [20.33 mm, 11.92 mm, 17.78 mm, 9.10 mm, 5.13 mm, 9.62 L./ min].
Compared to the initial parameters, the maximum temperature of the motor decreased
from 332.86 K to 331.46 K. The flow loss of the water-cooling structure decreased
from 100.02 kPa to 59.58 kPa, achieving a maximum improvement rate of 40.43%,
demonstrating a significant overall optimization effect.

Author Contributions: Conceptualization, all authors; methodology, W.T. and B.C.; software, W.T.
and C.Z,; validation, B.C.; data analysis, C.Z.; manuscript writing, C.Z.; review and editing, ZM., W.T.
and B.C.; visualization, C.Z.; supervision, Z.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Innovation Foundation for Doctor Dissertation of North-
western Polytechnical University, the Fundamental Research Funds for the Central Universities, and
the National Natural Science Foundation of China (No. 52471346).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Wa width of the water channel outside the UUV housing

Wb height of the water channel outside the UUV housing

Na width of the water channel inside the motor housing

Nb height of the water channel inside the motor housing

d groove depth of the inner water channel in the motor housing
Quw volume flow rate of cooling water

Thax maximum temperature of the motor
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flow loss of water-cooled structure
x-direction scale in 3D coordinate system
y-direction scale in 3D coordinate system
z-direction scale in 3D coordinate system
time scale

velocity of the fluid in the x-direction
velocity of the fluid in the y-direction
velocity of the fluid in the z-direction
density of the fluid

pressure on the fluid

effective viscosity of the fluid

constant pressure specific heat capacity of the fluid
temperature of the fluid

thermal conductivity of the fluid
turbulent kinetic energy

specific dissipation rate

turbulence generation term

empirical constant of the turbulent kinetic energy transport equation

molecular viscosity

turbulent viscosity

Prandtl number of turbulent kinetic energy

model constant

Prandtl number of turbulent specific dissipation rate
blending function

strain rate

thermal conductivity flow per unit time

thermal conductivity area

thermal conductivity

temperature gradient

heat transfer per unit area

convective heat transfer coefficient

temperature of the shell surface

temperature of the cooling water

thermal conductivity of the solid material
temperature of the solid region

calorific value per unit volume of the solid
sensitivity of a design variable to a response variable
maximum value of the response variable within the range of value
minimum value of the response variable within the range of value
total number of samples

response variable

design variable

constant term for response surface model

linear coefficient for response surface model
quadratic coefficient for response surface model
interaction term coefficient for response surface model
error term in response surface model

coefficient of determination

maximum absolute error

root mean square error

actual simulation value for test sample point
predicted value of the agent model

average of actual simulation

number of test sample

the set of objective function to be solved

number of objective function

inequality bound function

linear equation constraint function
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4 the number of inequality constraint function

u the number of linear equation constraint function
Xy decision variable

T, maximum temperature of the motor rotor

T maximum temperature of the motor magnet

T maximum temperature of the motor stator

Tw maximum temperature of the motor winding
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