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Abstract: In the existing literature, an optimal time-varying toll scheme has been proposed for the
Suez Canal to address the inefficiency of numerous ships queuing and waiting at the anchorage area
to enter the canal. The primary objective of this tolling strategy is to alleviate the significant issue
of ships queuing at the canal’s anchorage area. This stands in contrast to the current tolling system
employed by the Suez Canal, which primarily aims to recover the management and operational costs
associated with ship passage through the canal. However, the existing literature has yet to explore
how the arrival times of ships at the anchorage area will change after implementing the optimal time-
varying toll scheme. The goal is to ensure that the equilibrium cost of each tolled ship does not result
in losses and achieve maximum efficiency in eliminating queueing at the anchorage area. To address
this gap, this paper adopts the principle of cost equilibrium conservation and utilizes the Point-
Slope Form to derive two mathematical formulas representing all ships’ post-toll arrival times at the
anchorage area of the Suez Canal. These formulas are specifically derived for two categories of tolled
ships: those that enter the canal earlier than the latest entry time regulated by the canal authorities
and those that enter later. The derived formulas are concise and comparative, strengthening the
theoretical underpinnings of the current pricing model for a queuing canal. Furthermore, they serve
as valuable references for canal authorities in devising pertinent measures, such as organizing the
scheduling of canal pilots, to facilitate the implementation of the optimal time-varying toll scheme.

Keywords: Suez Canal; queuing; optimal time-varying toll scheme; arrival time; point slope form

1. Introduction

Prior to the expansion of the Suez Canal, the canal’s narrow passage restricted the
passage of large ships, particularly those with oversized hulls. However, since the com-
pletion of the canal expansion in 2016, a majority of these large ships can now navigate
through the canal, excepting ULCC super tankers. While the expansion increased the
canal’s overall capacity, the inclusion of previously inaccessible large ships has led to a
congestion issue, resulting in a notable queuing problem in the anchorage area. To address
the persistent challenge of extensive ship queues at the entrance (the anchorage area) of the
Suez Canal (please refer to Figure 1 for the location of the anchorage areas, southbound and
northbound routes), one potential solution for canal authorities is to consider implementing
queuing pricing measures. This pricing strategy aims to encourage a more dispersed arrival
pattern of ships in the anchorage area. Such an approach holds the potential to alleviate
inefficiencies caused by prolonged ship queues and presents an effective resolution to the
problem.
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Figure 1. Location of Suez Canal’s anchorage areas and routes (Official Website of the Suez Canal 
[1]). 

In the existing literature on queuing pricing for the Suez Canal, Laih et al. [2] were 
pioneers in developing an optimal time-varying toll scheme. Their primary goal was to 
eliminate the cumulative queuing time for all ships in the canal’s anchorage area, aiming 
for the most efficient utilization of the canal. Subsequently, Sun and Laih [3] delved deeper 
into the effects of the optimal time-varying toll scheme on ship arrivals at the anchorage 
area. Specifically, their study investigated how each ship could sequentially adjust its ar-
rival time after the implementation of this toll scheme, with the aim of establishing a sce-
nario where no queuing occurs for entry into the canal. This study assumed that the inter-
vals between ship arrivals at the canal anchorage area follow a uniform distribution. Start-
ing from the initiation of queuing, these intervals progressively accumulate until the ter-
mination of queuing. Based on this assumption, each ship’s pre-toll and post-toll arrival 
times at the anchorage area can be calculated. Consequently, by comparing the post-toll 
arrival time with the pre-toll arrival time, the postponement in arrival time at the anchor-
age area for each tolled ship can be determined. 

The work by Sun and Laih [3], as mentioned above, offers practical advantages for 
both ship owners and canal authorities by facilitating the convenient scheduling of each 
queued ship’s entry into the canal. However, the methodology of this study has two de-
batable aspects. Firstly, the assumption that the intervals between ship arrivals at the an-
chorage area follow a uniform distribution lacks sufficient supporting statistical data to 
validate its generality. Consequently, the justification for this assumption appears some-
what weak. Secondly, the approach of calculating each ship’s arrival time at the anchorage 
area, starting from the initiation of the queueing process and accumulating the same arri-
val interval until the queueing is terminated, poses challenges. This method becomes 
problematic as the error in the accumulated calculation magnifies with an increasing num-
ber of ships, making it difficult to satisfy the condition where the schedule delay cost (the 
penalty costs for either early or late entry into the canal) is absolutely the same before and 
after the toll implementation. In other words, the necessary condition of maintaining the 
same equilibrium cost, regardless of toll implementation, cannot be met. Consequently, 
their methodology deviates from the principle of cost equilibrium conservation for all 
ships, leading to discrepancies between the calculated arrival times of tolled ships at the 
anchorage area and the authentic results under an equilibrium state. As a result, its prac-
tical value as a reference is diminished. 

Figure 1. Location of Suez Canal’s anchorage areas and routes (Official Website of the Suez Canal [1]).

In the existing literature on queuing pricing for the Suez Canal, Laih et al. [2] were
pioneers in developing an optimal time-varying toll scheme. Their primary goal was to
eliminate the cumulative queuing time for all ships in the canal’s anchorage area, aiming
for the most efficient utilization of the canal. Subsequently, Sun and Laih [3] delved deeper
into the effects of the optimal time-varying toll scheme on ship arrivals at the anchorage
area. Specifically, their study investigated how each ship could sequentially adjust its
arrival time after the implementation of this toll scheme, with the aim of establishing a
scenario where no queuing occurs for entry into the canal. This study assumed that the
intervals between ship arrivals at the canal anchorage area follow a uniform distribution.
Starting from the initiation of queuing, these intervals progressively accumulate until the
termination of queuing. Based on this assumption, each ship’s pre-toll and post-toll arrival
times at the anchorage area can be calculated. Consequently, by comparing the post-toll
arrival time with the pre-toll arrival time, the postponement in arrival time at the anchorage
area for each tolled ship can be determined.

The work by Sun and Laih [3], as mentioned above, offers practical advantages for both
ship owners and canal authorities by facilitating the convenient scheduling of each queued
ship’s entry into the canal. However, the methodology of this study has two debatable
aspects. Firstly, the assumption that the intervals between ship arrivals at the anchorage
area follow a uniform distribution lacks sufficient supporting statistical data to validate
its generality. Consequently, the justification for this assumption appears somewhat weak.
Secondly, the approach of calculating each ship’s arrival time at the anchorage area, starting
from the initiation of the queueing process and accumulating the same arrival interval
until the queueing is terminated, poses challenges. This method becomes problematic as
the error in the accumulated calculation magnifies with an increasing number of ships,
making it difficult to satisfy the condition where the schedule delay cost (the penalty costs
for either early or late entry into the canal) is absolutely the same before and after the
toll implementation. In other words, the necessary condition of maintaining the same
equilibrium cost, regardless of toll implementation, cannot be met. Consequently, their
methodology deviates from the principle of cost equilibrium conservation for all ships,
leading to discrepancies between the calculated arrival times of tolled ships at the anchorage
area and the authentic results under an equilibrium state. As a result, its practical value as
a reference is diminished.

To address the aforementioned controversies and enhance both the theoretical basis
and practical significance of the optimal time-varying toll scheme for a queuing canal, this
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paper seeks to derive mathematical formulas based on the principle of cost equilibrium
conservation. This principle dictates that all ships maintain the same schedule delay costs
before and after toll implementation. The derived formulas in this paper represent the
arrival times at the anchorage area for two categories of tolled ships: those arriving early
(including on time) and the remaining ships arriving late. These formulas are concise and
offer a comparative framework. The derivation of these formulas reinforces the theoretical
foundation of the pricing model for a queuing canal. Moreover, it provides valuable
references for canal authorities in planning and allocating associated supporting measures,
such as organizing the scheduling of canal pilots, when considering the implementation of
the optimal time-varying toll scheme.

The primary academic contribution of this paper lies in deriving mathematical for-
mulas for the arrival times of all tolled ships at the Suez Canal’s anchorage area using the
Point-Slope Form. These formulas are developed on the basis that the cost associated with
early or late entry into the canal remains consistent for each ship, both before and after
implementing the optimal time-varying toll scheme. By ensuring equal schedule delay
costs for each ship, regardless of toll implementation, these derived formulas not only meet
the requirement of maintaining cost equilibrium for all ships before and after toll imple-
mentation, but also contribute to achieving maximum efficiency in eliminating queuing
in the canal’s anchorage area. The methodologies and findings presented in this paper fill
a gap in the existing literature by overcoming the limitations associated with assuming a
uniform distribution for the intervals between ship arrivals at the canal’s anchorage area,
as proposed by Sun and Laih [3]. Simultaneously, the derived formulas make it possible
to guarantee the principle of cost equilibrium conservation for each ship before and after
toll implementation.

The paper is structured as follows: In Section 2, we provide a comprehensive review
of the queuing pricing models relevant to this study, including various tolling structures
and user behavior after toll implementation. Section 3 conducts a retrospective analysis
of equilibrium cost calculations for ships queuing at the canal’s anchorage area and the
derivation of the optimal time-varying toll scheme designed to facilitate queue-free entry
into the canal. In Section 4, we employ the Point-Slope Form to derive two mathematical
formulas for ships with time-early and time-late schedules. These formulas determine the
arrival times of all tolled ships at the canal’s anchorage area and are specifically crafted to
ensure the principle of cost equilibrium conservation. This principle dictates that each ship
maintains the same equilibrium cost before and after toll implementation. In Section 5, we
conduct a numerical analysis based on the latest official statistical data from the Suez Canal.
This analysis focuses on the results obtained in Section 4, providing valuable insights
and guidance for canal authorities. Finally, Section 6 presents the conclusion and offers
recommendations based on the findings of this study.

2. Literature Review

Vickrey [4] pioneered the development of a queuing pricing model specifically tailored
for a road bottleneck. His model aimed to establish an optimal variable toll scheme to
effectively eliminate the waiting time experienced by commuters queuing at the entry
of a road bottleneck. Subsequently, numerous scholars have expanded upon Vickrey’s
groundwork to address queuing phenomena and propose pricing strategies for bottleneck
users. For instance, Small [5] assessed the time cost of queuing for commuters in the San
Francisco Bay Area, incorporating considerations of penalty cost incurred by commuters for
arriving at their workplaces either early or late due to queuing. Cohen [6] applied Vickrey’s
model to analyze the welfare impact on different income groups after the implementation
of optimal variable tolls. Additionally, Braid [7], Arnott et al. [8], and Laih [9] further
utilized Vickrey’s bottleneck model to devise optimal time-varying tolls (also known
as optimal fine tolls) and other toll schemes aimed at eliminating or reducing queuing
time for commuters approaching a road bottleneck. Tabuchi [10] broadened the scope by
considering the coexistence of road bottlenecks and mass transit railways. He compared
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the welfare implications of railway fares to those of road pricings (e.g., optimal uniform
toll, optimal variable toll, etc.) for commuters. Small [11] commented on the background
assumptions of the queuing pricing model, suggesting that incorporating factors such as
the presence of heterogeneous commuters or multiple bottleneck areas would enhance the
practical value of the derived results, aligning them more closely with real-world situations.
Bao et al. [12] contributed to the field by developing a public holiday traffic congestion
model and evaluated the impact of an optimal time-varying toll scheme, compared to a
free toll policy, on social welfare.

The optimal time-varying toll scheme that we have mentioned above holds the po-
tential to effectively eliminate the inefficient queuing phenomenon for bottleneck users.
However, one drawback of implementing this scheme lies in the complexity associated with
continuously changing toll amounts. To address this challenge, an alternative approach
involves considering a simpler tolling structure, such as a step toll scheme. Laih [9] was
the first to propose a step toll scheme explicitly designed for a commuting road bottleneck.
This tolling structure is seamlessly integrated into the optimal time-varying toll scheme
framework. An optimal n-step toll scheme, where n represents the number of steps, could
reduce n/(n + 1) of the total queuing time for all commuters.

In addition to the aforementioned studies on Laih’s step toll, Lindsey et al. [13]
proposed an improved version of the third Breaking model after comparing it with the
most representative ADL model (constructed by Arnott et al. [8]) and the Laih model
(constructed by Laih [9]). Their proposed step toll scheme is constructed based on the
inevitable behavior of commuter vehicles slowing down or stopping in the queuing pricing
theory. Its toll structure is slightly different from other step toll models, providing relevant
scholars with material for subsequent evaluation and comparison.

Because the above-mentioned step toll scheme only explores the decision behavior
of homogeneous commuters (road users) after toll implementation, to overcome this
limitation, Xiao et al. [14] introduced heterogeneous commuters into the road bottleneck
queuing pricing model. They formulated the optimal coarse toll scheme (similar to a
single-step toll scheme) and investigated the departure patterns of commuters after the
implementation of this toll scheme. This study also demonstrated that implementing the
optimal coarse toll scheme is consistent with the Pareto optimum.

Furthermore, Vincent and van den Berg [15] investigated the welfare distribution
effects among heterogeneous commuters after the implementation of a single-step toll
scheme. This study analyzed and compared three queuing pricing models: the ADL model,
the Laih model, and the Breaking model. In the Laih model, the single-step toll amount for
heterogeneous commuters fell between the equilibrium cost and the optimal time-varying
tolls. Furthermore, the welfare distribution effects after toll implementation in the Laih
model were straightforward and clear. In contrast, the other two models did not exhibit such
simplicity in determining the single-step toll amount for heterogeneous commuters, and the
welfare distribution effects after toll implementation were more complex. Specifically, the
welfare distribution effects of the Breaking model after the implementation of a single-step
toll scheme were most detrimental to commuters with lower time value and those who
could not afford to be late.

Moreover, Li et al. [16] constructed an optimal step toll scheme by considering the
premise that the utility of activities at home and the workplace for heterogeneous com-
muters varies significantly over time. The study found that the queuing elimination effect
of the step toll scheme derived from the linear marginal utility model surpassed that of
the traditional step toll scheme derived from the fixed marginal utility model. However,
neglecting the heterogeneity of commuters would underestimate the queuing elimination
effect of the optimal step toll scheme.

In addition to road bottlenecks, the queuing pricing model has also been applied in
maritime transportation. The notable application is for ships queuing in the anchorage
area to enter a canal. Laih et al. [2] were the first to develop an optimal time-varying toll
scheme for ships queuing to enter the Suez Canal. The primary objective of this toll scheme
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is to eliminate queuing at the anchorage area and enhance the efficiency of canal utilization.
Subsequently, Sun and Laih [3] conducted a study that examined the time intervals between
ship arrivals at the anchorage area of the Suez Canal before and after implementing the
optimal time-varying toll scheme. Their analysis provided insights into the differences in
arrival times at the anchorage area for all ships before and after the toll implementation,
shedding light on the impact of the toll scheme on arrival patterns.

Du et al. [17] assessed the impact of the Suez Canal traffic control system and the
stepwise toll pricing policy on the optimal navigation schedule for regularly scheduled
container ships. This paper develops a mixed-integer nonlinear programming model and
examines the optimal navigation schedule through a case study of 13,000 TEU container
ship with long-haul voyage passing through the Suez Canal. Although the stepwise toll
pricing in this paper is not directly related to the queuing pricing implemented in the canal
anchorage area, canal authorities must consider the interconnected effects and outcomes
on the reduction of canal operating costs and efficiency improvement when implementing
both the stepwise toll pricing for passing through the canal and the queuing pricing for
ships waiting in the canal’s anchorage.

Similar to the canal queuing pricing, Wang and Li [18] conducted a study addressing
congestion issues for ships navigating through a channel with a lock. They developed a
queuing pricing model that focuses on dynamic fee structures, using container ships as a
case study. The model transforms the costs incurred by ships queuing and docking at a
lock into congestion fees collected by the authorities. The primary goal is to eliminate the
queuing time for container ships at a lock, thereby effectively reducing social and economic
losses and improving the overall efficiency of lock services. Moreover, this study delves into
the decision-making process of departure times for container ships within the timeframe of
the dynamic fee structure at a lock to maximize utility. Finally, the paper uses numerical
analysis, taking the example of the Three Gorges Dam on the Yangtze River, to demonstrate
the applicability of their queuing pricing model.

In conclusion, Li et al. [19] conducted a thorough literature review and classification
of works related to bottleneck models, spanning various research contexts including roads,
canals, and ports. Their study utilized bibliometric analysis and examined a total of
232 papers published over 50 years. This review yielded valuable insights into the evolution
of bottleneck models over the past half-century, illuminating the current state of the field
and offering predictions regarding potential future developments and prospects.

3. A Retrospection of the Optimal Time-Varying Toll Scheme for the Suez Canal

Building upon relevant studies, such as Laih et al. [2] and Sun and Laih [3], regarding
queuing pricing in the canal’s anchorage area, as discussed in Section 2, and considering the
current operational status of the Suez Canal, we summarize the underlying assumptions
of the queuing pricing model for the Suez Canal as follows: Firstly, all ships must queue
and wait to enter the canal, and the queueing occurs exclusively at the anchorage area of
the canal. Secondly, all queued ships are served in the order of their arrival, adhering to
a first-come, first-served basis, and it is mandatory for them to enter the canal prior to
11:00 PM. Thirdly, each ship independently determines its arrival time at the anchorage
area of the canal, thereby making the cost for each ship dependent on its specific arrival
time. Fourthly, the cost function assigned to each ship encompasses not only the cost
incurred during waiting in the queue, but also accounts for the potential costs associated
with entering the canal either early or late due to queuing. Please note that the current
navigation toll imposed on ships passing through the canal is unrelated to the queuing
process and is not included in this cost function. Based on the above scenarios, the potential
time schedules for all ships arriving at the anchorage area of the Suez Canal and queuing
for entry can be represented as follows:

TE(t) = t∗ −
(
t + TQ(t)

)
, f or t + TQ(t) < t∗ or t < t̃ (1)

t̃ + TQ
(
t̃
)
= t∗ (2)
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TL(t) =
(
t + TQ(t)

)
− t∗, f or t + TQ(t) > t∗ or t > t̃ (3)

In Equations (1)–(3), t denotes the arrival time of the ship at the anchorage area,
signifying when the ship arrives at the Suez Canal’s anchorage area and completes the
check-in procedure. TQ(t) represents the waiting time duration for each arriving ship in
the queue before entering the canal. To align with the canal authorities’ requirement for
all ships to enter the canal before 23:00, we designate the schedule where a ship enters the
canal precisely at t∗ (=23:00) as an on-time schedule, depicted by Equation (2). This implies
that when the arrival time of a ship at the anchorage area is t̃, the ship can enter the canal
on time at t∗ after waiting in the queue. Furthermore, schedules in which ships enter the
canal before t∗ and after t∗ are defined as time-early and time-late schedules, respectively,
as indicated in Equations (1) and (3). The arrival times at the anchorage for these ships are
earlier and later than t̃, and they enter the canal earlier and later than t∗ after waiting in the
queue. TE(t) and TL(t) represent the durations by which these ships enter the canal earlier
and later, respectively.

Building upon the fourth assumption stated earlier in the model, we can formulate
the cost function for each ship in the following manner:

TC(t) = α · TQ(t) + β · TE(t) + γ · TL(t), f or tq ≤ t < tq′ (4)

To simplify the model, we make the assumption that the cost function TC(t) in
Equation (4) follows a linear function. The unit time costs of TQ(t), TE(t), and TL(t) within
the cost function are denoted by α, β, and γ, respectively. Moreover, tq and tq′ in this
equation represent the start and end times of the ship’s queueing at the canal’s anchorage
area. Based on the outcomes of Equations (1)–(3), the ship’s cost function in Equation (4)
can be further expressed as cost functions for time-early, on-time, and time-late schedules,
respectively, as demonstrated in Equations (5)–(7):

TC(t) = α · TQ(t) + β ·
[
t∗ −

(
t + TQ(t)

)]
, f or tq ≤ t < t̃ (5)

TC
(
t̃
)
= α · TQ

(
t̃
)

(6)

TC(t) = α · TQ(t) + γ ·
[(

t + TQ(t)
)
− t∗

]
, f or t̃ < t ≤ tq′ (7)

One may notice that other works have considered arrival time management and
capacitated berthing scheduling for a busy port using different approaches, including
those by Golias et al. [20] and Venturini et al. [21]. However, their methodologies are not
suitable for addressing the queuing problem at the canal’s anchorage area, as the practical
operations between the canal and the port are not identical.

Given that each ship queuing at the canal’s anchorage area seeks to minimize its
cost function, the requisite condition for achieving this objective is a stable state where
all ships incur equal costs. In economic terms, this state is referred to as an equilibrium
state. Therefore, the condition for reaching the equilibrium state can be captured by
the expression dTC(t)

dt = 0. However, Equation (6) cannot be differentiated to satisfy the
equilibrium condition, as the cost function for the on-time schedule represents a cost at a
specific moment. Concerning the cost functions associated with the time-early and time-late
schedules in Equations (5) and (7), respectively, the conditions for attaining equilibrium are
expressed as follows in Equations (8) and (9):

dTQ(t)
dt

=
β

α − β
, f or tq ≤ t < t̃ (8)

dTQ(t)
dt

=
−γ

α + γ
, f or t̃ < t < tq′ (9)

Equations (8) and (9) illustrate the linear correlation between t and TQ(t) in the time-
early and time-late schedules, respectively. The order relationship of 0 < β < α < γ in
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the queuing pricing model holds generality and objectivity, ensuring that the slopes of
Equations (8) and (9) are positive and negative, respectively.

Considering the specific time requirements and pilot-guided entry process in the
Suez Canal, we can calculate the canal’s capacity (S) by dividing the average number of
ships entering the canal per day (N) by the daily navigational time specified by the canal
authorities. Based on this, the duration of time (tq′ − tq) that ships spend queuing at the
canal anchorage, waiting to enter the canal each day, can be expressed as Equation (10):

tq′ − tq =
N
S

(10)

From Equations (8) and (9), the duration of queueing time for all ships waiting to enter
the canal can be represented as TQ(t) =

(
t − tq

) β
α−β and TQ(t) =

(
t − tq′

)
−γ

α+γ , respectively.
Consequently, the on-time schedule described by Equation (2) can be reformulated as the
following Equations (11) and (12):

t̃ +
(
t̃ − tq

) β

α − β
= t∗ (11)

t̃ +
(

t̃ − tq′
) −γ

α + γ
= t∗ (12)

By solving Equations (10)–(12), we can determine the values of tq, t̃ and tq′ , which are
provided by Equations (13)–(15):

tq = t∗ − γ

β + γ
· N

S
(13)

t̃ = t∗ − βγ

α(β + γ)
· N

S
(14)

tq′ = t∗ +
β

β + γ
· N

S
(15)

By substituting Equations (13)–(15) into Equations (5)–(7), respectively, we can derive
the equilibrium cost (TCe) for each ship in the queue at the canal anchorage. This represents
a stable state where ships in the time-early, on-time, and time-late schedules incur the
same cost. In the on-time schedule, where t̃ + TQ

(
t̃
)
= t∗, the equilibrium cost calcu-

lated from Equation (6) is α
(
t∗ − t̃

)
. Similarly, in the time-early and time-late schedules,

where TQ
(
tq
)
= TQ

(
tq′

)
= 0, the equilibrium costs calculated from Equations (5) and (7)

are β ·
(
t∗ − tq

)
and γ

(
tq′ − t∗

)
, respectively. With these calculations, we can derive the

equilibrium cost for each ship queueing at the canal anchorage area as follows:

TCe =
βγ

β + γ
· N

S
(16)

Subsequently, we will proceed to derive the optimal time-varying toll scheme aimed
at completely mitigating the efficiency loss attributed to queuing. With this toll scheme,
the generated toll revenue will effectively offset the complete cost of queuing time in the
equilibrium state. As a result, there will be no necessity for ships to queue at the anchorage
area before entering the canal, thereby accomplishing the objective of maximizing canal
utilization efficiency. Furthermore, this toll scheme ensures that the total cost for each tolled
ship is equivalent to its equilibrium cost before the toll implementation. This guarantees
that no ship incurs any losses after being tolled, thereby minimizing resistance to this toll
scheme. Based on the preceding explanation, we can express the optimal time-varying toll
scheme for the Suez Canal as follows:
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τ(t) = TCe − β · (t∗ − t) f or tq ≤ t < t∗ (17)

τ(t∗) = TCe (18)

τ(t) = TCe − γ · (t − t∗) f or t∗ < t ≤ tq′ (19)

Equations (17)–(19) delineate the optimal time-varying toll scheme, denoted as τ(t),
corresponding to the time-early, on-time, and time-late schedules, derived from Equations
(5)–(7). It is worth noting that αTQ(t) = 0 and TC(t) = TCe are two essential conditions for
determining all values of τ(t). Consequently, the toll amounts (τ(t)) in Equations (17)–(19)
entirely substitute the queuing time cost (αTQ(t)) in Equations (5)–(7), while maintaining
the constancy of TCe after toll implementation. With this toll scheme, all ships entering the
canal are no longer required to queue. Instead of t̃ before toll implementation, t∗ emerges
as the pivotal moment that distinguishes the time-early and time-late schedules for all
tolled ships.

Equations (17)–(19) reveal that τ(t) linearly increases from tq to its maximum at t∗

with a slope of β. Then, it linearly decreases from t∗ to tq′ with a slope of −γ. Notably, as γ
surpasses β and both are positive, τ(t) for the time-late schedule exhibits a steeper slope
compared to the time-early schedule. The optimal time-varying toll scheme is meticulously
designed to ensure that toll revenue precisely offsets the total queuing time cost in the
equilibrium state, and effectively eliminate the need for ships to queue for canal entry.
Furthermore, it is evident from Equations (17)–(19) that ships arriving at the anchorage at
t∗ and making the maximum toll payment (τ(t∗)) could enter the canal punctually at 23:00
without incurring any schedule delay costs, thereby removing costs associated with early
or late entry into the canal.

4. Derivation of the Mathematical Formulas for the Arrival Times of All Tolled Ships
4.1. Motivation for the Derivation of the Mathematical Formulas

In Section 3, we explored the effectiveness of the optimal time-varying toll scheme,
which successfully eradicates queuing time for all ships in the anchorage area. As a result,
ships can smoothly enter the canal without enduring waiting queues. However, the existing
literature lacks an in-depth examination of the specific behavioral responses that ships
may exhibit after the implementation of this toll scheme, while maintaining their cost
equilibrium as they were in the pre-toll scenario. To bridge this research gap, this paper
presents mathematical formulas that capture how all ships adjust their arrival times at the
anchorage area of the Suez Canal after the implementation of the optimal time-varying toll
scheme. These formulas represent the necessary adjustments in arrival times for all tolled
ships to maintain the same equilibrium cost as they had prior to the toll implementation.
With the differential toll rates facilitating highly effective and evenly distributed arrival
times, the toll scheme maximizes efficiency in eliminating queuing in the anchorage area.

4.2. Methodology for Deriving Mathematical Formulas

In the queuing pricing model, the equilibrium cost for each bottleneck user remains
constant both before and after toll implementation, which is also known as the principle
of cost equilibrium conservation. This principle is aimed at ensuring that users are not
disadvantaged or incur losses after being tolled. If costs for users increase after toll im-
plementation and exceed the equilibrium costs, it would lead to cost losses for the tolled
users, potentially hindering user support for queuing pricing. As discussed in Section 3,
the optimal time-varying toll scheme generates toll revenue that precisely matches the
overall cost incurred by ships due to queuing times in the anchorage area. Consequently,
after implementing the optimal time-varying toll scheme in the Suez Canal’s anchorage
area, the costs associated with early or late arrival at the anchorage area for tolled ships
must be equal to their respective costs before toll implementation, in order to adhere to the
principle of cost equilibrium conservation.
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As illustrated in Figure 2, the left-side dark blue triangle represents the queuing
time costs of ships in the canal’s anchorage area before toll implementation (αTQ

(
t < t̃

)
and αTQ

(
t > t̃

)
). Conversely, the corresponding light blue inverted triangle represents

the early arrival time cost (βTE(t < t̃) = TCe − αTQ(t < t̃)) and late arrival time cost
(βTL(t > t̃) = TCe − αTQ(t > t̃)) for these ships. These costs are incurred when the ships
enter the canal before or after the designated latest entry time (t∗). On the right side of
Figure 2, the dark green triangle represents the optimal time-varying tolls (τ(t < t∗) and
τ(t > t∗)) implemented in the canal’s anchorage area. Correspondingly, the light green
inverted triangle represents the early arrival time cost (βTE(t < t∗) = TCe − τ(t < t∗)) and
late arrival time cost (γTL(t > t∗) = TCe − τ(t > t∗)) for the tolled ships.
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In Figure 2, concerning ships with the time-early schedule, those arriving at the
anchorage area at ta before toll implementation will defer their arrival times until tx after
toll implementation. This adjustment becomes imperative as the early arrival time cost at
ta before toll implementation

(
βTE(ta) = TCe − αTQ(ta

)
) equals the early arrival time cost

at tx after toll implementation (βTE(tx) = TCe − τ(tx)). Consequently, these ships must
postpone their original anchorage arrival time to tx to ensure adherence to the principle
of cost equilibrium conservation. Similarly, for ships with the time-late schedule, those
arriving at the anchorage area at tb before toll implementation will defer their arrival times
until ty after toll implementation. This adjustment is also imperative since the late arrival
time cost before toll implementation

(
γTL(tb) = TCe − αTQ(tb

)
) equals the late arrival

time cost at ty after toll implementation
(
γTL

(
ty
)
= TCe − τ(ty

)
). Hence, these ships must

postpone their original anchorage arrival time to ty to ensure compliance with the principle
of cost equilibrium conservation.
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4.3. Derivation Result of the Mathematical Formulas

Based on Equations (8) and (9) in Section 3, it is evident in Figure 1 that the slopes
of αTQ(t < t̃) and αTQ

(
t > t̃

)
are αβ

α−β and −αγ
α+γ respectively. Consequently, the slopes

of βTE
(
t < t̃

)
= TCe − αTQ

(
t < t̃

)
and γTL

(
t > t̃

)
= TCe − αTQ

(
t > t̃

)
are −αβ

α−β and αγ
α+γ ,

respectively. Furthermore, referring to Equations (17) and (19), it can be deduced that
the slopes of τ(t < t∗) and τ(t > t∗) in Figure 2 are β and −γ, respectively. Thus, the
slopes of βTE(t < t∗) = TCe − τ(t < t∗) and γTL

(
t > t̃

)
= TCe − αTQ

(
t > t̃

)
are −β and

γ, respectively.
In the context of an equilibrium state before toll implementation, let us assume that

the arrival time of a ship entering the canal before the latest allowed entry time (t∗) is
denoted as ta (where tq ≤ ta ≤ t̃). As with the earlier analysis, after the toll implementation,
the ship’s arrival time at the anchorage area will be deferred to tx. Based on Figure 2, we
express the correlation between tx and ta as follows:

−β(ta − tx) = (TCe − τ(ta))−
(
TCe − αTQ(ta

)
)

tx = ta −
τ(ta)− αTQ(ta)

β

tx = ta −
TCe − β(t∗ − ta)− αβ

α−β (ta − tq)

β

tx = t∗ +
α

α − β
(ta − tq)−

TCe

β
(20)

Similarly, suppose the arrival time of a ship entering the canal beyond the latest
allowed entry time (t∗) is denoted as tb (where t̃ ≤ tb ≤ tq′). After the toll implementation,
the ship’s arrival time at the anchorage area will be deferred to ty. Consequently, we express
the correlation between ty and tb in Figure 2 as follows:

αγ
α+γ

(
ty − tb

)
=

(
TCe − αTQ(ty)

)
−

(
TCe − τ(ty

)
)

ty = tb +
τ(ty)− αTQ(ty)

αγ
α+γ

ty = tb +
TCe − γ

(
ty − t∗

)
+ αγ

α+γ (ty − tq′)
αγ

α+γ

ty = t∗ +
α

α + γ
(tb − tq′) +

TCe

γ
(21)

By employing the Point-Slope Form, we can formulate two mathematical formulas
of Equations (20) and (21) to illustrate how all ships, after implementing the optimal
time-varying toll scheme, adjust their pre-toll arrival times to eliminate queueing at the
canal’s anchorage area. The derivation of these equations is based on the principle of cost
equilibrium conservation, where all ships incur the same early (or late) arrival time cost
both before and after toll implementation to preserve an unaltered equilibrium cost (TCe).
It is evident that these two formulas represent the adjusted arrival times at the anchorage
area for two categories of tolled ships: those entering the canal before the latest allowed
entry time (t∗) and those entering the canal after t∗. This adjustment described is imperative
for all tolled ships to maintain their initial equilibrium of TCe.

From Figure 2, it is evident that Equations (20) and (21) represent pre-toll arrival times
on the light blue early (or late) arrival time cost (=TCe − αTQ(t)) will be shifted to the
corresponding post–toll arrival times on the light green early (or late) arrival time cost
(=TCe − τ(t)). For instance, referring to Figure 2, if the pre-toll arrival time of ships that
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enter the canal earlier (or later) than the latest allowed entry time (t∗) is assumed to be ta
(or tb), then their post-toll arrival times will be deferred to tx (or ty).

It is apparent from Figure 2 that only tolled ships with arrival times of tq and tq′
maintain their original arrival times before toll implementation. Notably, the closer a
tolled ship’s arrival time is to t∗, the longer the duration of delay in its arrival time.
Furthermore, Figure 2 distinctly illustrates that if a ship’s arrival time coincides with t̃
before toll implementation, its arrival time will be deferred to t∗ after toll implementation.
This can be verified by substituting ta = tb = t̃ into Equations (20) and (21), yielding
tx = ty = t∗. This represents the longest postponement in arrival time among all tolled

ships, with a value of t∗ − t̃ = βγ
α(β+γ)

· N
S = TCe

α =
αTQ(t̃)

α = τ(t∗)
α .

Based on the previously mentioned results, we can summarize the mathematical
formula for tx = f (ta) from Equation (20) and the other formula for ty = f (tb) from
Equation (21) in Table 1. Notably, the pre-toll arrival times serve as independent variables
in these formulas, while the post-toll arrival times act as dependent variables. To determine
the function values of the post-toll arrival times (tx and ty) based on the relationship in
Table 1, it is imperative to assume the pre-toll arrival times (ta and tb) as given values. This
assumption is both reasonable and justified because ta and tb represent the pre-toll arrival
times in the equilibrium state, representing outcomes attained in a stable condition devoid
of additional regulations.

Table 1. Mathematical formulas for the post-toll arrival times (tx and ty) of all ships.

Pre-Toll
Post-Toll tx = f (ta)

(
tq ≤ tx ≤ t∗

)
ty = f (tb)

(
t∗ < t y ≤ tq′

)
ta

(
tq ≤ ta ≤ t̃

)
tx = t∗ + α

α−β (ta − tq)− TCe

β
-

tb
(
t̃ < tb ≤ tq′

)
- ty = t∗ + α

α+γ (tb − tq′ ) +
TCe

γ

4.4. Novelty in the Research Method and Its Results

The representative papers in the existing literature on queuing pricing for the Suez
Canal are notably represented by Laih et al. [2] and Sun and Laih [3]. Laih et al. [2] were the
first to establish a queuing pricing model for ships queuing at the Suez canal’s anchorage
area. Their approach involved employing analytical mathematics method to compute the
equilibrium cost for each ship and derive an optimal time-varying toll scheme, specifying
the toll amounts along with corresponding start and end tolling times. This toll scheme
effectively eliminated the inefficiency of ships queuing and waiting at the anchorage area
to enter the canal.

Subsequently, Sun and Laih [3] examined the effects of the optimal time-varying
toll scheme on ships’ arrivals at the canal’s anchorage area. In particular, their study
investigated both pre-toll and post-toll sequential arrival times for all ships by a method of
uniform arrival interval among arrivals. However, this methodology raises two debatable
points. Firstly, the assumption that the intervals between ship arrivals at the anchorage area
follow a uniform distribution lacks generality. Secondly, the approach of calculating all
ships’ arrival times at the anchorage area as the accumulation of the same arrival interval
from the queuing start time becomes problematic. This is because errors in the accumulated
calculation amplify with an increasing number of ships. Consequently, the principle of cost
equilibrium conservation for both pre-toll and post-toll ships cannot be satisfied.

To address the aforementioned controversies and enhance both the theoretical basis
and practical significance of the optimal time-varying toll scheme for a queuing canal,
this paper employs the Point-Slope Form method to derive mathematical formulas based
on the principle of cost equilibrium conservation. The derived formulas in this paper
represent all ships’ post-toll arrival times at the anchorage area. Notably, the pre-toll
arrival times serve as independent variables in these formulas, while the post-toll arrival
times act as dependent variables. The derived formulas not only meet the requirement
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of maintaining cost equilibrium for all tolled ships, but also contribute to maximizing
efficiency in eliminating queuing in the canal’s anchorage area.

Table 2 compares the research methods and findings of the works by Laih et al. [2] and
Sun and Laih [3], with those presented in this paper to highlight its novelty.

Table 2. Novelty of this paper compared to the works by Laih et al. [2] and Sun and Laih [3].

Novelty
Papers

Laih et al. [2] Sun and Laih [3] This Paper

Method
Development of a Queuing Pricing
Model for the Canal using
Analytical Mathematics

Investigation on sequential
arrive times using Uniform
Arrival Interval

Exploration of arrival time
adjustments using
Point-Slope Form

Findings

1. Equilibrium cost for each
pre-toll ship.

2. Determination of optimal
time-varying toll amounts
along with corresponding
start and end tolling times.

1. Determination of the
average arrival interval
among arrivals at the
canal’s anchorage.

2. Examination of Ships’
sequential arrival times
by the accumulation of
the average arrival
interval from the
queuing start time.

1. Formulation of
mathematical formulas
for adjusting the arrival
times of all tolled ships
at the canal’s
anchorage.

2. Ensuring that post-toll
arrival times incur the
same schedule delay
costs as pre-toll arrival
times to adhere to the
Cost Equilibrium
Conservation Principle.

5. Numerical Analysis

Between 2020 and 2022, the global COVID-19 pandemic significantly impacted mar-
itime transportation. Additionally, an unexpected incident occurred in March 2021 when a
container ship ran aground in the Suez Canal, resulting in a complete blockage of traffic in
both directions for approximately one week. These events had a profound effect on the
regular operations of the Suez Canal, causing substantial delays in the availability of official
statistical data. The most recent navigation statistics accessible on the Suez Canal’s official
website [1] are currently updated only until February 2020. Consequently, we can only rely
solely on statistical data throughout 2019 to simulate how tolled ships adjusted their pre-toll
arrival times at the canal’s anchorage area. These results will serve as a practical reference
for canal authorities when considering the implementation of an optimal time-varying
toll scheme.

Referring to the statistics provided by the Suez Canal Authority for the year 2019,
there were 9711 ships traversing the Suez Canal in the southbound direction towards
the Red Sea, while 9169 ships traveled northbound direction towards the Mediterranean.
Consequently, the average number of ships passing through per day (N) was computed as
26.61 (=9711/365) for the southbound direction and 25.12 (=9169/365) for the northbound
direction. In accordance with information from the Suez Canal Authority, the specified
time frames for the entry of southbound and northbound ships into the canal are as follows:
Southbound ships are permitted to enter between 03:30 and 23:00, while northbound
ships are allowed enter between 04:00 and 23:00. Based on this, the canal capacity (S)
for the southbound and northbound directions can be calculated as 1.36 ships per hour
(=26.61/19.5) and 1.32 ships per hour (=25.12/19), respectively.

The hourly queueing time cost (α) for ships awaiting entry into the Suez Canal at
the anchorage area can be construed as their opportunity cost. Among the various op-
portunity costs incurred by ships queueing for Suez Canal entry, the most consequential
for shipowners is typically the hourly rental income of a ship. Based on historical data
provided by the Suez Canal Authority, container ships constitute the predominant category
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among all transiting ships. Therefore, the calculation of the value α will be grounded in the
rental rates applicable to container ships. In 2019, the value of α will be calculated using
the rental rates for container ships. In 2019, the average net tonnage of container ships
passing through the canal was recorded as 118,344.37 tons. Typically, 1 TEU is equivalent to
13.6 net tons. Therefore, 118,344.37 net tons can be approximately converted to 8700 TEUs.
According to data from Harper Petersen & Co. for 2019, the daily rental rate for an 8700
TEU container ship was approximately USD 25,458.33. Thus, the average hourly rental
rate per container ship can be calculated as USD 1060.76 (=25,458.33/24). In summary, the
hourly queueing time cost for ships awaiting entry into the Suez Canal can be considered
as USD 1060.76 (α = $1060.76).

The hourly cost associated with early arrival time (β) and late arrival time (γ) for ships
can be construed as their penalty costs. When a ship arrives early at the anchorage of
the Suez Canal, it implies a likelihood of reaching its destination port ahead of schedule.
However, this early arrival poses a tough challenge in coordinating the necessary manpower
and equipment for immediate and efficient cargo handling at the destination port. As a
result, the early arrival of the ship requires additional payment of berth anchorage fees
until cargo operations can commence. Therefore, the berth anchorage fee can serve as the
basis for computing the ship’s early arrival time cost. The computation of berth anchorage
fees is based on the reference of the current container throughput of Shanghai Port, the
world’s largest port, which amounts to CNY 0.25 per ton per day, approximately equivalent
to USD 0.039. Thus, the hourly cost incurred for the ship’s early arrival can be computed as
USD 192.31 (β = 0.039 × 118,344.37 ÷ 24 = 192.31).

Furthermore, as stipulated by the Suez Canal Authority, both southbound and north-
bound ships must adhere to the arrival deadline of 23:00 (t∗ = 23) to gain entry into the
canal. In cases of late arrivals, canal authorities impose varying charges: a maximum of
12,500, 25,000, and 30,000 Special Drawing Rights (SDR) for the respective time periods of
23:00–00:00, 00:00–01:00, and 01:00–. Calculating the average of these amounts results in
22,500 SDR (approximately equal to USD 31,515.75), representing the penalty cost for the
ship’s delay. Therefore, the cost of late arrival time per ship is computed as USD 1313.16
per hour (γ = 31,515.75/24 = 1313.16).

By substituting the aforementioned values into Equation (16) provided in Section 3,
we determine the equilibrium costs (TCe) per southbound and northbound ship to be USD
3282.75 and USD 3192.17, respectively. Additionally, applying Equations (13)–(15) allows
us to obtain that tq = 5.97 = 5:58, t̃ = 19.87 = 19:52 and tq′ = 25.54 = 01:32 for southbound
ships, as well as tq = 6.44 = 6:26, t̃ = 19.96 = 19:58 and tq′ = 25.47 = 01:28 for northbound
ships. From these results, it is apparent that a significant proportion of both southbound
and northbound ships enter the canal before the specified time of 23:00. In addition, only
southbound and northbound ships arriving at the anchorage area at t̃ = 19.87 = 19:52 and
t̃ = 19.96 = 19:58, respectively, can enter the Suez Canal at the permissible latest time of
23:00 (t∗ = 23).

Under the optimal time-varying toll scheme implemented in the anchorage area of
Suez Canal, the total daily revenue (τ(t∗)·(tq′ − tq)/2)·S for southbound and northbound
ships is $43,685.52 and $40,093.02, respectively. These total revenue amounts precisely
match the total queueing time costs for southbound and northbound ships before the
toll implementation. This means that the total toll collected completely offsets the total
queueing time costs, eliminating the need for ships to wait in a queue before entering
the canal under the optimal time-varying toll scheme. Therefore, tolled ships arriving
at the anchorage area prior to the specified time of t∗ = 23 will be granted entry into the
Suez Canal at an earlier time, while the remaining tolled ships arriving after t∗ = 23 will
experience a delay in entering the canal beyond the stipulated entry time. Southbound (or
northbound) ships arriving precisely at t∗ = 23 must be tolled a maximum amount of τ(t∗)
= USD 3282.75 (or USD 3192.17) to avoid incurring additional costs for early or delayed
entry into the canal.
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Table 3 and Figure 3, as well as Table 4 and Figure 4, predominantly illustrate the
variations in arrival times at the anchorage area of Suez Canal for both southbound and
northbound ships after implementing the optimal time-varying toll scheme. In Tables 3
and 4 (or Figures 3 and 4), the colored values (or dots) in green and red represent the results
for time-early (including on-time) and time-late schedules, respectively.

Table 3. Numerical results for southbound ships from the pre-toll to the post-toll scenario.

Southbound Ships

Pre-Toll Toll Post-Toll Extension of t

t = ta, tb
(am/pm) TQ(t) (h) t + TQ(t)

(am/pm)
τ(t) =

αTQ(t) (USD)
t = tx, ty
(am/pm) TQ(t) (h) t + TQ(t)

(am/pm)
∆t = tx − ta (h)
∆t = ty − tb (h)

05.97 (tq) 0.00 05.97 0.00 05.97 (tq) 0.00 05.97 0.00

: : : : : : : :

07.00 0.19 07.19 201.54 07.19 0.00 07.19 0.19

: : : : : : : :

08.00 0.41 08.41 434.91 08.41 0.00 08.41 0.41

: : : : : : : :

09.00 0.63 09.63 668.28 09.63 0.00 09.63 0.63

: : : : : : : :

10.00 0.85 10.85 901.65 10.85 0.00 10.85 0.85

: : : : : : : :

11.00 1.07 12.07 1135.01 12.07 0.00 12.07 1.07

: : : : : : : :

12.00 1.29 13.29 1368.38 13.29 0.00 13.29 1.29

: : : : : : : :

13.00 1.51 14.51 1601.75 14.51 0.00 14.51 1.51

: : : : : : : :

14.00 1.73 15.73 1835.11 15.73 0.00 15.73 1.73

: : : : : : : :

15.00 1.95 16.95 2068.48 16.95 0.00 16.95 1.95

: : : : : : : :

16.00 2.17 18.17 2301.85 18.17 0.00 18.17 2.17

: : : : : : : :

17.00 2.39 19.39 2535.22 19.39 0.00 19.39 2.39

: : : : : : : :

18.00 2.61 20.61 2768.58 20.61 0.00 20.61 2.61

: : : : : : : :

19.00 2.83 21.83 3001.95 21.83 0.00 21.83 2.83

: : : : : : : :

19.87 (
∼
t ) 3.13 23.00 3320.18 23.00 (t*) 0.00 23.00 3.13

: : : : : : : :
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Table 3. Cont.

Southbound Ships

Pre-Toll Toll Post-Toll Extension of t

21.00 2.46 23.46 2609.47 23.46 0.00 23.46 2.46

: : : : : : : :

22.00 1.91 23.91 2026.05 23.91 0.00 23.91 1.91

: : : : : : : :

23.00 (t*) 1.36 24.36 1442.63 24.36 0.00 24.36 1.36

: : : : : : : :

24.00 0.81 24.81 859.22 24.81 0.00 24.81 0.81

: : : : : : : :

25.00 0.26 25.26 275.80 25.26 0.00 25.26 0.26

: : : : : : : :

25.54 (tq′) 0.00 25.54 0.00 25.54 (tq′) 0.00 25.54 0.00
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Table 4. Numerical results for northbound ships from the pre-toll to the post-toll scenario.

Northbound Ships

Pre-Toll Toll Post-Toll Extension of t

t = ta, tb
(am/pm) TQ(t) (h) t + TQ(t)

(am/pm)
τ(t) =

αTQ(t) (USD)
t = tx, ty
(am/pm) TQ(t) (h) t + TQ(t)

(am/pm)
∆t = tx − ta (h)
∆t = ty − tb (h)

06.44 (tq) 0.00 06.44 0.00 06.44 (tq) 0.00 06.44 0.00

: : : : : : : :



J. Mar. Sci. Eng. 2024, 12, 76 16 of 20

Table 4. Cont.

Northbound Ships

Pre-Toll Toll Post-Toll Extension of t

07.00 0.09 07.09 95.47 07.09 0.00 07.09 0.09

: : : : : : : :

08.00 0.31 08.31 328.84 08.31 0.00 08.31 0.31

: : : : : : : :

09.00 0.53 09.53 562.20 09.53 0.00 09.53 0.53

: : : : : : : :

10.00 0.75 10.75 795.57 10.75 0.00 10.75 0.75

: : : : : : : :

11.00 0.97 11.97 1028.94 11.97 0.00 11.97 0.97

: : : : : : : :

12.00 1.19 13.19 1262.30 13.19 0.00 13.19 1.19

: : : : : : : :

13.00 1.41 14.41 1495.67 14.41 0.00 14.41 1.41

: : : : : : : :

14.00 1.63 15.63 1729.04 15.63 0.00 15.63 1.63

: : : : : : : :

15.00 1.85 16.85 1962.41 16.85 0.00 16.85 1.85

: : : : : : : :

16.00 2.07 18.07 2195.77 18.07 0.00 18.07 2.07

: : : : : : : :

17.00 2.29 19.29 2429.14 19.29 0.00 19.29 2.29

: : : : : : : :

18.00 2.51 20.51 2662.51 20.51 0.00 20.51 2.51

: : : : : : : :

19.00 2.73 21.73 2895.87 21.73 0.00 21.73 2.73

: : : : : : : :

19.96 (t̃) 3.04 23.00 3224.71 23.00 (t∗) 0.00 23.00 3.04

: : : : : : : :

21.00 2.41 23.41 2556.43 23.41 0.00 23.41 2.41

: : : : : : : :

22.00 1.86 23.86 1973.01 23.86 0.00 23.86 1.86

: : : : : : : :

23.00 (t∗) 1.31 24.31 1389.60 24.31 0.00 24.31 1.31

: : : : : : : :

24.00 0.76 24.76 806.18 24.76 0.00 24.76 0.76

: : : : : : : :

25.00 0.21 25.21 222.76 25.21 0.00 25.21 0.21

: : : : : : : :

25.47 (tq′) 0.00 25.47 0.00 25.47 (tq′) 0.00 25.47 0.00
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The “Pre-Toll” column in Tables 3 and 4 consists of three rows. The first row illustrates
the arrival times (t) at the anchorage area of the Suez Canal before toll implementation.
These times fall within the queueing start time (tq) and the queueing end time (tq′) in the
pre-toll equilibrium situation. The second row displays the corresponding queueing time
length (TQ(t)) for each arrival time (t). The values in green and red are computed using

TQ(t) =
(
t − tq

) β
α−β and TQ(t) =

(
t − tq′

)
−γ

α+γ , respectively. The third row presents the
sum of the first and second rows, indicating the time at which the ship enters the canal
after queueing at the anchorage area.

In the “Toll” column of Tables 3 and 4, the optimal time-varying toll amount (τ(t))
is determined using Equations (17)–(19) in Section 3. Since (t) fully offsets 100% of the
queueing time cost, it can also be considered as αTQ(t). This implies that by multiplying
USD 1060.76 (=α) by the values of TQ(t) corresponding to all arrival times before toll
implementation, we obtain the optimal toll amount that each arriving ship should be tolled
to eliminate the queueing time cost.

The “Post-Toll” column in Tables 3 and 4 consists of three rows. The first row illustrates
the arrival times, tx and ty, for all the tolled ships computed using the two mathematical
formulas (Equations (20) and (21)) in Section 4. Under the optimal time-varying toll scheme,
the values in the second row are all zero since the queueing time corresponding to each
arrival time disappears (TQ(tx) = TQ

(
ty
)
= 0). The third row represents the times when

all the tolled ships enter the canal, and all values are the same as those in the first row since
there is no queuing after toll implementation.

In the “Extension of t” column of Tables 3 and 4, the duration (∆t) by which the
arrival times of all tolled ships are deferred compared to their pre-toll arrival times can
be determined by subtracting the arrival times before toll implementation (t = ta and tb)
from the arrival times after toll implementation (t = tx and ty). Taking the southbound
ships in Table 3 as an example, it becomes evident that for the early arrival time interval
(tq = 5.97, t̃ = 19.87) before toll implementation, all arrival times exhibit an increasing
postponement in arrival time (green ∆t = 0~3.13 h) after toll implementation. Additionally,
there is a marginal increase of +0.22 h in the deferred duration at every full hour between
tq = 5.97 and t̃ = 19.87. At the arrival time t̃ = 19.87, the longest postponement in
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arrival time is observed, approximately 3.13 h. Conversely, during the delayed arrival
time interval (t̃ = 19.87, tq′ = 25.54) before toll implementation, all arrival times show a
decreasing postponement in arrival time (red ∆t = 3.13 to 0 h) after toll implementation.
Furthermore, a marginal reduction of −0.55 h in the deferred duration is observed at every
full hour between t̃ = 19.87 and tq′ = 25.54.

Figure 3 presents the findings from Table 3, depicting that only two southbound
untolled ships with arrival times of tq = 5.97 and tq′ = 25.54 do not necessitate adjustments
to their pre-toll arrival times, hence they lie on the 45-degree line. However, all other
southbound tolled ships arriving between tq = 5.97 and tq′ = 25.54 need adjustments
to their pre-toll arrival times to maintain cost equilibrium. The green dots, representing
time-early arrivals, gradually deviate from the 45-degree line (indicating an increasing
postponement in arrival time) over time. The highest tolled ship, arriving at t̃ = 19.87,
is positioned farthest from the 45-degree line (with a longest postponement of 3.13 h).
Conversely, the red dots, corresponding to time-late arrivals, gradually approach the
45-degree line (indicating a decreasing postponement in arrival time approaching zero)
over time until the end of queuing.

The values in Table 4 demonstrate slight differences compared to Table 3, which is
primarily attributed to minor variations in the values of tq, t̃, tq′, N, and S for the northbound
and southbound directions. However, when it comes to the marginal postponement in
arrival time at every full hour for northbound tolled ships, Table 4 reflects identical values
as Table 3. This implies that the marginal postponement in arrival time for both southbound
and northbound ships is +0.22 and −0.55 h, respectively, during the early and delayed
arrival time intervals. Regarding the variation in arrival times for all northbound tolled
ships in Table 4, please refer to the proximity of the green and red dots to the 45-degree line
in Figure 4. The highest tolled ship with an arrival time of t̃ = 19.96 deviates the farthest
from the 45-degree line (approximately 3.04 h), indicating the longest postponement in
arrival time after toll implementation.

The above provided information can serve as a valuable reference for canal authorities
in planning the quantity and configuration of relevant hardware and software equipment.
Additionally, it can aid in the scheduling of canal pilots, especially when considering the
implementation of the optimal time-varying toll scheme.

6. Conclusions

The optimal time-varying toll scheme is specifically designed to eliminate ship queuing
at the anchorage area and enhance efficient utilization of the canal. This toll scheme differs
significantly from the current tolling system in the Suez Canal, which primarily aims at
covering management and operational costs through user payments. Despite this contrast,
the existing literature has not thoroughly explored the potential impact of implementing
the optimal time-varying toll scheme on the arrival times of all tolled ships at the the Suez
Canal’s anchorage area. Changes in arrival times under this toll scheme will lead to the
redistribution of schedule delay costs (the penalty costs for either early or late entry into
the canal) for all tolled ships while maintaining their equilibrium costs, thereby achieving
maximum efficiency in eradicating queuing issues at the canal anchorage area.

As the total queuing time costs are completely offset by the revenue generated from
the optimal time-varying toll scheme, all ships, both before and after toll implementation,
must maintain the same schedule delay cost to achieve the principle of cost equilibrium
conservation. To attain this objective, this paper utilizes the Point-Slope Form to derive
two concise and comparative mathematical formulas for calculating the arrival times of all
tolled ships at the Suez Canal’s anchorage area. These derived formulas not only enhance
the theoretical foundation of the existing pricing model for a queuing canal, but also
facilitate the electronic management of ship arrival time information for canal authorities
implementing this toll scheme.

These two derived formulas represent the post-toll arrival times at the anchorage area
for two distinct categories of tolled ships: those entering the canal before the specified latest
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entry time of 23:00 and those entering thereafter. Upon comparing these results with their
pre-toll arrival times, it is evident that, for tolled ships entering the canal before 23:00, the
duration of their postponement in arrival time gradually increases from zero until they
precisely enter the canal at 23:00, coinciding with the time of the maximum toll amount.
The deferred duration for ships entering the canal at 23:00 is the longest, identical to the
maximum toll amount (or the equilibrium cost) divided by the hourly queuing time cost.
Conversely, for ships entering the canal later than 23:00, the duration of their postponement
in arrival time decreases until it reaches zero at the end of the queuing time.

Presently, the latest available navigation statistics on the Suez Canal’s official website
are only updated until February 2020. Consequently, our numerical analysis relies on the
statistical data for the entire year of 2019 to simulate the potential changes in arrival times
at the Suez Canal’s anchorage area for both southbound and northbound ships under the
optimal time-varying toll scheme. Using the two mathematical formulas derived from
the Point-Slope Form, we calculate the post-toll arrival times for both southbound and
northbound ships. By comparing these arrival times with their respective pre-toll arrival
times, we can determine the postponement in arrival times experienced by tolled ships
in both southbound and northbound directions. This information serves as a valuable
reference for canal authorities when considering the adoption of the optimal time-varying
toll scheme. It also aids in the strategic planning of resource allocation necessary for this
toll scheme’s implementation. For instance, these resources may involve scheduling canal
pilots effectively when the toll scheme takes effect.
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