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Abstract: This paper is dedicated to the acoustic inversion of the vertical sound speed profiles (SSPs)
in the underwater marine environment. The method of automatic differentiation is applied for the
first time in this context. Representing the finite-difference Padé approximation of the propagation
operator as a computational graph allows for the analytical computation of the gradient with respect
to the SSP directly within the numerical scheme. The availability of the gradient, along with the high
computational efficiency of the numerical method used, enables rapid inversion of the SSP based on
acoustic measurements from a hydrophone array. It is demonstrated that local optimization methods
can be effectively used for real-time sound speed inversion. Comparative analysis with existing
methods shows the significant superiority of the proposed method in terms of computation speed.
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1. Introduction

Spatial variations in sound speed and the refraction they cause have a significant
impact on the propagation of acoustic waves in the underwater environment [1,2]. Sound
is the primary mean of transmitting information in the underwater marine environment,
so the sound speed profile (SSP) affects underwater communication [3], navigation [4],
monitoring [5], and control of underwater objects. Depending on the specific SSP, the signal
can either propagate for hundreds or thousands of kilometers or quickly attenuate near the
source [6].

There are several ways to estimate the SSP [7]; these can be divided into direct mea-
surement methods and inversion techniques. The most direct method is to measure the
travel time of a high-frequency acoustic wave between a source and a receiver placed at
a known distance from each other within a specialized sensor. Another common direct
method involves measuring temperature, salinity, and depth—the three main parameters
that influence the sound speed in water. Although direct measurement methods are the
most accurate, the requirement for the device to be located at the measurement point makes
real-time monitoring of the SSP quite challenging.

The method of ocean acoustic tomography involves determining the SSP by measuring
the characteristics of the acoustic wave propagation. Sound from a known source is received
by an array of hydrophones that measure the signal’s amplitude and phase. By analyzing
the deviations that the signal undergoes on its path from the source to the receivers, it is
theoretically possible to assess the factors that caused these deviations.

From a mathematical perspective, the complexity of the tomography problem lies in its
ill-posedness according to Hadamard [8,9]. Typically, the problem has multiple solutions,
and additional constraints must be sought and applied to reduce the problem to a single
solution. Finding the inverse nonlinear operator is one of the most challenging tasks in
modern functional analysis and the theory of inverse problems.

The most well-studied inversion method is the matched field processing (MFP) tech-
nique [10]. MFP involves using a forward model that associates a given SSP and other
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input data with the acoustic pressure at specific points in space. Based on such a model, it
is straightforward to formulate the problem of finding an SSP for which the measured and
model-predicted values match. It is important to note that the relationship between SSP
and the spatial distribution of acoustic pressure is highly nonlinear. Minimizing this nonlin-
ear functional is a challenging task from both theoretical and computational perspectives.
Stochastic optimization methods [11], such as genetic algorithms, simulated annealing,
or particle swarm optimization, are commonly applied. To regularize the problem and
narrow the search space, the empirical orthogonal function (EOF) method is used, which
analyzes historical data on sound speed distribution in a specific region to find an orthogo-
nal basis [12,13]. However, solving this problem using stochastic optimization methods
can take hours.

MFP is widely used not only for determining SSPs but also for geoacoustic inver-
sion [14,15], such as estimating seabed parameters. Additionally, MFP is employed to
locate the source of acoustic signals [1,16]. The general principle remains the same across
applications: the goal is to adjust the model parameters so that the predicted and measured
values align.

The application of the compressive sensing method [17–19] reduces the problem to
an underdetermined system of linear algebraic equations. This is achieved by utilizing a
basis in the space of SSP functions and linearizing the nonlinear operator using the first
term of the Taylor series. Given the nonlinear nature of the problem, this approach is only
applicable for small variations in the sound speed.

Inversion methods based on machine learning and deep neural networks are gaining
popularity [20–24]. Like most machine learning models, these inversion methods are diffi-
cult to interpret and analyze, and it is difficult to determine the limits of their applicability.
Additionally, it is not always feasible to collect a large enough dataset for training. Despite
the challenges, the results presented in these works are quite promising and, in many cases,
surpass traditional methods.

It is important to note that acoustic measurements are not the only way to invert the
SSP. For instance, in the works [25–27], inversion models based on satellite observation data
have been developed. The accumulated satellite data on the ocean surface and underwater
environment [28] enables the construction of complex regression models.

Given the advancement of machine learning tools, such as automatic differentia-
tion [29] and gradient-based optimization, there arises the idea of applying these tools
not to poorly interpretable deep neural networks, but to the existing physical models of
wave propagation and numerical methods. In this work, a fully differentiable higher-order
numerical scheme based on the parabolic equation (PE) method [30] has been developed.
The ability to perform automatic differentiation with respect to SSP parameters enables the
use of gradient-based methods for rapid optimization problem solving.

A somewhat related approach is proposed in [31], where a convolutional generative
network is trained on historical data and used to subsequently predict the SSP in real time.

The paper is organized as follows. Section 2 presents the formal problem statement.
Section 3 is dedicated to solving the corresponding forward problem using the PE method.
In Section 4, the original problem is reduced to a functional minimization problem, and
various solution approaches are discussed. The analysis of numerical modeling results is
provided in Section 5. The conclusion outlines several questions for the further research.

2. Problem Statement

There is an acoustic wave source with known parameters, coordinates, and depth.
At a known distance from the source, an array of hydrophones is located, measuring the
acoustic signals from the source at different time points. The seabed topography and
parameters are also considered known. The amplitude and phase of the signals at the
hydrophones vary over time, mainly due to the SSP variations. We assume that the SSP
changes smoothly over time. The complex acoustic pressure vi

j is measured at points(
xj, zj

)
, j ∈ [1, N]. Measurements are taken at known discrete time intervals ti.
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The task is to determine the current SSP at any given moment in time ti based on the
hydrophone data vi

j. This means constructing the time-varying SSP c̃i(z) as a function of
both depth and time. The method should account for smooth temporal variations in the
SSP and provide an updated estimate of the sound speed at each time step based on the
observed changes in the acoustic pressure vi

j. A schematic description of the problem setup
is shown in Figure 1.

z

x0 sea surface (ψ=0)

c(z): sound speed profile - ?

array of hydrophones

radiation source

transparent BC

seabed

Figure 1. Schematic description of the problem.

3. Forward Problem and Its Solution

At the core of almost any method for solving an inverse problem lies the repeated
solution of the corresponding forward problem and the search for an optimal solution.
In our case, the forward problem involves computing the spatial distribution of acoustic
pressure in the underwater environment with known environmental parameters, including
the SSP and seabed characteristics. Additionally, the parameters of the acoustic wave source
are known. The problem, as formulated, has a unique solution and can be efficiently solved
using various numerical methods. The most effective methods include the PE method [30]
and the normal modes method [1]. In this work, we use the one-way Helmholtz equation
method [32,33], which is a generalization of the PE.

3.1. Mathematical Formulation of the Forward Problem

The complex-valued acoustic field ψ(x, z) at frequency f satisfies the two-dimensional
Helmholtz equation 

∂2ψ

∂x2 + ρ ∂
∂z

(
1
ρ

∂ψ
∂z

)
+ k2(z)ψ = 0,

ψ(x, 0) = 0,
ψ(x,+∞) = 0,
ψ(0, z) = Qψ0(z),

(1)

where

• k(z) = 2π f /c(z) is the wave number dependent on depth z.
• c(z) is the SSP, which is the primary variable of interest in this research. While the

sound speed may also vary in the horizontal direction x, these variations are generally
weak and do not have as significant impact as depth-dependent variations. In the
forward problem, c(z) is assumed to be known.

• ρ(x, z) is density, a parameter of the seabed that may vary with both depth and range.
In water, it is typically assumed to be 1.

• Q is a complex constant responsible for the amplitude and phase of the emitting
source. As it will be clear later, solution ψ is linear with respect to coefficient Q, so for
simplicity, we will seek the solution of Equation (1) in the case where Q = 1.
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• ψ0(z) is a known function that defines the directivity and depth of the emitting source.

In this work we use a Gauss source, defined as follows:

ψ0(z) = exp(−ik0θez) exp

(
−

θ2
bw

8 log 2
k2

0(z− z0)
2

)
,

where z0 is the antenna depth, θbw is the beam width, θe is the elevation angle, and
k0 = 2π f /c(z0).

The problem of determining the acoustic field ψ(x, z) at any point in space is well-
posed, meaning that it has a unique solution given the specified environmental parameters.

3.2. One-Way Helmholtz Equation and Its Numerical Solution

Let us rewrite the Helmholtz Equation (1) in the form of the sequential application of
two operators, responsible for wave propagation in the left and right directions, respectively:[

∂

∂x
− i

√
ρ

∂

∂z

(
1
ρ

∂ψ

∂z

)
+ k2(z)

][
∂

∂x
+ i

√
ρ

∂

∂z

(
1
ρ

∂ψ

∂z

)
+ k2(z)

]
ψ = 0. (2)

By discarding the second term, and thus, ignoring backscattering, we obtain a one-way
approximation of the Helmholtz equation:

∂ψ

∂x
= i

√
ρ

∂

∂z

(
1
ρ

∂ψ

∂z

)
+ k2(z)ψ. (3)

The method used in this work is a step-by-step evolutionary solution of the one-way
Helmholtz Equation (3) along the positive direction of the x-axis. The step-by-step solution
is computed simultaneously in both the water column and the seabed. To maintain a finite
computational domain, the transparent boundary condition method is applied [34–37].

The stepwise solution of the one-way Helmholtz Equation (3) in operator form is
written as follows:

u(x + ∆x, z) = P(L)u(x, z), (4)

where
P(L)u = exp

(
iβ∆x

(√
1 + L− 1

))
u, (5)

u(x, z) = e−iβxψ(x, z),

Lu =
ρ

β2
∂

∂z

(
1
ρ

∂ψ

∂z

)
+

1
β2 k2(z)− 1.

The finite-difference numerical solution will be sought on a uniform grid in both the x and
z dimensions, with steps ∆x and ∆z, respectively. We use the notation un

j (z) = u(n∆x, j∆z),
where un

j (z) represents the solution at the discrete points of the grid.
For the numerical solution, we use a fourth-order finite-difference approximation of

the transversal operator L [38],

Lu ≈ L∆zuj =
1

∆z2

ρjδ
2
ρuj

1 + 1
12 ρjδ2

ρuj
+

1
β2 k2

j − 1,

where the modified second difference operator is defined as follows:

δ2
ρuj =

uj+1 − uj

ρj+0.5
−

uj − uj−1

ρj−0.5
.
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The next step in constructing the numerical scheme is to approximate propagation
operator (5). For this, we treat operator P as a function of operator L and expand it in the
vicinity of L ≈ 0 using a rational Padé approximation of order [p/q] [33,39]:

P(L)u ≈
1 + ∑

p
l=1 ãlξ

l

1 + ∑
q
l=1 b̃lξ l

=
q

∏
l=1

1 + al L
1 + bl L

u. (6)

Then, the action of the propagation operator (5) at each step is written as the following
system of equations, which is solved sequentially from top to bottom:

(1 + b1L∆z)vn
1 = (1 + a1L∆z)un−1

(1 + bl L∆z)vn
l = (1 + al L∆z)vn

l−1 l = 2, . . . , p− 1
. . .(
1 + bqL∆z

)
un =

(
1 + aqL∆z

)
vn

q−1

(7)

Each row of system (7) represents a tridiagonal system of linear algebraic equations,
which can be solved in linear time using the Thomas algorithm (tridiagonal matrix algo-
rithm). It is important to note that the entire numerical scheme consists solely of solving
tridiagonal systems of equations, which are efficiently solved by sequential application of
elementary operations.

The optimal choice of the computational grid parameters ∆x, ∆z, β, and approxima-
tion order [p/q] is discussed in Refs. [40–42]. The optimal values of the computational
grid parameters are highly dependent on the input data of the problem; specifically, the
propagation environment and the characteristics of the acoustic source. A typical choice for
the Padé approximation order is [7/8].

It is worth noting that the frequently used Claerbout’s wide-angle (WA) PE, solved
using the Crank–Nicolson method [38], is a special case of the above-described scheme
when using a [1/1] Padé approximation. Thus, the scheme considered here provides a
significantly higher order of accuracy.

4. Methods for Solving the Inverse Problem

Let the acoustic pressure values measured at the hydrophones be denoted as the vector

v =
(

v1 v2 . . . vN
)T .

Let us define the operator G : L2[0, H] → CN , which maps SSP function c(z) to the
vector of acoustic pressure values at the measurement points

Gc =
(

ψc(z)(x1, z1) ψc(z)(x2, z2) . . . ψc(z)(xN , zN)
)T

.

The inverse problem consists of finding the inverse operator G−1, which, based
on the measurement data, would return the SSP c(z). Operator G is nonlinear, which
significantly complicates the task of finding its inverse [8]. We define the inverse operator
G−1 through the minimization of the residual (discrepancy) between the measured and
predicted acoustic pressure values:

arg min
c(z)

N

∑
j=1
||Qψ

(
c, xj, zj

)
− vj||2 = arg min

c(z)
||QGc− v||2. (8)

In practice, the amplitude and phase of the source Q are often unknown. Therefore,
the minimization problem (8) should be reformulated to account for this uncertainty:

arg min
Q

min
c(z)
||QGc− v||2,
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which is equivalent [43] to

arg max
c(z)

|vHGc|2
||Gc||2 .

Rewriting this as a minimization problem gives

G−1v = arg min
c(z)

J(c, v), (9)

J(c, v) =
||Gc||2
|vHGc|2 + γ|| dc

dz
||2, (10)

where γ is a regularization parameter [44]. In all subsequent experiments, we set γ = 1. It
is important to note that since the primary influence on propagation characteristics comes
from the spatial variations in the sound speed rather than its absolute value, regularization
is applied with respect to the norm of the transversal derivative of the SSP.

In this work, we assume that both the amplitude and phase of the signal at the receivers
are known. The modifications to the loss function for the case where only the amplitude of
the received signal is known are provided in [45].

We will seek function c(z) in the form of a piecewise linear function, defined on a
predefined uniform grid 0 = zc

1 < zc
2 < · · · < zc

M = H, with c(zc
i ) = ci. Note that the

discretization grid for the SSP does not necessarily have to coincide with the computational
grid used for solving the forward problem. In this case, the minimization problem (8)
simplifies somewhat, as we now seek the minimum in an M-dimensional space:

G−1v = arg min
c0,...,cM

J(c, v). (11)

In addition, physical constraints should be imposed on the sound speed values, such as

c0, . . . , cM ∈ [1400, 1700].

Nevertheless, the minimization problem remains extremely challenging due to the
high dimensionality and the complex landscape of the objective function [46]. Additionally,
the value of objective function J(c, v) for each c depends on the numerical solution of the
Helmholtz Equation (1), making the evaluation of the objective function a computationally
expensive operation.

4.1. Local and Global Optimization

Thus, to solve the given problem, we need to minimize the objective functional
J(c, v). Optimization methods (for finding minimum of an objective function) are generally
divided into two categories: local and global [11,47]. Global methods include genetic
algorithms [48], the simulated annealing method [49], and particle swarm optimization
method. These methods typically treat the loss function as a black box, requiring only
the ability to compute its value at any point within the domain. For example, SAGA
5.4 software package [50] implements environmental parameter inversion, including SSP
inversion, based on genetic algorithms.

However, global optimization methods are not feasible for real-time applications due
to their slow convergence. Global methods are typically used for acoustic inversion of
seabed parameters [14], as these parameters do not change over time and the inversion
speed is not as critical in such cases.

Local optimization methods typically require knowledge of the gradient of the loss function

∇c J ≈
(

∂J
∂c1

∂J
∂c2 . . . ∂J

∂cM

)
and an initial guess c̃0(z). The gradient helps them find the minimum more quickly and
accurately, but only if the minimum is located near the initial guess.
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There are also hybrid algorithms that combine the strengths of both global and local
optimization methods. In [51], a combination of a genetic algorithm and the Gauss–Newton
method was used for acoustic inversion of layered medium parameters. The synthesis
of the simulated annealing and simplex methods for seabed parameter inversion was
investigated in [52].

In this work, it is assumed that changes in the SSP occur smoothly over time, meaning
that each subsequent change is small compared to the current state. As a result, it is relevant
to use local optimization methods based on gradient descent. Since the profile evolves
gradually, these methods can effectively track the small variations and provide accurate
updates with each time step.

4.2. Gradient Using the Adjoint Method

Local optimization methods utilize not only the values of the objective function but
also its gradient. This imposes certain constraints on the objective function—it must be
differentiable, and it can no longer be treated as a “black box”. Although the gradient can be
computed using finite-difference methods, this approach is typically inefficient in practice.
The advantage of using the gradient can be fully exploited if it is computed analytically.
However, this is often a non-trivial task. For example, in our case, the optimization takes
place over an infinite-dimensional function space, and the loss function depends on the
solution of the Helmholtz equation.

Nevertheless, several successful attempts have been made to compute the gradient
of the objective function using the adjoint equation method, followed by its application
to invert the SSP and seabed parameters within the PE method [44,53–55]. One drawback
of these methods is that the analytical expressions for the gradient are often complex and
computationally intensive. As a result, in all these works, a simple finite-difference approx-
imation of the PE was used, based on the Crank–Nicolson method and corresponding to a
Padé approximation of order [1/1].

As we will see in further computational experiments, using a higher-order approximation
can significantly increase the computational efficiency. Moreover, as expected, the convergence of
this local method is highly dependent on the initial guess. Specifically, it converges to the correct
solution only when the initial approximation is sufficiently close to the true profile. However,
practical applications of such local optimizers have not been widely explored until now.

4.3. Automatic Differentiation of the Numerical Scheme

In this work, an alternative to manually computing gradient expressions of the PE
is proposed. The numerical scheme is represented as a computation graph, over which
automatic differentiation is performed [29]. Indeed, the considered numerical scheme (7)
consists of a large, but fixed and predefined, number of elementary operations. The gradient
does not need to be derived or programmed manually; it is computed analytically using
the computation graph of the numerical scheme. It should be noted that the construction of
the computation graph requires a predetermined finite number of iterations, which means
that various adaptive algorithms cannot be differentiated.

The development of deep learning methods has introduced several highly efficient
and accessible software frameworks for automatic differentiation, such as TensorFlow 2.18,
PyTorch 2.5, and JAX 0.4 . While these frameworks are primarily designed for models in the
form of deep neural networks, they can also be used for other finite-dimensional models.
From a computational perspective, determining the coefficients of a neural network is not
significantly different from determining the coefficients c0, . . . , cM of the SSP.

Programming models in frameworks like TensorFlow and PyTorch requires a very
specific representation as a computation graph, typically designed for deep neural networks.
An alternative approach is offered by the JAX framework [56]. JAX allows users to program
models in a more familiar format, using an interface that closely mirrors standard numerical
modeling frameworks like NumPy 2.1 and SciPy 1.14. The model is automatically translated
into a computation graph suitable for automatic differentiation.
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The JAX framework is already being actively used to build differentiable numerical
schemes and solve similar problems across various fields. The JAX-FEM library [57] is an
implementation of the finite element method (FEM) in pure Python 3. By using JAX, the
library enables automatic differentiation of FEM-based numerical schemes with respect to
any parameter, simplifying the solution of inverse problems, particularly in computational
mechanics. Similarly, the XLB library [58] provides differentiable algorithms for solving
fluid dynamics problems. The Diffrax library [59] offers a JAX-based implementation of
well-known methods for solving first-order differential equations, such as the Runge–Kutta
method. Numerical solutions are differentiable with respect to any predefined parameters,
making them suitable for use in gradient-based optimization methods. This library also
supports stochastic differential equations.

It is also important to mention the pioneering work in this field [60], which demon-
strated the connection between first-order differential equations and ResNet architectures.
In this work, the authors were the first to propose an algorithm for training a differential
equation by differentiating its solution with respect to certain parameters.

4.4. The Proposed Algorithm

Although having access to the gradient of the numerical scheme simplifies the opti-
mization problem, finding a solution within an acceptable time frame is still not feasible
without prior information. In this work, we assume that the SSP at time t0 is known.

We introduce an additional dependence of the inverse operator on the SSP from the
previous step c̃i−1(z) (denoted as G−1

c̃i−1
v), which helps the algorithm to converge faster.

Given that the problem is solved in real time and has continuous access to the acoustic
pressure measurements, this requirement can be easily satisfied. The only challenge is the
“cold start” problem—how to initialize c̃0(z) on the very first iteration. In this work, we
propose initializing c̃0(z) using data from direct measurements. If direct measurements
are not available, the problem can be approached with global optimization methods. The
initial solution using global optimization methods can take a long time to find (maybe
several hours), but then, by simultaneously saving measurements over time, it is possible to
quickly catch up to real time using the proposed method, since it searches for the optimum
much faster than the SSP actually changes.

By using the mesh optimizer proposed in [40], the grid shapes can be precisely com-
puted in advance, eliminating the need for adaptive algorithms, which would be impossible
to differentiate.

In this work, the operator G−1
c̃i−1

is implemented using the L-BFGS-B algorithm [61], with
the initial guess set to c̃i−1. The implementation from the SciPy library [62] is used. The
gradients and function values computed using JAX can be easily utilized in external libraries.
Specifically, the gradient of the numerical scheme in our implementation is seamlessly passed
to the SciPy optimizer. The pseudocode for the proposed method is shown in Listing 1.

Listing 1. Proposed real-time method for the SSP inversion based on the acoustic pressure measurements.

c̃0(z)←ssp_direct_measure(t0) // direct measurement of the SSP at
time t0
for i = 1 . . .

// measurement of acoustic pressure at time ti
vi ←pressure_direct_measure(ti)
c̃i(z)← G−1

c̃i−1
vi = arg minc(z) J(c, vi) // L-BFGS-B, near c̃i−1

// return the current SSP and continue the inversion process
yield c̃i(z)
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5. Numerical Results and Discussion

The proposed method has been implemented as part of the open-source library Py-
WaveProp [63], developed by the author of the present research. The examples presented
in this section were implemented using the mentioned library.

To demonstrate the functionality of the proposed algorithm, we replace the actual
pressure measurements on the hydrophones with data generated from forward modeling.
Using the pre-known dynamics of the sound speed changes ci(z), i = 1, . . . , we compute
the acoustic pressure values at the hydrophones at some time points ti. Gaussian noise is
added to the computed values at the hydrophones, and these noisy values are used to solve
the inverse problem. We then compare the true SSP with the inverted one. The pseudocode
of the simulation process is shown in Listing 2.

Listing 2. Pseudocode of the simulation process.

ci(z) // given true SSP
c̃0(z)← c0(z)
for i = 1 . . .

// simulate data on the hydrophones using forward modeling
vi ← Gci(z)+gauss_noise
// invert SSP
c̃i(z)← G−1

c̃i−1
vi

yield c̃i(z)

This simulation approach allows us to validate the performance of the inversion
algorithm by generating synthetic data that mimics real-world conditions, including noise,
and observing how well the method can recover the true SSP.

As an example, we model the sensing of a bilinear SSP in shallow water. The depth is
constant and equal to 200 m. The acoustic wave source is located at a depth of 50 m and
emits a monochromatic signal. Frequencies of 200 Hz and 500 Hz are considered. A vertical
array of eight uniformly distributed hydrophones (5–75 m) measures the signal from the
source. The array is placed at distances of 5 and 10 km from the source. The signal-to-noise
(SNR) ratio on the receivers is simulated equal to 30 dB.

The initial profile is a constant SSP of 1500 m/s. First, we increase the positive sound
speed gradient, which encourages multiple reflections of waves from the sea surface. Then,
we gradually add a negative gradient near the surface, which causes the acoustic waveguide
to sink to a certain depth. A total of 50 sequential measurements and SSP inversions are
performed. The dynamics of the SSP changes are shown in Figure 2. This figure also
shows the inversion results for various frequencies and hydrophone array locations. For
the readers convenience, enlarged images of SSPs for several values of t are also shown in
Figure 3. The pointwise difference between the original and inverted SSPs c(z)− c̃(z) is
shown in Figure 4.

Given that propagation of acoustic waves is more influenced by the spatial variation
of sound speed rather than its absolute value, it makes sense to evaluate the error between
the true and inverted profiles in terms of the norm of the difference of the gradients (spatial
changes) rather than the absolute sound speed values:

err(ti) = ||
dci
dz
− dc̃i

dz
||.

The error dynamics over time are shown in Figure 5.
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Figure 5. Error between original and inverted SSPs.

It can be observed from the inversion results that at a frequency of 200 Hz, the method
performed excellently at distances of 5 and 10 km from the source. Increasing the frequency
to 500 Hz, which decreases the wavelength and increases the distance from the source
to the receiver in terms of wavelengths, already introduces difficulties for the inversion.
Specifically, at a distance of 5 km, the algorithm still managed to perform the inversion, but
at 10 km, it diverged. It should also be noted that increasing the number of measurements
did not help to achieve convergence. Evidently, in this case, the data from hydrophones at
a single distance are no longer sufficient to uniquely determine the SSP. In situations where
the algorithm converges, the error remains bounded over time, indicating the stability of
the proposed algorithm.

Let us now turn to the question of the convergence speed of the proposed algorithm.
In Figure 6, the number of function evaluations and gradient computations at each time
step is shown. It can be seen that this number generally does not exceed 500. However, in
the most challenging case, the number of calls increased sharply, yet this still did not help
the algorithm to converge.
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Figure 6. Number of function evaluations and gradient computations at each step.

As previously noted, earlier gradient-based inversion methods were based on the
Crank–Nicolson method for the WA PE models. Since the Crank–Nicolson method is a
special case of the rational Padé approximation used in this work, we can easily compare
the methods even without having their specific software implementations. In Table 1, the
grid cell sizes used and the average inversion time are shown. The optimal grid parameters
were selected using the algorithm developed in [40]. It is evident that the proposed method
is approximately 20 times faster than the previously used methods. Using a higher-order
scheme makes it possible to perform computations much faster on a more sparse grid.
Moreover, it is clear that the inversion time is directly dependent on both the frequency
and the distance from the source to the receivers. The greater the distance from the source
to the receivers in wavelengths, the longer it takes for the inversion algorithm to converge.

The effect of divergence as the receivers move away from the source has been noted
for local methods before [44,64]. The complexity of the problem at large distances lies
in the complication of the objective function in the vicinity of the initial approximation.
This is confirmed by the increase in convergence time with increasing distance. Thus, the
local method hits a local optimum. Ref. [44] notes that horizontally arranged hydrophone
arrays are less susceptible to this effect, but they are significantly more difficult to deploy
and operate.

Table 1. Parameters of the numerical scheme and inversion duration.

Order f (Hz) ∆x (m) ∆z (m) Range (km) Mean Inversion Duration
(s)

Mean Number of
Evaluations

Crank–Nicolson WA PE
200 1.2 1.25 5 44.7 293

500 0.5 1.25 5 213.6 540

Padé-[7/8]

200 100 2.5
5 2.5 295

10 9.3 521

500 40 2.5
5 10.5 542

10 159 2245

Two-dimensional distributions of the acoustic pressure at different time points are
shown in Figure 7. These distributions were computed using forward modeling for both
the true and inverted SSPs. It can be observed that, at the same time points, the distribu-
tions are nearly indistinguishable, which attests to the accuracy of the obtained solution.
Furthermore, the waveguide effects, which emerge at various moments, are clearly visible.
These waveguide effects are what the hydrophones detect, and they form the basis for the
inversion process.
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Finally, we compare the accuracy of the proposed algorithm depending on the SNR
value at the receivers. Figure 8 depicts absolute error of the inversion for four values of
SNR. Obviously, decreasing the SNR leads to increasing the inversion error. However,
even for an SNR value of 10 dB, the error remains bounded over time, indicating that the
proposed algorithm is robust to receiver noise.
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Figure 8. Error between original and inverted SSPs for various values of SNR. f = 200 Hz,
range= 5 km.

6. Conclusions

The proposed method significantly outperforms, on average, the existing approaches
in terms of inversion speed, making it suitable for real-time applications on low-powered
computational equipment.

The method leverages modern machine learning tools while remaining physically
and computationally well-founded and interpretable. Unlike many machine learning
approaches, the model does not require the prior collection of large amounts of statistical
data about the environment. It only requires an initial estimate of the SSP.

A key area for future research is addressing the “cold start” problem. This will involve
developing modifications that incorporate elements of global optimization to determine
the initial profile without the need for direct measurements. Combining global and local
optimization could also improve the method’s convergence, particularly when the source
and receivers are located far apart.
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Gradient-based local search methods have already been tested on real data and showed
good results there [53]. The method proposed in the present research performs the same
process, but much faster. Nevertheless, a comprehensive analysis of the method on exper-
imental data is planned for future work. Another important direction is the uncertainty
quantification of the solution obtained using the proposed method.
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