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Abstract: Underwater object tracking holds considerable significance in the field of ocean engineering.
Additionally, it serves as a crucial component in the operations of autonomous underwater vehicles
(AUVs), particularly during tasks associated with capturing marine organisms. However, the atten-
uation and scattering of light result in shortcomings such as poor contrast in underwater images.
Additionally, the motion deformation of marine organisms poses a significant challenge. Therefore,
existing tracking algorithms face difficulty in direct application to underwater object tracking. To
overcome this challenge, we propose a novel tracking architecture for the marine organism capturing
of AUVs called ULOTrack. ULOTrack is based on a performance discrimination and re-detection
framework and constitutes three modules: (1) an object tracker, which can extract multi-feature
information of the underwater target; (2) a multi-layer tracking performance discriminator, which
serves the purpose of evaluating the stability of the current tracking state, thereby reducing potential
model drift; and (3) lightweight detection, which can predict the candidate boxes to relocate the
lost tracked underwater object. We conduct comprehensive experiments to validate the efficacy
of the designed modules. Finally, the results of the experimentation demonstrate that ULOTrack
significantly outperforms existing approaches. In the future, we aim to carefully scrutinize and select
more suitable features to enhance tracking accuracy and speed.

Keywords: visual perception; underwater observation; underwater object tracking; autonomous
underwater vehicle; tracking discriminator

1. Introduction

Autonomous underwater vehicles (AUVs) play a crucial role in various marine appli-
cations [1] such as ocean environment monitoring [2,3], object tracking [4,5], underwater
terrain mapping [6], and marine search and rescue [7]. Using an AUV enables the safe,
stable, and efficient tracking and capturing of marine organisms, thereby reducing the
dependency on human resources. Object tracking can be used to determine the specific
position and motion trajectory of an object; therefore, the accuracy of the tracker is crucial
in executing subsequent capture actions in complex underwater environments.

Underwater object tracking relies on various sensors that address the unique chal-
lenges posed by the underwater environment, including limited visibility, light attenuation,
and turbidity. Sonar, particularly side-scan and multibeam sonar, provides effective track-
ing over greater distances and can penetrate turbid water, making it ideal for detecting
larger underwater structures or organisms. Acoustic sensors are also popular, especially
in low-visibility conditions, as they can detect and localize objects by measuring sound
reflections, which are less affected by water turbidity. However, the low resolution of sonar
limits the accuracy of detecting and tracking specific targets. Optical cameras, with their
high-resolution imaging capabilities, offer detailed visual tracking but are limited by light
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attenuation and perform best in clear, shallow waters. Unlike water surface visual per-
ception for unmanned surface vehicles [8–10], long-term underwater object tracking often
encounters various severe challenges. More specifically, regarding the inherent limitations
of underwater optical imaging, the attenuation and scattering of light underwater result
in reduced clarity and contrast in images. Different wavelengths of light are absorbed to
various extents in water, which causes color distortion in underwater images. Uneven
illumination and lighting conditions, as well as suspended particles and water movement,
restrict the depth of light penetration in water. This limitation constrains the visibility of
images and often leads to a loss of details.

Furthermore, the movement properties of marine organisms pose a series of challenges
in object tracking. On the one hand, the non-rigid motions, deformations, and out-of-plane
rotations of marine organisms, along with the changes in the perspective of AUVs, challenge
the accuracy and stability of object tracking. On the other hand, the motion blur of targets
affects their clarity and outlines in images. Given the complexity of the marine environment,
addressing these challenges requires more precise tracking methods.

The mainstream object tracking algorithms can be divided into two categories: tradi-
tional methods and deep learning methods. Ref. [11] proposed underwater object tracking
based on underwater image enhancement. Ref. [12] proposed an improved KCF tracker and
a novel fuzzy controller. Ref. [13] proposed a lightweight Siamese network that enhances
the capability of feature extraction. Ref. [14] proposed a fish tracking method based on
adaptive multi-appearance models. Ref. [15] designed a novel fish tracking algorithm
based on deformable multiple kernels. Ref. [16] proposed a multiscale underwater tracker
using the adaptive feature. Ref. [17] incorporated an implicit motion modeling module into
a tracker, enhancing the ability to distinguish the tracked target from similar interferences.

The aforementioned trackers lack the capability of re-detection after target loss. Re-
cently, trackers incorporating re-detection mechanisms have emerged. Ref. [18] introduced
a high-precision target tracking method that includes anomaly tracking status detection
and recovery. Ref. [19] proposed a joint local–global search mechanism, while Ref. [20] fo-
cused on a coarse-to-fine re-detection and spatial–temporal reliability evaluation. Ref. [21]
explored the exploitation of both local and global properties. In scenarios where marine
objects exhibit rapid movements, encounter obstruction by aquatic vegetation, or undergo
significant scale variations, inappropriate sampling and model updates lead to template
drift issues [22,23], as illustrated in Figure 1. This template drift ultimately results in track-
ing failures. The attenuation and scattering of light result in shortcomings such as poor
contrast in underwater images. Additionally, the motion deformation of marine organisms
poses a significant challenge. However, the above mentioned methods rarely focus on
addressing the deformation of marine organisms or the degradation of underwater images.
Therefore, existing tracking algorithms face difficulties in direct application to underwater
object tracking.

Figure 1. (a,b) Object tracking failure due to water weed occlusion. The yellow boxes denote the fish
tracking results.

We observed that, when a target is lost, people change their field of view to broaden the
tracking scope. Additionally, they quickly scan or focus on different areas to re-detect visual
cues of the target. Once the target is rediscovered, eye movements and gaze changes are
minimized, maintaining visual focus on the target to ensure continuous stable tracking. So,
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inspired by the human eye tracking system, our approach focuses on accurately discerning
object tracking performance to enable adaptive template and search area updates. Further-
more, the re-detection mechanism excels in resisting interference in complex underwater
scenarios, achieving the stable detection and tracking of marine organisms. Our lightweight
long-term tracking algorithm is designed to run in real time on AUV low-power computing
devices, such as a mobile phone with diverse sensors. The mobile phone also integrates
key sensors, including GPS and MEMS, for the autonomous navigation of the AUV. This
allows for the continuous, long-term tracking of underwater organisms while maintaining
minimal energy consumption. Optimizing the algorithm for efficiency ensures that the
system can operate for extended periods without overburdening the limited resources of
the device. This capability is crucial for autonomous underwater vehicles (AUVs) that rely
on low-power sensors and computational hardware to monitor and track marine life over
long durations, enabling consistent and accurate tracking in real-world, energy-constrained
environments.

In summary, the main contributions of this work can be summarized as follows:

(1) We propose a novel underwater long-term object tracking architecture named ULO-
Track, enabling consistent and accurate tracking on a low-power computing
AUV platform.

(2) We propose a multi-layer object tracking performance discriminator that evaluates
the current tracking state’s stability and suppresses the model drift caused by rapid
target movement. The layers are structured as follows: the top layer measures the
maximum response score, the second layer evaluates the average peak correlation
energy, and the third layer counts the number of multiple peaks.

(3) We design a multiscale space filter and calculate scale responses to address the sig-
nificant scale variations encountered with marine organisms. Extensive experiments
on real-world datasets demonstrate that our algorithm not only achieves greater
robustness across various target types but also outperforms other algorithms in track-
ing performance.

2. Related Work
2.1. Object Tracking

Existing object tracking algorithms are mainly divided into three categories: generative
object tracking, discriminative object tracking, and deep learning-based object tracking.
Generative algorithms rely on the construction of the target feature subspace, while dis-
criminative algorithms are built upon classification or regression methods to discriminate
between the target and background. Classic generative tracking algorithms include Kalman
filtering [24], particle filtering [25], and mean shift [26]. Bolme first introduced the correla-
tion filter into object tracking and proposed the Minimum Output Sum of Squared Error
(MOSSE) [27] algorithm, achieving a processing speed of up to 669 Frames Per Second
(FPS). Henriques [28] proposed the Circulant Structure of Tracking-by-Detection with Ker-
nels (CSK) method. Martin Danelljan introduced the Discriminatiive Scale Space Tracker
(DSST) [29] algorithm, pioneering the combination of translation and scale filtering algo-
rithms. Henriques [30] proposed the Kernel Correlation Filter (KCF) algorithm, and, based
on the KCF framework, Martin Danelljan proposed the learning spatially regularized cor-
relation filters for visual tracking (SRDCF) [31] algorithm. The algorithm improved the
robustness in fast-changing scenes but could not meet real-time requirements. In 2017,
the CSR_DCF (Channel Spatial Reliability for DCF) algorithm [32] was proposed, utilizing
color histograms of the foreground and background, as well as response map information
from different channels to enhance spatial and channel reliability. Background-Aware
Correlation Filters (BACFs) [33] use real background information displacement to obtain
negative samples, thereby expanding the target search area. Spatial–Temporal Regular-
ized Correlation Filters (STRCFs) [34] add temporal and spatial regularization terms to
the DCF-based framework. Wen et al. [35] proposed the enhanced robust spatial feature
selection tracker. The learning of adaptive sparse spatially regularized correlation filters
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(AS2RCF) [36] was used to design an adaptive sparse spatially regularized correlation filter.
SOCF [37] is a real-time tracker with spatial disturbance suppression.

Though the above algorithms significantly enhance model discrimination, they involve
extensive training and parameter tuning, which makes it challenging to conveniently
apply them to underwater mobile platforms. In contrast, ULOTrcker’s low computational
requirements allow it to be conveniently and reliably deployed on AUVs.

2.2. Underwater Object Tracking for AUVs

Certain underwater tracking systems are required to operate on AUVs for object per-
ception tasks. However, on the one hand, they face constraints due to limited memory
space and computing resources. On the other hand, underwater image degradation and low
quality directly impact tracking accuracy. To address the aforementioned issues, existing
algorithms have made two major improvements to traditional correlation filter trackers,
focusing on feature extraction and template update mechanisms: (1) Regarding enhanced
feature extraction, the focus has been on refining the process of feature extraction from
the target model. This improvement aids in better target recognition and tracking. (2) Re-
garding template update mechanisms, such methods employ template update strategies to
improve the adaptability of the tracking algorithm, allowing it to adjust to changes in the
target’s appearance.

Several tracking systems have benefited from these enhancements. For instance, Li et al.
proposed a real-time fish tracking method based on novel adaptive multi-appearance mod-
els and tracking strategies. To address the issue of target occlusion, Ref. [12] designed an
improved KCF tracker, which incorporates a self-discrimination mechanism based on the
uncertainty of system confidence. Ref. [38] proposed an improved anti-occlusion object
tracking algorithm using an unscented Rauch–Tung–Striebel smoother and kernel corre-
lation filter. Ref. [39] added a fusion correction mechanism (FCM) to the KCF tracking
algorithm to improve tracking performance. Ref. [40] explored real-time object tracking
methods applied to underwater robotics platforms. Additionally, they evaluated color
restoration algorithms suitable for enhancing the quality of images. Ref. [41] presented a
multiple-fish tracking system for low-contrast and low-frame-rate stereo videos. Ref. [15]
proposed a novel tracking algorithm based on the deformable multiple kernels. Further-
more, there are some TLD-based trackers and particle-filter-based trackers. Rout et al.
designed Walsh–Hadamard-kernel-based features in a particle filter framework for un-
derwater object tracking [42]. Ref. [43] proposed multi-feature fusion in a particle filter
framework for visual tracking. Ref. [44] designed UOSTrack for marine organism grasp-
ing. Ref. [13] designed a hybrid excitation model-based lightweight Siamese network.
However, most of the aforementioned methods overlook the spatial restriction issue in
correlation filters and lack the re-detection capability to refine unreliable tracking results.
They also lack a discriminative mechanism and adaptive template updating; template
updating is indispensable when the underwater target is undergoing rapid movement
and deformation.

3. Experimental Autonomous Underwater Vehicle Platform

In this section, we present our design for a low-cost micro-AUV system. This includes
an overview of the mechanical, electronic, and control architecture. The proposed AUV
is characterized by its compact size, simplicity, and affordability while offering a range
of essential functionalities such as autonomous navigation, object detection, and object
tracking. As a result, it can be easily integrated into various projects for intelligent systems
and applications. Similar to a conventional AUV, our micro-AUV comprises the following
key modules: a water-resistant shell, a navigation and control module, a communication
module, an energy management module, a propulsion module, and an external payload
interface module, which can accommodate various accessories like side-scan sonar (SSS)
and the Doppler Velocity Log (DVL). Supported by all the above-mentioned modules,
the micro-AUV design structure is presented in Figure 2.
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Figure 2. A flowchart of the COTS micro-AUV design.

The navigation and control module: The navigation and control module serves as
the central component of the AUV, leveraging the mobile phone’s internal components,
including the GPU, GPS, and MEMS compass sensor. As previously mentioned, only the
pressure sensor unit is not available on the mobile phone. Consequently, we specifically
installed a miniature pressure sensor unit with a WiFi interface to help the mobile phone
obtain real-time depth data. The module is responsible for the AUV steering, elevation,
and rolling control, and a PID control method is used for the process. More interestingly,
as a bonus, the mobile phone screen is used as a debug monitor, as well as a flashlight for
AUV positioning at night.

The payload interfacing module: A payload interface board is developed, and any
necessary payloads can be further installed in the micro-AUV via the WiFi interface.
The commonly used payloads like side-scan sonar (SSS), the Doppler Velocity Log (DVL),
and Forward-Looking Sonar (FLS), have already been tested in our prototype successfully.

4. Underwater Long-Term Object Tracker

The integrated algorithm for object detection and tracking based on the AUV platform
adopts a primarily tracking-oriented approach with detection as a supplementary method.
It combines improved correlation filter algorithms and lightweight detection algorithms to
create an excellent long-term tracking system, significantly enhancing algorithm perfor-
mance. A processing flowchart of the algorithm is shown in Figure 3. The long-term tracker
consists of three main components: a lightweight object detector, an improved kernel
correlation filter algorithm, and a multi-layer tracking confidence discriminator. Initially,
a lightweight object detector is used to rapidly and accurately detect the ocean target to
be captured. The detected target’s position in the first frame is transmitted to the tracker,
which then starts tracking. Additionally, a three-level tracking confidence discriminator
assesses the target’s tracking status. If it is determined that the target is in a non-stationary
tracking state, the lightweight object detector is activated, and the repositioning results
are sent to the tracker to continue tracking the target. The overall algorithm structure is
depicted in Figure 4, and the specific process is detailed below.
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Figure 3. Processing flowchart of the underwater long-term object tracker.

Figure 4. Overall architecture of the underwater long-term object tracker.

Step 1: The underwater camera saves videos as image sequences. A lightweight
detection algorithm identifies the target position in the first frame and extracts the search
area from the current image.

Step 2: Features from the first-frame target and the search area are extracted, obtaining
the region covariance of the Histogram of Oriented Gradient (HOG) [45], Local Binary
Patterns (LBPs) [46], and color moment features. These features are used to train the initial
position filter Rpos and the scale filter Rscale.

Step 3: In the subsequent frames, regional cyclic sampling is performed to obtain
positive and negative samples, resulting in a position response map and the maximum
scale response value.

Step 4: A three-level tracking confidence discrimination mechanism is employed to
achieve a combined assessment of the current tracking state. The confidence score for each
frame is calculated to determine whether the tracking state is stable.

Step 5: Based on the results of the three-level discrimination, the learning rate is
dynamically adjusted, and adaptive template updates are performed. When tracking is
unstable, template updates are halted, the lightweight detector is activated, the lost target
is re-located, and the positioning results are sent to the tracker.
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4.1. Lightweight Object Detection Method for Marine Organisms

A lightweight underwater object detection model will effectively reduce the cost
of computational resources for the easier deployment of the AUV. In our work, we
design a lightweight underwater object detection model for low-power mobile phone
platforms in AUVs and take both the accuracy and speed requirements into account in
real-world scenarios.

To improve the quality of underwater images and achieve better detection perfor-
mance, we first process the input images with image preprocessing. The image preprocess-
ing operations adopt the classical Single-Scale Retinex (SSR) image processing algorithm,
which enhances the color and brightness of input images through the stable reflectance
of the object in the image, adjusting its pixel values that preserve the overall lightness
information while eliminating the effects of non-uniform illumination.

In the lightweight design of detection models, model quantization is an effective way
to speed up the interference of the model. However, this often leads to a decline in detection
accuracy. To address this issue, we draw inspiration from YOLOv6-3.0, the state-of-the-art
detection model in COCO datasets, and replace the conventional CNN block module
with a quantization-friendly module called Quantization-Aware RepVGG (QARepVGG).
The QARepVGG module ensures model variance stability and delivers outstanding detec-
tion accuracy during quantization.

Figure 5 presents the overall architecture of the lightweight underwater object de-
tection model. In the backbone of our model, we employ six QARepVGG blocks and
four downsampling layers to extract features from underwater images. These extracted
features are then fed into Spatial Pyramid Pooling (SPP) and Feature Pyramid Network
(FPN) modules, which enable a larger receptive field and facilitate global context linkage.
This approach helps mitigate the impact of water reflections and enhances the model’s ro-
bustness. Furthermore, the detection results are generated through a detection head based
on an anchor-free detection scheme. Unlike the traditional YOLO series object detectors
that use an anchor-based detection scheme, which can introduce complexity in embedded
computing applications, the anchor-free detection scheme has gained popularity due to
its strong generalization capability and faster decoder speed. Therefore, we adopted the
anchor-free detection scheme in the detection head to optimize performance.

Figure 5. Overall architecture of the lightweight underwater object detection model.

4.2. Underwater Long-Term Object Tracker

The camera captures images and reads them in a sequence. Using the lightweight
detection algorithm described in Section 4.1, the automatic acquisition of the target’s
size and position from the first-frame image is performed. Subsequently, these data are
fed into the object tracking stage. The underwater object tracking procedure involves
the improved KCF method. The kernel correlation filter possesses rapid and efficient



J. Mar. Sci. Eng. 2024, 12, 2092 8 of 21

tracking performance. Firstly, leveraging the circulant matrix properties enables dense
sampling, significantly enhancing the number of training samples. Secondly, leveraging
Fourier transform and the kernel function notably reduces inference time, optimizing the
algorithm’s efficiency.

4.2.1. Circulant Matrix

The tracker adopts dense sampling to obtain a large number of positive and negative
training samples. It cleverly uses circulant matrix shifting instead of traversing the search
area, significantly reducing training time. The initial training samples are obtained by
circularly shifting the base sample (the target in the first frame). Taking a one-dimensional
matrix as an example, if the base sample is represented as x = [x1, x2, . . . , xn]T , then
the circulant matrix P is defined as follows:

P =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

 (1)

Moreover, it is calculated as Px = [xn, x1, x2, . . . , xn−1]
T , which represents the result

after one cycle of x; then, after n − 1 cycles, the result is {Pnx|n = 1, 2, . . . , n − 1}. This is
obtained by combining all cyclic samples to form the circulant matrix X, which constitutes
the training sample set for the target.

X = C(x) =


x1 x2 x3 · · · xn
xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...

. . .
...

x2 x3 x4 · · · x1

 (2)

The circulant matrix X can be diagonalized using discrete Fourier transformation.

X = C(x) = F · diag(x̂) · FH , (3)

where F is the constant matrix of the Fourier transform, FH is the conjugate transpose
matrix of F, and x̂ is the discrete Fourier transform of the base vector x, x̂ = F (x).

F =
1√
n
=


1 1 1 · · · 1
1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...
1 wn−1 w2(n−1) · · · w(n−1)2

, (4)

where w = e−2πi/n.
From the above definition, other properties of the circulant matrix can be derived:

XH = F · diag((x̂)∗) · FH . (5)

4.2.2. The Training of Classifier

The classifier outputs correlation values for all potential regions and identifies the
maximum response as the tracked object. The KCF initially applies ridge regression
to train the data. The ridge regression method extends the least squares regression by
incorporating a regularization term, effectively handling ill-conditioned data and yielding
more stable computational outcomes. In a linear space, assuming a training sample set
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of D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, in order to train and obtain a regression model
f (xi) = wTxi with the aim of minimizing the error between the predicted and ground truth,
the following loss function is defined:

L(w) = min
w

m
∑

i=1
(yi − wTxi)

2
+ λ∥w∥2

= min∥Xw − y∥2 + λ∥w∥2
, (6)

where yi represents the label values of sample xi, X denotes the circulant matrix of the
input samples, w is the coefficient matrix to be determined, and λ is the regularization term
coefficient used to regulate the complexity of the system.

The analysis above is based on a linear space. However, the actual tracking scene is
complex. To further address classification issues in nonlinear spaces, the principle of the
kernel function in support vector machines is employed. This principle involves mapping
the training samples from a lower-dimensional space to a higher-dimensional one, thereby
transforming the nonlinear problem into a linearly separable one.

Suppose that the nonlinear mapping function is denoted as φ(x) and that the regres-
sion model after mapping is f (xi) = wT φ(xi). Representing w as a linear combination of
the training samples, the question of solving w is transformed into the question of solving α:

w = ∑
i

αi φ(xi) (7)

The kernel function is the kernel correlation matrix of the training sample set, defined
as follows:

K = κ(xi, xj) = ⟨φ(xi), φ(xj)⟩ (8)

The mapping function of the nonlinear space is converted into an inner product calcu-
lation in a higher-dimensional space, so the regression model can be further represented as

f (z) = wT φ(z) =
n

∑
i=1

αiκ(z, xi) (9)

This is solved to obtain filter parameters:

α = (K + λI)−1y, (10)

where K is the circulant matrix obtained by cyclically shifting the autocorrelation vector
kxx of the base sample, and kxx = κ(x, x). Utilizing the properties of the circulant matrix, K
is diagonalized to yield the following equation:

K = C(kxx) = F · diag(k̂xx) · FH (11)

By substituting Equation (11) into Equation (10), we can obtain

α = (K + λI)−1y
= (F · diag(k̂xx) · FH + λI)−1y
= F · diag((k̂xx) + λ)−1 · FH · y

(12)

By performing Fourier transformation on both sides of the equation, we can obtain

α̂ =
ŷ

k̂xx + λ
(13)
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4.2.3. Kernel Correlation Filter

By operating the filter parameters with the test samples, the region with the max-
imum response value in the response map represents the output of the object tracking.
The response results are presented as follows:

f (z) = (Kz)Tα, (14)

where Kz denotes the kernel correlation matrix between the detection sample and the
training sample, calculated as follows:

Kz = C(kxz), (15)

where kxz represents the kernel correlation between the training base sample x and the
detection sample z. Kz is also a circulant matrix, subjected to diagonalization:

Kz = F · diag(k̂xz) · FH (16)

By substituting Equation (16) into Equation (14) and performing Fourier transforma-
tion on both sides, we can obtain

f̂ (z) = k̂xz ⊙ α̂. (17)

During the tracking process, both the target and background undergo dynamic
changes. To enhance model stability, a linear interpolation method is introduced in this
paper for template updates. This method involves updating the model parameters α and
target templates x of the classifier using the following strategy:

αt = (1 − η)αt−1 + ηα′t
xt = (1 − η)xt−1 + ηx′t

, (18)

where η represents the model update rate; t denotes the number of frames in the video
sequence; and αt−1 and α′t represent the model parameters of the t − 1 frame image and
the t frame image while signifying the target templates of the t − 1 frame image and the
t-th frame image, respectively.

Based on the derivation of the above formulas, it can be determined that, during the
process of object tracking, the rapid acquisition of the current target appearance status is
achieved through the update of filter parameters, which enhances the algorithm’s adapt-
ability. However, the algorithm updates parameters for each frame of the image, and the
learning rate η remains constant. When the underwater target is occluded or there is a
sudden change in lighting, background noise is introduced, leading to model drift. There-
fore, it is necessary to design a reasonable mechanism for updating the model parameters.
Hence, we propose a multi-layer target loss discrimination mechanism in Section 4.3.

4.3. Design of the Multi-Layer Target Loss Discriminator

The KCF algorithm lacks a target loss discrimination mechanism, resulting in template
updates even when the target is occluded. This introduces background noise, leading to
target localization failures. This paper introduces a three-level object tracking confidence
discriminator to act as an early warning for target loss. The first-level discrimination
employs the filtering maximum response score, the second-level discrimination uses the
average peak-to-correlation energy, and the third-level discrimination is based on multi-
peak counts.

For each frame in the image sequence, object tracking calculations are made. If target
loss is detected, then the template updates in the tracking algorithm are halted, and a
lightweight object detector is activated for target repositioning.

① Top layer: maximum response score. The top-layer discrimination utilizes the
filtering maximum response score. The response score, denoted as F, is the peak value
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resulting from convolving the input image with the filter template. Fmax represents the
maximum response score, Fmin represents the minimum response score, and Fthre is the
threshold response score. The maximum peak set is represented as {Fmaxi|i = 1, 2, . . . n}.

u1 =
n
∑

i=1
Fmaxi/n

σ1
2 =

n
∑

i=1
(Fmaxi − m1)

2
/

n
, (19)

where u1 signifies the mean of the maximum response scores over a recent period of time
before the current frame, and σ1

2 represents their variance.
② Second layer: average peak correlated energy. The second-layer discrimination

employs the average peak-to-correlation energy (APCE) [47], which reflects the fluctuation
in response maps and the confidence level of detecting the target. When the target is lost,
there is significant fluctuation. The formula is as follows:

APCE =
|Fmax − Fmin|2

mean( ∑
w,h

(Fw,h − Fmin)
2)

, (20)

u2 =
n
∑

i=1
APCEi/n

σ2
2 =

n
∑

i=1
(APCEi − µ2)

2
/

n
, (21)

where u2 represents the mean of the APCE over a recent period of time before the current
frame, and σ2

2 represents its variance.
③ Third layer: the number of multiple peaks. The third-level discrimination employs

a multi-peak count-based criterion. Experimental results have shown that, when there
are multiple peaks in the response map, the object tracking performance tends to be non-
stationary. n represents the number of response peaks as follows:

n = num(F > Fthre), (22)

It is assumed that the stability discrimination factor is ξ, Fmaxp is the maximum
response score for the p-th frame image, APCEp is the average peak-to-correlation energy
for the p-th frame image, and γ is a positive real number. The current tracking state is
considered stable when the following conditions are satisfied and ξ is set to 1:

Fmaxp > |u1 ± γσ1|2

APCEp > |u2 ± γσ2|2
n < 3

(23)

If the conditions mentioned above are not met, it signifies that the present tracking
status is unsuccessful, and ξ = 0. When ξ = 0, the re-detection function is activated, which
is discussed in Section 4.1 regarding the lightweight detection network.

According to the multi-layer discrimination mechanism, the learning rate is dynam-
ically adjusted, and adaptive template updates are performed. As for the adaptive ad-
justment parameter ωt, it can take on two different values depending on the tracking
state, as shown in Equation (24). When the target is in an unobstructed state and the
tracking state is good, it follows an exponential distribution. However, when the target is
under the circumstances of severe occlusion or appearance change, ωt is set to 0 to avoid
model contamination.

ωt=

{
2Fmax− 1 (Fmaxp <FmaxTH) and (APCEp <APCETH) and (n<3)

0 else
(24)
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After obtaining the adaptive adjustment parameters, the parameters and target tem-
plate information update formula are given as shown in Equation (25):

αt = (1 − ηωt)αt−1 + ηωtα
′
t

xt = (1 − ηωt)xt−1 + ηωtx′t
, (25)

where η is the model update rate. t is the number of frames in the video sequence. αt−1 is
the model parameters of the t − 1 frame. α′t is the model parameters of the t frame. xt−1 is
the target template of the t − 1 frame. x′t is the target template of the t frame.

5. Experimental Analysis
5.1. Lightweight Object Detection Experiment
5.1.1. Dataset and Evaluation Metrics

To comprehensively evaluate the proposed lightweight underwater detection model,
we leverage several public underwater detection datasets designed for AUVs. The Target
Recognition Group of China Underwater Robot Professional Competition (URPC) [48]
serves as an essential underwater object detection benchmark dataset, encompassing
diverse and challenging underwater detection scenes. The URPC is specialized in detecting
underwater marine organisms like holothurian, echinus, scallop, and starfish. Additionally,
we incorporate the Real-World Underwater Object Detection (RUOD) dataset [49], which
comprises 14,000 high-resolution images, 74,903 labeled objects, and 10 common aquatic
categories; this dataset was captured in the wild and is widely recognized in the underwater
object detection community. Additionally, the URPC and RUOD datasets are utilized in
their standard format for model training and evaluation.

For the evaluation metric of the multi-class object detection task, we adopt the mean
average precision (mAP), which is commonly used to evaluate overall model performance.
Average precision is the area under the precision–recall (PR) curve, representing the average
precision for that category. The PR curve is the curve formed by calculating the precision
and recall rates, and the formulas for precision and recall are as follows:

Precision =
TP

TP + FP
, (26)

Recall =
TP

TP + FN
, (27)

where TP represents the true-positive instances, which are positive samples correctly
predicted as positive by the model. FP represents the false-positive instances, which
are negative samples incorrectly predicted as positive by the model. FN represents the
false-negative instances, which are positive samples incorrectly predicted as negative by
the model.

5.1.2. Experimental Settings

Our model is implemented using PyTorch 1.8.0 and CUDA 10.2 on Nvidia GTX
3090 GPUs equipped with 128 GB of RAM. During the training phase, we initialize the
model with random parameters and employ a batch size of 16 during training. The initial
learning rate is set to 3e−5 , and we train the network for 100 epochs using the SGD optimizer
and the mini-batch StepLR descent algorithm. To enhance the model’s robustness, we apply
various data augmentation techniques during training, including random flipping (with a
50% probability), global random scaling (ranging from 0.90 to 1.10 percent of the range),
and hue adjustment (with a 30% probability). During the testing phase, we quantize our
trained model using INT8 inference accuracy to ensure deployment on common embedded
mobile phone platforms for AUV applications.
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5.1.3. Experimental Results and Analysis

In this section, to verify the detection accuracy and speed performance of our proposed
lightweight underwater object detection model, we compare our proposed detection meth-
ods with other well-known lightweight detection models. As YOLO is the most classical
one-stage object method, we select YOLOv5-n [50], YOLOv7-tiny [51], and YOLOv8-n [52]
as the representative comparison baselines. All the baseline models and our proposed
model are trained using the recommended training settings to ensure fair comparisons.
Tables 1 and 2 show the detection performance of each class using our model and the base-
lines in detail. Large or dark targets like echinus are easily detected, whereas small and
light-colored targets like scallops are more likely to be missed during detection. The ex-
periment results demonstrate that our proposed lightweight underwater object detection
method outperforms the baselines in terms of both accuracy and inference speed. While
the mAP@0.50 of our model achieves 0.753 on the URPC datasets and 0.813 on the RUOD
datasets, the single model achieves an inference time of 38 ms in Hisilicon Kirin 950 with
the deployment of Android Neural Networks API (NNAPI).

Table 1. Per-class AP on the URPC dataset for different object detection methods.

Network
AP Evaluation Index

Echinus Holothurian Scallop Starfish mAP

YOLOv5-n 0.8651 0.6465 0.6116 0.7421 0.716
YOLOv7-tiny 0.8592 0.6639 0.6003 0.7074 0.708

YOLOv8-n 0.8891 0.6832 0.6237 0.7281 0.731
Ours 0.9002 0.7035 0.6355 0.773 0.753

Table 2. Per-class AP on the RUOD dataset for different object detection methods.

Network
AP Evaluation Index

Holothurian Echinus Scallop Starfish Fish Corals Diver Cuttlefish Turtle Jellyfish mAP

YOLOv5-n 0.61 0.89 0.84 0.86 0.68 0.62 0.73 0.65 0.80 0.91 0.759
YOLOv7-tiny 0.63 0.91 0.79 0.83 0.65 0.63 0.73 0.63 0.74 0.88 0.742

YOLOv8-n 0.68 0.95 0.93 0.82 0.71 0.72 0.71 0.68 0.82 0.93 0.795
Ours 0.71 0.96 0.92 0.86 0.75 0.70 0.75 0.70 0.85 0.94 0.813

5.2. Long-Term Tracking Experiment
5.2.1. Evaluation Metrics

We employ the One-Pass Evaluation (OPE) [28] with precision and success plot metrics
to assess tracking performance.

The evaluation of video tracking performance is based on accuracy and the success
rate. Accuracy is defined as the ratio of frames where the target center position error is less
than 20 pixels. The center position error is calculated as the average Euclidean distance
between the algorithm-derived center position and the true center position, with a defined
error threshold of 20 pixels. The center position error can be calculated as follows:

CLE =
√
(xpre − xgt)

2 + (ypre − ygt)
2 (28)

The success rate is used as another metric to assess the overall effectiveness of the
tracking algorithm. The success rate of the algorithm calibration is defined as the proportion
of frames with an overlap ratio greater than the threshold within the total number of frames,
where the threshold is set to 0.5. The intersection over union (IoU) [53] refers to the area
between the algorithm-calibrated bounding box and the ground truth bounding box, which
is calculated as follows:

S =

∣∣Apre ∩ Agt
∣∣∣∣Apre ∪ Agt
∣∣ (29)
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5.2.2. Experiment Analysis of the Multi-Layer Target Loss Discriminator

In practical underwater scenarios, autonomous underwater vehicles (AUVs) capture
multiple sets of tracking videos of fish targets, conducting tracking tests. In the 131th frame
in the experimental results, the fish’s motion deformation is significant, leading to delayed
template updates and target loss. At this point, the number of peaks increases significantly.
The maximum peak value and APCE (average peak-to-correlation energy) value sharply
decrease, with significant numerical fluctuations. Figure 6a–d correspond to the filtering
response graphs of frame 5, frame 99, frame 131, and frame 143, respectively. The exper-
iment obtained the third-layer target loss discriminator: the number of multiple peaks.
In Figure 6, the number of red ellipses indicates the number of peaks (n). It is obvious
that n = 1 (in frame 99) when the tracking state is stable and n = 6 (in frame 131) when it
is unstable.

Figure 6. Examples of multiple numbers of peaks for target loss discrimination. (a) Frame 5.
(b) Frame 99. (c) Frame 131. (d) Frame 143. The yellow boxes denote the fish tracking results.

The experiment obtained the top-layer and second-layer target loss discriminators.
Figure 7a shows the discriminative results of the maximum response score, where the
horizontal axis represents the frame number, and the vertical axis represents the maximum
response score calculated for each frame. Figure 7b presents the results of the average peak
correlation energy (APCE), with the horizontal axis denoting the frame number and the
vertical axis indicating the average peak correlation energy value. Through the analysis of
the experiments, the following conclusions are drawn:

(1) In the initial stable state of object tracking, the maximum response score (Fmax) and
average peak correlation energy (APCE) values are relatively high. In the 5th frame,
the experiment calculates Fmax = 0.391 and APCE = 29.07.

(2) In subsequent scenarios where object tracking is successful, the Fmax and APCE
values remain high. In the 99th frame, the experiment calculates Fmax = 0.397 and
APCE = 27.84.

(3) When the target is lost, both the Fmax and APCE values sharply decrease, exhibiting
significant fluctuations. In the 131th frame when the target is lost, Fmax = 0.287 and
APCE = 17.78.

(4) After the target is lost, the correlation filter tracker introduces background error
information, treating the background as the target and continuing tracking, leading to
a lower value. In the 143th frame, Fmax = 0.237 and APCE = 13.34.
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Figure 7. (a) The result of maximum response score discrimination. (b) The result of average
peak-to-correlation energy.

From the above experiments, it can be concluded that the maximum response scores,
average peak correlation energy values, and multi-peak number values can serve as dis-
criminative criteria for object tracking states. Adaptive template and parameter updates
can be performed based on different tracking scenarios.

5.2.3. Tracking Model performance comparison

We conducted tracking result testing and visualization based on publicly available
underwater scene datasets and actual measurement data. The tracking videos include
marine organisms such as fish, turtle, jellyfish, cuttlefish, starfish, and octopus, as well
as divers. The challenges of video encompass the motion deformation of targets and
variations in target scale and size. The underwater scene tracking video contains a total of
35 sequences, and each sequence has a length of approximately 100 to 1000 frames.

We conducted performance comparison evaluations using 13 algorithms, namely,
CF2, ECO, BACF, SiamFC, CSR_DCF, SRDCF, KCF, EFSCF, AS2RCF, SOCF, OTFUR [54],
IMKCF [55], and ours. As illustrated in Table 3, the proposed algorithm achieved favorable
results across various challenges, with accuracy and success rates of 88.3% and 64.2%,
respectively. This represents an improvement of 16.4% and 11.9% compared to the KCF
algorithm. This represents an improvement of 2.8% and 5.83% compared to the CF2
algorithm. Additionally, OPE precision plots and OPE success rate plots are shown in
Figure 8a and Figure 8b, respectively. The long-term tracking performance of our algorithm
in a challenging underwater environment is demonstrated.

                                        (a)                                                                                 (b)                                                             

Figure 8. (a) OPE precision plots for the underwater visual data. (b) OPE success rate plots for the
underwater visual data.
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For a more intuitive display of the tracking results, we employed multiple algorithms
to assess performance and visualize the tracking results for some typical videos. As depicted
in Figure 9, when faced with fast motion challenges (Figure 9a) and low-light scenarios
(Figure 9b), the proposed ULOTrack exhibits robust performance. Additionally, ULOTrack
is better at handling scale variation (Figure 9c) and challenges involving deformation
(Figure 9d).

  (a)                                      (b)                                     (c)                                    (d)                                      (e)               

Figure 9. The visualization perception results of our proposed model in various scenes; the box
denotes the tracked marine organisms. (a) Example of low-light challenge (fish 1). (b) Example of fast
motion challenge (fish 2). (c) Example of the motion deformation challenge (octopus). (d) Example of
the challenge in target size (turtle). (e) Example of complex scene, including several potential tracking
objects (fish 3). The boxes denote the fish tracking results.

The experiments demonstrated the effectiveness of the multi-layer tracking perfor-
mance discriminator, one-dimensional scale filter, and re-detection algorithm. Notably,
the proposed tracking algorithm is capable of handling challenging scenarios, such as
complex backgrounds, scale variations, changes in lighting conditions, fast motion, de-
formation, and in-plane rotations. This substantiates the robustness of the tracker in
challenging underwater environments.
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Table 3. The accuracy and success rates for different trackers. Bold value means the best performance.

Tracker Accuracy (Acc) Success Rate (SR) Frame Rate (FPS)

CF2 [2015] 0.855 0.590 43 (GPU)
ECO [2017] 0.850 0.632 50 (GPU)

BACF [2017] 0.784 0.581 35 (CPU)
SiamFC [2016] 0.776 0.579 58 (GPU)

CSR_DCF [2017] 0.768 0.562 13 (CPU)
SRDCF [2018] 0.759 0.572 5 (CPU)

KCF [2015] 0.719 0.523 172 (CPU)
EFSCF [2023] 0.823 0.637 18 (CPU)

AS2RCF [2023] 0.826 0.599 20 (GPU)
OTFUR [2023] 0.857 0.624 61 (GPU)
SOCF [2024] 0.845 0.621 48 (GPU)

IMKCF [2024] 0.861 0.629 16 (CPU)
Ours 0.883 0.642 42 (CPU)

5.2.4. Ablation Experiment of Different Modules

We completed an ablation experiment based on ULOTrack to showcase the efficacy
of the different modules. The experiment focused on analyzing the effects of the object
re-detection mechanism, multi-layer tracking discriminator, adaptive template updates,
and multi-feature fusion on the overall performance of the algorithm. Table 4 presents the
tracking results of the ablation experiment.

Table 4. Ablation experiment of the proposed modules on the test set. Bold value means the
best performance.

Model
Modules Evaluation Index

Re-Detection Multi-Layer Tracking
Discriminator (MTD)

Adaptive Template
Updates (ATUs)

Multi-Feature
Fusion (MFF) Acc SR

Without re-detection ✘ ✔ ✔ ✔ 0.802 0.568
Without MTD ✔ ✘ ✔ ✔ 0.821 0.617
Without ATU ✔ ✔ ✘ ✔ 0.856 0.629
Without MFF ✔ ✔ ✔ ✘ 0.834 0.590

OURS ✔ ✔ ✔ ✔ 0.883 0.642

Table 4 reflects the impact of re-detection on tracking accuracy using ULOTrack.
When the re-detection mechanism is not utilized, ULOTrack degrades into a short-term
tracker, and the experimental results show that it cannot independently handle model
drift. Specifically, the tracking accuracy and success rate are improved by 8.1% and 7.4%,
respectively. When the multi-feature fusion strategy is not utilized, the method is degraded
to a single HOG feature extract, causing unstable feature extraction. The algorithm employs
an adaptive template update mechanism that can improve accuracy by 2.7%. Additionally,
the multi-layer tracking discriminator can directly assess the current tracking state and
guide subsequent decisions accordingly.

In addition, we provide the tracking results obtained under challenges such as lighting
variations, motion blur, fast motion, and deformation in the benchmark tests. Figure 10
demonstrates the tracking results under different environmental conditions. In the first
sequence, significant lighting changes occur in frames 100 and 206. Other algorithms
struggle to adapt to these lighting changes, causing the position of the rectangular target
box to gradually shift to the left. Our algorithm introduces a multi-feature fusion strategy,
which effectively handles lighting variations. To address the issue of cluttered backgrounds,
we employ an adaptive template update mechanism that avoids introducing background
noise due to overly fast or slow model updates, allowing for robust target tracking. In the
second and third sequences, the target undergoes fast motion and deformation, resulting
in substantial tracking errors with other methods. Our method successfully relocates the
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target benefit from the re-detection mechanism, leading to more stable tracking results.
The right figure shows the tracking confidence curves.

Figure 10. The tracking results of different models in various scenes.

Figure 11 provides a detailed illustration of how ULOTrack influences the ability to
localize targets. The heat map represents the level of attention that the model assigns to
different search regions. We observed that the activation regions encompass broader global
areas of the marine organisms. For example, in Figure 11b, ULOTrack focuses on the global
features of the octopus, while UOSTrack maintains the stable tracking of the fish even in
complex underwater environments. In contrast, other methods tend to have more dispersed
heat maps, activating multiple regions in scenarios involving motion deformation and
complex backgrounds, as shown in Figure 11c,d.

Figure 11. Examples of feature visualization on the different sequences. The red box is the ground
truth of the target. (a) Underwater image and ground truth. (b) Ours. (c) EFSCF. (d) AS2RCF. The red
areas represent high correlations.
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6. Conclusions

In this study, we propose ULOTrack, an underwater long-term object tracking algo-
rithm for capturing marine organisms. Experimental results demonstrate that ULOTrack
excels in challenging scenarios such as variations in lighting, scale changes, and target de-
formation. Compared to existing methods, our approach achieves higher tracking accuracy
and success rates. The multi-layer tracking performance discriminator in ULOTrack plays
a crucial role in reducing template drift. This multi-layer mechanism allows the tracker
to pause template updates when target loss is detected, thereby activating a lightweight
detector for target re-localization. Additionally, the multi-feature fusion and adaptive
template update mechanisms prove effective in adapting to the rapid movements and
appearance changes of marine organisms.

However, our study has some limitations. Although ULOTrack performed well in
experiments, it faced certain challenges in handling extreme occlusions and highly complex
backgrounds. Furthermore, while the lightweight detector effectively balances accuracy
and computational efficiency, its performance could be further enhanced for more complex
targets. Future work will focus on improving the robustness of the detection module
in noisy and dynamic backgrounds and further optimizing computational efficiency for
extended continuous tracking.
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