
Citation: Cao , Y.; Zhou, Z.; Xu, Y.; Qu,

Y. Sensitivity Analysis of Underwater

Structural-Acoustic Problems Based

on Coupled Finite Element

Method/Fast Multipole Boundary

Element Method with Non-Uniform

Rational B-Splines. J. Mar. Sci. Eng.

2024, 12, 98. https://doi.org/

10.3390/jmse12010098

Academic Editors: Luca Cavallaro

and Moncho Gomez Gesteira

Received: 4 November 2023

Revised: 22 December 2023

Accepted: 27 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Sensitivity Analysis of Underwater Structural-Acoustic
Problems Based on Coupled Finite Element Method/Fast
Multipole Boundary Element Method with Non-Uniform
Rational B-Splines
Yonghui Cao 1,2, Zhongbin Zhou 3, Yanming Xu 4 and Yilin Qu 1,2,*

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
2 Unmanned Vehicle Innovation Center, Ningbo Institute of NPU, Ningbo 315399, China
3 Key Laboratory of In-Situ Propterty-Improving Mining of Ministry of Education,

Taiyuan University of Technology, Taiyuan 030002, China
4 Henan International Joint Laboratory of Structural Mechanics and Computational Simulation,

School of Architecture and Civil Engineering, Huanghuai University, Zhumadian 463000, China
* Correspondence: quyilin_95@126.com

Abstract: For the direct differentiation technique-based modeling of acoustic fluid–structure inter-
action and structural-acoustic sensitivity analysis, a coupling algorithm based on the finite element
method (FEM) and the fast multipole boundary element method (FMBEM) is suggested. By bypass-
ing the challenging volume parameterization process in isogeometric finite element techniques and
the laborious meshing process in traditional FEM/BEM, non-uniform rational B-splines (NURBS)
isogeometric analysis (IGA) is utilized to immediately perform numerical analysis on CAD models.
The matrix-vector products in the boundary element analysis are accelerated using the fast multipole
method (FMM). To hasten the solution of the linear system of equations, the iterative solver GMRES
is used. The numerical prediction of the effects of arbitrarily shaped vibrating structures on the sound
field is made feasible by the FEM/FMBEM technique. A number of numerical examples are provided
to show the applicability and effectiveness of the suggested approach.

Keywords: NURBS; fluid–structure interaction; design sensitivity analysis; direct differentiation
method

1. Introduction

Underwater acoustics frequently deal with the analysis of acoustic radiation or scat-
tering from elastic objects in heavy fluid. It is only possible to find analytical solutions
for acoustic fluid–structure interaction [1] issues when the structure has simple geometry
and simple boundary conditions. More real-world problems with complicated geometries
cannot be solved analytically; thus, efficient numerical approaches must be devised.

The dynamic behavior of problems involving fluid–structure interactions, acoustics,
fracture mechanics, and electromagnetics has been widely studied using FEM. However,
there are a number of problems with the FEM when modeling infinite domains. As is com-
monly known, the BEM has been effectively used to address acoustic concerns as it offers
superior precision and straightforward mesh formation. Particularly for exterior acoustic
problems, the Sommerfeld radiation condition at infinity is immediately satisfied [2]. The
boundary integral problem has been quantitatively solved using the Galerkin approach
for BEM implementation [3,4]. However, the engineering community has always favored
the collocation technique. Therefore, the examination of problems with fluid–structure
interaction is acceptable for the coupled FEM/BEM approach [5,6]. However, due to the
CBEM’s generation of a dense and non-symmetric coefficient matrix that requires O(N3)
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arithmetic operations to directly resolve the equation system, for example, when employ-
ing the Gauss elimination approach, coupling analysis of underwater structural-acoustic
problems continues to be the bottleneck of high computational cost. The fast multipole
method (FMM), the fast direct solver, and the adaptive cross approximation approach are
just a few of the methods that have been utilized to expedite the resolution of the integral
issue. The rapid direct solver was developed by Martinsson and Rokhlin [7,8]. It quickly
creates a reduced factorization of the matrix’s inverse and performs well for problems
requiring moderately ill-conditioned matrices. For problems needing a lot of iterations,
the Bebendorf and Rjasanow-invented adaptive cross approximation approach [9] creates
blockwise low-rank approximants from the BEM matrices. The CBEM system of equations
may now be solved more quickly thanks to the development of FMM [10–14]. Therefore,
utilizing a coupling strategy based on FEM/fast multipole boundary element method
(FEM/FMBEM) [15], it may be possible to handle large-scale fluid–structure interaction
problems. This study also recommends the coupling method FEM/FMBEM to handle the
challenging problems involving fluid–structure interactions.

Design professionals are increasingly taking into account passive noise management
by changing the geometry of constructions. This structural-acoustic optimization has
great potential for reducing radiated noise [16,17], especially for thin-shell constructions.
Because it may demonstrate how a geometry adjustment impacts the structure’s acoustic
performance, acoustic design sensitivity analysis is an essential stage in the procedures of
acoustic design and optimization. The advancement of passive noise elimination through
structural-acoustic optimization is summarized by Marburg [18]. The finite difference
method (FDM) has been utilized extensively for structural-acoustic optimization [19–21]
because of how easy it is to apply. Yet, this approach has poor performance, especially when
numerous design factors are given consideration at once. To solve this problem, we use
the adjoint variable method (AVM) [22,23] or the direct differentiation method (DDM) [24].
The sensitivity analysis for the fluid–structure interaction problem, as is well known, takes
up the greatest time in the gradient-based optimization procedure. In order to speed up
the analysis, the coupling method FEM/FMBEM is subjected to the structural-acoustic
sensitivity analysis based on DDM in this work.

The FEM and BEM may be applied with the help of suitable software; this technique
is called computer-aided engineering (CAE). Modern CAE requires, however, that the
models produced by CAD software be converted into simulation-ready models as part
of the preprocessing step. Geometric model data transfer in the CAE results in geome-
try errors. A proposed solution to this problem is the integration of boundary element
method (IGABEM) [25,26] with geometric modeling and numerical simulation utilizing
isogeometric analysis [27–29]. Geometric errors and laborious preprocessing processes
may be eliminated, and numerical simulation can be performed directly from the accurate
models, all thanks to IGABEM. Elastic mechanics [30], potential difficulties [31,32], wave
propagation [33,34], fracture mechanics [35], electromagnetics [36–38], and structural op-
timization [39–44] are just a few of the problems that IGABEM has been utilized to solve
since its founding. The NURBS IGABEM is used in this investigation.

This work develops the sensitivity formulation for the coupled FEM/BEM analy-
sis and adds FMBEM to the structural-acoustic coupling sensitivity analysis. Coupling
FEM/FMBEM is recommended for issues involving fluid–structure interaction and struc-
tural acoustic sensitivity assessments. NURBS is applied for the first time to structural-
acoustic coupling calculations and acoustic sensitivity analysis, which eliminates geometric
errors and improves the calculation accuracy. The precision and effectiveness of this method
are demonstrated using numerical examples.

2. Non-Uniform Rational B-Splines (NURBS)

In order to be thorough, this part addresses some of the fundamental NURBS ideas
that are the basis of the isogeometric analysis. The readers are directed to [27,45] for further
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information. The knot vector made up by a collection of non-decreasing real numbers
represented as in Equation (1) is a key idea in NURBS.

Ξ =
[
ξ1, ξ2, · · · , ξn+p+1

]
, ξa ∈ R, (1)

where n is the overall amount of basis functions, p is the polynomial order, and a is the
knot index. One may think of a knot vector as a parametric space in one dimension, as
shown in Figure 1.

0 0 0 0 1 2 3 4 4 4 4

Knot Parametric mesh

Figure 1. Knot vector {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.

The Cox-de Boor recursion formula is used to express the B-spline basis functions for
a given knot vector, as presented in Equations (2) and (3). When p = 0, we have

Na,0(ξ) =

{
1 if ξa ≤ ξ < ξa+1,

0 otherwise,
(2)

and when p ≥ 1,

Na,p(ξ) =
ξ − ξa

ξa+p − ξa
Na,p−1(ξ) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1(ξ). (3)

Numerous advantageous characteristics of B-spline basis functions (as demonstrated in
Figure 2, different colors representing different orders of NURBS basis functions), including
linear independence and local support, make them suitable for numerical analysis. As
demonstrated in Equation (4), the B-spline curve may be created by linearly combining
B-spline basis functions and control points.
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Figure 2. NURBS basis functions.

x(ξ) =
n

∑
i=1

Na,p(ξ)Pa,p, (4)

where the control point coordinates are represented by the coefficients Pa,b. Because of this,
a B-spline curve is fundamentally a conversion from a parametric one-dimensional space
to actual space. There are the following knot vectors in every dimension of the following
two-dimensional parametric spaces:[

ξ1, ξ2, · · · , ξn+p+1
]
, ξa ∈ R, (5)

[η1, η2, · · · , ηm+l+1], ξb ∈ R. (6)
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The tensor product property may be used to build the B-spline surface, as illustrated
in Equation (7).

x(ξ, η) =
n

∑
a=1

m

∑
b=1

Na,p(ξ)Nb,l(η)Pa,b, (7)

where n and m are the corresponding numbers of basis functions in each dimension. It
should be mentioned that B-spline control points are not usually on the surface (as demon-
strated in Figure 3) due to the absence of the Kronecker delta property (as demonstrated in
Figure 2).

Control point

Curve

Knot

Control polygon

(a) (b)

Figure 3. NURBS geometries. (a) NURBS curve; (b) NURBS surface.

By linking a weight coefficient with every control point, NURBS extend B-splines.
Using NURBS, designers may precisely represent various curves having conic segments,
like ellipses and circles, and gain more control over the depicted curve without boosting
the degree or the quantity of control points. The NURBS basis functions are constructed
from the B-spline basis functions, which are represented in two dimensions as Equation (8).

Ra,b(ξ, η) =
Nb,p(ξ)Nb,l(η)wa,b

W(ξ, η)
, (8)

W(ξ, η) =
n

∑
a=1

m

∑
b=1

Na,p(ξ)Nb,l(η)wa,b.

where w is the weight coefficient. Similar to how B-spline surfaces are formed, NURBS
basis functions and control points are used to define NURBS surfaces, as indicated in
Equation (9).

x(ξ, η) =
n

∑
a=1

m

∑
b=1

Ra,p(ξ)Rb,l(η)Pa,b. (9)

Equation (9) may be recast as Equation (10) by dropping the notation p in the following
and iterating between basis functions or control points using the global index A.

x(ξ, η) =
NA

∑
A=1

RA(ξ, η)PA. (10)

More control points can be added using the knot insertion operator without altering the
structural form. By adopting the h-refinement method, this characteristic helps to increase
the precision of estimating physical fields while maintaining geometric correctness.

3. Structural-Acoustic Coupling
3.1. FEM Analysis

Fritze et al. [6,46] detailed the whole structural-acoustic analysis technique, and asso-
ciated expressions are provided in this section. If a harmonic load is given to the structure,
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it is possible to infer from the frequency response analysis what the structure’s steady-state
reaction will be. The structural-acoustic equation’s linear system is derived in Equation (11).(

K + iωC − ω2M
)

u(ω) = Au, (11)

f = Au, (12)

where K is the stiffness matrix, i =
√
−1 the imaginary unit, ω the harmonic load’s

excitation frequency, C the damping matrix, M the mass matrix, u the nodal displacement
vector, and f the full excitation.

Note that, although the steady-state response maintains the same frequency with the
applied load, damping may cause it to have a distinct phase angle. By breaking down the
time-dependent impulses into the frequency domain, Equation (11) can still be applied
in the event that the load being imposed is not harmonic. A coupling matrix is added
to shift the structural nodal load from the fluid effect to fluid nodal pressure to consider
how the acoustic pressure exerted on structural surfaces affects aspects. The full excitation,
which combines the acoustic load and the structural load, might then be expressed using
Equation (13).

f = Csfp + fs, (13)

Csf =
∫

Γint

NT
s nNf dΓ, (14)

where Csf is the coupling matrix, p the fluid nodal pressure, Csfp the acoustic load denoting
the effect of the acoustic pressure applied to the structural surfaces, fs the structural load,
Ns the interpolation function for structural domain, n the external normal direction of the
structural surface, Nf the interpolation function for the fluid domain, and Γ the interaction
surface situated between the areas of fluidity and structure.

The coupling matrix Csf directs the structural nodal load from the fluid effect to the
fluid nodal pressure. Equation (15) may then be used to calculate the nodal displacement.

u = A−1f. (15)

The fluid loads applied on underwater bodies are very important. Rehman et al. [47]
looked at a fast and less expensive semi-empirical method to determine the hydrodynamic
coefficients for a convoluted transportation system with two UUVs. As for the details of
the acoustic pressure applied to the structural surfaces mentioned above, please refer to
Rehman et al. [47].

3.2. BEM Analysis

The time-harmonic wave field of sound in the Helmholtz equation is described by
Equation (16), while the boundary conditions are expressed by Equation (17).

∇2 p(x) + k2 p(x) = 0, (16)

p(x) = p(x) x ∈ Γp,

q(x) =
∂p(x)
∂n(x)

= iρωv(x) x ∈ Γq,

p(x) = zv(x) x ∈ Γz,

(17)

where p is the sound pressure, k the wave number, (̄) the known function given on the
border, Γp the Dirichlet boundary condition, ρ the structural density, ω the frequency of the
incoming force, v the normal velocity, Γq the Neumann boundary condition, z the acoustic
impedance, and Γz the Robin boundary condition.
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From Equations (16) to (18), one may construct a boundary integral equation that is
specific to the structural boundary Γ.

c(x)p(x) +
∫

Γ
F(x, y)p(y) dΓ(y) =

∫
Γ

G(x, y)q(y) dΓ(y), (18)

where x is the source point, y the field point, c(x) = 1/2 if the boundary Γ is smooth in the
vicinity of the source point x, p the intensity of the incoming wave, G(x, y) the Green’s
function, q the normal derivative of p, and F the normal derivative of G.

For acoustic issues in three-dimensional problems, Equation (19) offers the expression
of Green’s function G(x, y).

G(x, y) =
eikr

4πr
, (19)

r = |y − x|. (20)

In cases when the source point x has a smooth border Γ, the integral representation’s
derivative in Equation (18) with reference to the outer normal at point x may be expressed
as Equation (21).

1
2

q(x) +
∫

Γ

∂F(x, y)
∂n(x)

p(y) dΓ(y) =
∫

Γ

∂G(x, y)
∂n(x)

q(y) dΓ(y). (21)

It is well known that nonuniqueness makes it difficult to apply a single Helmholtz
boundary integral equation to problems requiring external boundary values. In this work, the
method known as the Burton–Miller strategy [48] combining the linear Equations (18) and (21),
is employed to successfully address the issue of nonuniqueness. The Hadamard finite part
integral method and the Cauchy principal value may also be used to directly and efficiently
compute the singular boundary integrals [24] brought about by Equations (18) and (21).

The system of linear algebraic equations shown in Equation (22) can be obtained [49]
if the border Γ is divided into elements by putting all of the collocation point equations for
each element’s center together and presenting them using matrix representations.

Hp = Gq + pi, (22)

where pi is the nodal pressure brought on by the incoming wave.

3.3. FEM–BEM Coupling Analysis

The precise FEM/BEM modeling formulas were published by Fritze et al. [6], and
associated expressions are provided in this section. The governing equations, as described
in the preceding section, are connected by the continuity constraint across the interac-
tion surface, as indicated in Equation (23). Then, in accordance with Equation (24), it is
reasonable to represent the normal velocity v as a function of the displacement u.

q = −iωρv, (23)

v = iωS−1Cfsu, (24)

S =
∫

Γint

NT
f Nf dΓ, (25)

Cfs = CT
sf. (26)

By adding Equations (24) to (22), we may obtain Equation (27). As shown in Equation (28),
Equations (11) and (27) can be joined to create an equation system.

Hp = ω2ρGS−1Cfsu + pi. (27)
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[
A −Csf

−ω2ρGS−1Cfs H

]{
u
p

}
=

{
fs
pi

}
. (28)

As a result of the sluggish convergence of the direct iterations on Equation (28), the
direct system equation solution would require significantly greater processing power
and storage capacity. It is also difficult to obtain highly precise numerical results. We
deliver the subsequent method to solve the above non-symmetric linear system without
utilizing an iterative solution. You may obtain the coupled boundary element equation [6]
in Equation (29) by substituting Equation (15) into Equation (27).

Hp − GWCsfp = GWfs + pi, (29)

W = ω2ρS−1CfsA−1. (30)

A sparse direct solver might be used to obtain the linear equations’ solution in
Equation (29). The generalized minimum residual (GMRES) iterative solver and FMM
are employed to hasten the answer.

4. Sensitivity Analysis for Shape Design

Finding the optimal design parameters within preset restrictions that define the desired
form of the provided structure is the aim of shape optimization. Marjan and Huang [50]
demonstrated a topology optimization technique that finds the best load route on the
structure to provide a revolutionary jacket foundation design. Huang et al. [51] gave an
introduction of using machine learning techniques to improve the sustainability of ships.
The study addresses the foundations of machine learning as well as its applications to ship
design, operational performance, and trip planning.

Utilizing shape design sensitivity analysis, one may determine the gradients of speci-
fied cost functions. The direction in which to look for the ideal ranges of the design variables
may then be determined using the gradients that were acquired. Thus, in the process of
designing and optimizing acoustic forms, the acoustic shape sensitivity research [24,52]
is often the initial and most crucial step. The direct approach, which first determines the
sensitivity of the variables, is employed to calculate the function’s sensitivity using the
chain rule of differentiation. This approach is highly effective since it is so closely related to
the analytical process.

By differentiating Equation (11) with respect to the design variable in the sensitivity
evaluation for shape design using FEM, Equation (31) may be produced.

(K̇ + iωĊ − ω2Ṁ)u + (K + iωC − ω2M)u̇ = Ȧu + Au̇. (31)

Equations (18) and (21) are differentiated with regard to any chosen design variable
to arrive at Equations (32) and (33) when the border Γ is smooth surrounding the source
point x.

1
2

ṗ(x) =
∫

Γ

[
Ġ(x, y)q(y)− Ḟ(x, y)p(y)

]
dΓ(y)

+
∫

Γ
[G(x, y)q̇(y)− F(x, y) ṗ(y)]dΓ(y)

+
∫

Γ
[G(x, y)q(y)− F(x, y)p(y)]dΓ̇(y).

(32)

1
2

q̇(x) =
∫

Γ

[
˙∂G(x, y)

∂n(x)
q(y)−

˙∂F(x, y)
∂n(x)

p(y)

]
dΓ(y)

+
∫

Γ

[
∂G(x, y)

∂n(x)
q̇(y)− ∂F(x, y)

∂n(x)
ṗ(y)

]
dΓ(y)

+
∫

Γ

[
∂G(x, y)

∂n(x)
q(y)− ∂F(x, y)

∂n(x)
p(y)

]
dΓ̇(y).

(33)
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We have Equation (34) for 3D problems.

Ġ(x, y) =− eikr

4πr2 (1 − ikr)
∂r
∂yi

(ẏi − ẋi),

Ḟ(x, y) =
eikr

4πr3 [(3 − 3ikr − k2r2)
∂r

∂n(y)
∂r
∂yj

− (1 − ikr)nj(y)](ẏj − ẋj)

− eikr

4πr2 (1 − ikr)
∂r
∂yi

ṅi(y),

ṙ =r,j(ẏj − ẋj).

(34)

The Cauchy principal value and the Hadamard finite part integral approach [24] may
be used to directly and efficiently compute the singular boundary integrals introduced by
Equations (32) and (33).

Equation (35) may be created for the sensitivity analysis for shape design utilizing
coupling FEM–BEM by applying Equation (27) and differentiating Equation (29) in relation
to the design variable.

Hṗ − GWCsfṗ = ĠX + GY − Ḣp, (35)

X = W(Csfp + fs), (36)

Y = Ẇ(Csfp + fs) + W(Ċsfp + ḟs), (37)

Ẇ = ω2ρ( ˙S−1CfsA−1 + S−1ĊfsA−1 + S−1Cfs
˙A−1). (38)

It takes a lot of computation effort to explicitly solve Equation (35) using the standard
BEM since the matrices are complete and asymmetric. However, the FMM and GMRES can
be used to accelerate the computing process. In order to speed up the matrix-vector combi-
nations in Equations (29) and (35), the FMM is utilized, while the corresponding sensitivity
equation and the formula for the FEM–BEM coupling could be solved using GMRES.

5. Fast Multipole Boundary Element Method (FMBEM)

This section introduces the FMM to quicken the matrix-vector product in
Equations (29) and (35). The iterative solution GMRES is used to solve the coupling BEM
problem and related sensitivity equation.

5.1. FMM Formulations for Acoustic State Analysis

The Green’s function (Equation (19)) is enlarged into Equation (39) for 3D issues.

G(x, y) =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1) Īm
n (k,−→ycy)Om

n (k,−→ycx), (39)

Im
n (k, a⃗) = jn(kr)Ym

n (θ, ϕ), (40)

Om
n (k, a⃗) = h(1)n (kr)Ym

n (θ, ϕ), (41)

where yc is one expansion point near point y, (̄) the complex conjugates, jn the first-kind,
n-th order spherical Bessel function, h(1)n the n-th order spherical Hankel function of the
first type, Ym

n the spherical harmonics, defined as Equation (42).

Ym
n (θ, ϕ) = cm

n Pm
n (cos θ)eimϕ, (42)

cm
n =

√
(n − m)!/(n + m)!, (43)

where Pm
n denotes the related Legendre functions. r, θ, and ϕ are spherical coordinates of

vector a⃗, such as −→ycx or −→ycy, for example.
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The symbol Γ0 represents a section of the border Γ, which is distant from the source
point x. The integrals in Equation (18) can be rewritten as Equation (44).

A2 =
∫

Γ0

[G(x, y)q(y)− F(x, y)p(y)]dΓ(y). (44)

We can obtain Equation (45) by substituting Equation (39) into Equation (44).

A2 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)Mm
n (k,−→ycy)Om

n (k,−→ycx), (45)

Mm
n (k,−→ycy) =

∫
S0

Īm
n (k,−→ycy)q(y)dS(y)−

∫
Γ0

Dm
n (k,−→ycy)p(y)dΓ(y), (46)

Dm
n (k,−→ycy) =

∂ Īm
n (k,−→ycy)
∂n(y)

, (47)

where Mm
n is the multipole moment, and yc is close to Γ0.

Introducing the M2M, M2L, and L2L translation operations, we can obtain Equation (48).

A2 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)Lm
n (k, x1

l ) Īm
n (k,

−→
x1

l x). (48)

where Lm
n is the low-frequency FMM’s local expansion coefficient, and x1

l an expansion
point close to point x. Zheng et al. [53] provides extensive details on the M2M, M2L, and
L2L translation processes as well as the formulation of Lm

n .

5.2. FMM Formulas for Sensitivity Study of Acoustic Design

Equations (49)–(51) are the reformulated integrals of Equation (32).

D1 =
∫

Γ0

[Ġ(x, y)q(y)− Ḟ(x, y)p(y)]dΓ(y), (49)

D2 =
∫

Γ0

[G(x, y)q̇(y)− F(x, y) ṗ(y)]dΓ(y), (50)

D3 =
∫

Γ0

[G(x, y)q(y)− F(x, y)p(y)]dΓ̇(y). (51)

For 3D situations, we may obtain Equations (52)–(54) by changing Equations (49)–(51)
with Equation (39).

D1 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)M1(k,−→ycy)Om
n (k,−→ycx) +

ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)Mm
n (k,−→ycy)Ȯm

n (k,−→ycx), (52)

D2 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)M2(k,−→ycy)Om
n (k,−→ycx), (53)

D3 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)M3(k,−→ycy)Om
n (k,−→ycx), (54)

where

M1(k,−→ycy) =
∫

Γ0

˙̄Im
n (k,−→ycy)q(y)dΓ(y)−

∫
Γ0

Ḋm
n (k,−→ycy)p(y)dΓ(y), (55)
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M2(k,−→ycy) =
∫

Γ0

Īm
n (k,−→ycy)q̇(y)dΓ(y)−

∫
Γ0

Dm
n (k,−→ycy) ṗ(y)dΓ(y), (56)

M3(k,−→ycy) =
∫

Γ0

Īm
n (k,−→ycy)q(y)dΓ̇(y)−

∫
Γ0

Dm
n (k,−→ycy)p(y)dΓ̇(y). (57)

The M2M, M2L, and L2L translation formulas for M1(k,−→ycy), M2(k,−→ycy), and M3(k,−→ycy)
are really the same as Mm

n (k,−→ycy) in Equation (46). Last but not least, D1, D2, and D3 may
be stated as Equations (58)–(60), concerning the coefficients of local expansion.

D1 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)Lm
n (k, x1

l )
˙¯ m
nI(k,

−→
x1

l x) +
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)L1(k, x1
l ) Īm

n (k,
−→
x1

l x), (58)

D2 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)L2(k, x1
l ) Īm

n (k,
−→
x1

l x), (59)

D3 =
ik
4π

∞

∑
n=0

n

∑
m=−n

(2n + 1)L3(k, x1
l ) Īm

n (k,
−→
x1

l x). (60)

6. Numerical Examples

The efficiency of the suggested approach is demonstrated by the numerical examples
for real-world engineering issues in this section. Fortran 95 with OpenMP parallelization is
used to build the technique for finding solutions for the numerical analysis. The component
linked to incident wave is maintained in boundary integral equations since the examples
are exterior acoustic scattering issues.

6.1. Spherical Models

Two different models of underwater, thin-pulsed shell are used in this subsection. The
first is a simulation of a spherical outer shell with a 1.0 m radius, while the second is a
similar shell with the NURBS control point (−1, 0, 0) shifted to (−1.5, 0, 0). The NURBS
surface descriptions and accompanying control grids of these two models are shown in
Figure 4. The fluid is water with density ρ f = 1.0 × 103 kg/m3, and the sound wave’s
velocity in water is c = 1482 m/s. The presented technique’s acoustic evaluation and shape
sensitivity assessment are verified using the underwater, thin-pulsing, spherical surface
example, as displayed in Figure 4a. While taking into consideration an incoming sound
wave with an amplitude of 1.0 in the positive x direction, the position (0, 0, 0) is the center
of the spherical shell.

Figure 5 gives the relative error of sound pressure between the numerical and analytical
solutions, at point (2, 0, 0) with a frequency at 200 Hz, for the spherical shell model shown
in Figure 4a. As the total number of elements rises, the computational results converge
quickly, as seen in Figure 5. Based on that, the total number of elements in the discretized
thin-shell model is set to be 6144.

The outcomes are shown at location (2, 0, 0) in Figure 6. Figure 7a displays the numeri-
cal and analytical results for the sound pressure at position (2, 0, 0), respectively, presented
in terms of frequencies. The FMM technique is used by GMRES implementation to speed
up the linear solution. The conventional BEM’s exceptional accuracy is maintained by the
FMM technique, as evidenced by the substantial concordance between the analytical and
numerical outcomes in this figure.
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(a) (b)

Figure 4. Control points distribution in the NURBS models of pulsing sphere. (a) The NURBS model
of pulsing sphere. (b) The NURBS model of pulsing sphere, with the control point (−1, 0, 0) moved
to (−1.5, 0, 0).

Figure 5. The relative error of sound pressure between the numerical and analytical solutions, at
point (2, 0, 0) with frequency at 200 Hz, for the spherical shell model shown in Figure 4a.

(a) (b)

Figure 6. Sound pressure and sensitivity at point (2, 0, 0) for spherical shell model. (a) Spherical shell
model, sound pressure at point (2, 0, 0). (b) Spherical shell model, sound pressure’s sensitivity at
point (2, 0, 0) to NURBS coordinate.

Now, we go on to the investigation of shape sensitivity, which is crucial to shape
optimization. In this case, at location (2, 0, 0), the sound pressure serves as the objective
function, and the x-coordinate at the control point (−1, 0, 0) is the design variable. The
sound pressure sensitivity is depicted in Figure 6b. Figures 6a,b illustrates how the sen-
sitivity and pressure of the sound grows significantly at resonance peaks. The frequency
range [100 Hz, 500 Hz] is crucial for this spherical shell model because there the sound
pressure is noticeably greater and more variable to changes in the location of the previously
mentioned NURBS point. In light of this finding, the frequency range used in the study of
the spheroid-like shell problem is taken as [100 Hz, 500 Hz].
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(a) (b)

Figure 7. NURBS coordinate (−1, 0, 0) vs. (−1.5, 0, 0), sound pressure and sensitivity at point (2, 0, 0)
for thin-shell model. (a) NURBS coordinate (−1, 0, 0) vs. (−1.5, 0, 0), sound pressure at point (2, 0, 0).
(b) NURBS coordinate (−1, 0, 0) vs. (−1.5, 0, 0), sound pressure’s sensitivity at point (2, 0, 0) to
NURBS coordinate.

A spherical shell-like model may be obtained by moving the NURBS control point
from its original location (−1, 0, 0) to a new one (−1.5, 0, 0), as illustrated in Figure 4b. The
sound pressure at location (2, 0, 0) for the spherical (as in Figure 4a) and spherical-like
(NURBS control point (−1, 0, 0) moved to (−1.5, 0, 0), as in Figure 4b) thin-shell models
are compared in Figure 7a. In Figure 7b, the sound pressure’s sensitivity at (2, 0, 0) to the
x-location of the NURBS control point (−1.5, 0, 0) for the Figure 4b model is contrasted
with that of the Figure 4a model. Basically, the results for these two models show a similar
pattern. It should be observed that in Figure 7b, the extreme of sensitivity (the red line)
for the model of Figure 4b occurs at the frequency of about 180 Hz, where the peak of the
sound pressure resonance is not as high, as in Figure 7a. According to this phenomena,
the highest resonance peak of sound pressure is not always where the bigger value of
frequency sensitivity occurs. As a result, each sound pressure resonance peak should be
taken into account when calculating sensitivity, necessitating a computation in terms of a
frequency range.

Figure 8 shows the sound pressure on the spherical shell’s boundary surface at the
frequencies of 100 Hz, 300 Hz, and 500 Hz. When the NURBS control point is moved from
(−1, 0, 0) to (−1.5, 0, 0), Figure 9 gives the sound pressure on the shell’s boundary surface
at the frequencies of 100 Hz, 300 Hz, and 500 Hz. Four ways of views are given for each
calculation frequency. These figures show symmetrical features for both the x − y and x − z
planes. Given that the plane wave occurs along with the x axis, these results make sense.

6.2. Submarine Model

This section uses two separate underwater, simplified, thin-walled submarine models,
where the amplitude of the plane wave is 1.0 and it propagates down the x axis in a
positive direction, just as in the above numerical model. The left end control point of
the first model, which is axially oriented along the x axis from left to right, as shown in
Figure 10a, is situated at (0, 0, 0). The model consists of three sections and has a total
length of approximately 1.35 m. A conical surface is on the left, a cylindrical surface is in
the middle, and a hemispherical surface is on the right. By extending the radius of a few
of the cylinder surface’s NURBS control points in Figure 10a, a partly expanded simple
submarine model may be produced, as seen in Figure 10b, where a circle of control points
at x = 0.5 m is inflated to twice the radius.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Sound pressure on the spherical shell’s boundary surface at a frequency of 100 Hz (the top
row), 300 Hz (the middle row), and 500 Hz (the bottom row). (a) View along the −z axis. (b) View
along the −x axis. (c) View along the x axis. (d) View in the direction of (1, 1, −1). (e) View along
the −z axis. (f) View along the −x axis. (g) View along the x axis. (h) View in the direction of (1, 1,
−1). (i) View along the −z axis. (j) View along the −x axis. (k) View along the x axis. (l) View in the
direction of (1, 1, −1).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. Sound pressure on the spherical shell’s boundary surface at a frequency of 100 Hz (the top
row), 300 Hz (the middle row), and 500 Hz (the bottom row), with the NURBS control point (−1, 0, 0)
moved to (−1.5, 0, 0). (a) View along the −z axis. (b) View along the −x axis. (c) View along the x
axis. (d) View in the direction of (1, 1, −1). (e) View along the −z axis. (f) View along the −x axis.
(g) View along the x axis. (h) View in the direction of (1, 1, −1). (i) View along the −z axis. (j) View
along the −x axis. (k) View along the x axis. (l) View in the direction of (1, 1, −1).
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(a) (b)

Figure 10. Control points distribution in the NURBS models of simple submarine. The left end control
point is situated at (0, 0, 0). The positive direction of the x axis is from the model’s left end to its right
endpoint. (a) The NURBS model of a simple submarine. (b) The NURBS model of a partly expanded
simple submarine.

Figure 11a, Figure 11c, and Figure 11e, respectively, give the sound pressure com-
parison at location (5, 0, 0), (20, 0, 0) and (100, 0, 0), for the models shown in Figure 10.
The sound pressure’s sensitivity in relation to the cylinder’s radius at x = 0.5 m for these
two models are given in Figure 11b (at point (5, 0, 0), the sound pressure is the objective
function), Figure 11d (at point (20, 0, 0), the sound pressure is the objective function), and
Figure 11f (at point (100, 0, 0), the sound pressure is the objective function). In these figures,
sound pressure and sensitivity show a similar pattern of increasing and then decreasing.
Additionally, the value of sound pressure and sensitivity decrease as the separation be-
tween the model and the computation point increases (calculation point from (5, 0, 0) to
(100, 0, 0)). This outcome seems sensible given how energy decays.

The sound pressure on the model’s boundary surface in Figure 10a is displayed in
Figure 12 at the frequency of 100 Hz, 300 Hz, and 500 Hz. For the model in Figure 10b,
the sound pressure on the boundary surface is provided by Figure 13 at the frequencies of
100 Hz, 300 Hz, and 500 Hz. Three ways of view are given for each frequency. Considering
that the plane wave moves in the direction of the x axis, the x − y and x − z planes’
symmetrical properties are depicted in these figures, just like in Figures 12 and 13.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Sound pressure and sensitivity at point (5, 0, 0), (20, 0, 0), and (100, 0, 0) for submarine
models. (a) Simple submarine vs. partly expanded simple submarine model, sound pressure at
point (5, 0, 0). (b) Simple submarine vs. partly expanded simple submarine model, sound pressure’s
sensitivity at point (5, 0, 0) to NURBS coordinate. (c) Simple submarine vs. partly expanded simple
submarine model, sound pressure at point (20, 0, 0). (d) Simple submarine vs. partly expanded
simple submarine model, sound pressure’s sensitivity at point (20, 0, 0) to NURBS coordinate. (e) Sim-
ple submarine vs. partly expanded simple submarine model, sound pressure at point (100, 0, 0).
(f) Simple submarine vs. partly expanded simple submarine model, sound pressure’s sensitivity at
point (100, 0, 0) to NURBS coordinate.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Sound pressure on the simple submarine’s boundary surface at a frequency of 100 Hz (the
top row), 300 Hz (the middle row), and 500 Hz (the bottom row). (a) 2D view. (b) 3D view in the
direction of (−1, 1, −1). (c) 3D view in the direction of (1, −1, −1). (d) 2D view. (e) 3D view in the
direction of (−1, 1, −1). (f) 3D view in the direction of (1, −1, −1). (g) 2D view. (h) 3D view in the
direction of (−1, 1, −1). (i) 3D view in the direction of (1, −1, −1).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. Sound pressure on the partly expanded simple submarine’s boundary surface at a
frequency of 100 Hz (the top row), 300 Hz (the middle row), and 500 Hz (the bottom row). (a) 2D view.
(b) 3D view in the direction of (−1, 1, −1). (c) 3D view in the direction of (1, −1, −1). (d) 2D view.
(e) 3D view in the direction of (−1, 1, −1). (f) 3D view in the direction of (1, −1, −1). (g) 2D view.
(h) 3D view in the direction of (−1, 1, −1). (i) 3D view in the direction of (1, −1, −1).

6.3. Fish Model

A simplified thin-shell fish model is given in this section to conduct sensitivity analysis.
Similar to the submarine models, the outside load is the incident wave, which has an
amplitude of 1.0 and propagates down the x axis in a positive direction. Figure 14 shows
the prototype example of the fish and its calculation model. The total length of the model
is no more than 0.5 m and it keeps the basic shape of a manta ray. Due to the shape of
the model, the calculation point is fixed at (5, 0, 0). Furthermore, the variable thickness is
chosen for sensitivity analysis and the value is set at 0.011 m.

Before giving the frequency scan figure, we calculate the sound pressure at a fixed
frequency 200 Hz to verify the numerical method. Figure 15 gives the sound pressure
distribution on the surface of the fish model, with a subfigure of real part (left) and a
subfigure of imaginary part (right) of the sound pressure. From the figure, it can be seen
that the sound pressure distributes in strips and shows a slowly decreasing trend along the
direction of incidence; obviously, this result is from the model structure, as that the model
itself is symmetric. Moreover, the maximum sound pressure of both the real and imaginary
parts is around 1, which coincides with the magnitude of the external action. Thus, the
figure proves the correctness of the numerical method intuitively.

Then, the sensitivity analysis was conducted using thickness as independent variable.
A frequency scan with 0.011 m thickness and sensitivity to thickness are given in Figure 16.
In Figure 16b, sound pressure and sensitivity shows a similar pattern of increasing and
then decreasing. Here, we find that, in some frequency points, the sound pressure changes
sharply and this also results in the sharp change in sensitivity. This kind of error is
mainly caused by resonance phenomenon, and statistics of these points are not taken into
consideration in this work. Thus, ignoring the resonance phenomenon, the outcome also
seems reasonable and once again proves the effectiveness of our method.
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(a) (b) (c) (d)

Figure 14. Robot fish and calculation model. (a) Robot 1. (b) Scale. (c) Model. (d) Mesh.

Figure 15. Sound pressure distribution on model surface at 200 Hz, thickness = 0.011 m.

(a)

(b)

Figure 16. Sound pressure and sensitivity analysis of fish model. (a) Sound pressure at (5, 0, 0),
thickness = 0.011 m. (b) Sensitivity of sound pressure to thickness, at point (5, 0, 0).
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The numerical simulations clearly show that the fluid effect needs to be considered
while analyzing the vibro-acoustic radiation problem for underwater thin-shell construc-
tions. Thus, it is necessary to perform the fluid–structure coupling analysis. Delineating
high-quality meshes is crucial since the mesh quality has a direct impact on the compu-
tational correctness of the coupled analysis. This means that using IGA like NURBS to
increase computational accuracy has significant benefits for both engineering and academia.

7. Conclusions

Sensitivity analysis and the modeling of the acoustic–structure interaction are con-
ducted utilizing a coupling method grounded in the BEM and FEM. The structural elements
of the problem are modeled using FEM. To avoid the necessity of meshing the acoustic
space, the border of the structure being studied, which is also the acoustic domain’s border,
is discretized using the BEM. To speed up the matrix-vector output, the FMM is employed.
The utilisation of NURBS IGABEM enables the direct examination of the sensitivity of
the structural–acoustic interaction using CAD models, without the necessity for meshing,
thereby removing geometric mistakes. In coupling structural-acoustic systems, sound
pressure sensitivity equations are created. Numerical examples are shown to demonstrate
the accuracy and practicality of the proposed method. In real-world scenarios, the proposed
method might be used to quantitatively predict how design elements would affect the
sound field.
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