
Citation: Zheng, J.; Zhao, R.; Yang, G.;

Liu, S.; Zhang, Z.; Fu, Y.; Lu, J. An

Underwater Image Restoration Deep

Learning Network Combining

Attention Mechanism and Brightness

Adjustment. J. Mar. Sci. Eng. 2024, 12,

7. https://doi.org/10.3390/

jmse12010007

Academic Editor: Marco Cococcioni

Received: 7 October 2023

Revised: 7 December 2023

Accepted: 14 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

An Underwater Image Restoration Deep Learning Network
Combining Attention Mechanism and Brightness Adjustment
Jianhua Zheng 1,2 , Ruolin Zhao 1,2 , Gaolin Yang 2,3,*, Shuangyin Liu 1,2,*, Zihao Zhang 1,2 Yusha Fu 1,2

and Junde Lu 1,2

1 College of Information Science and Technology, Zhongkai University of Agriculture and Engineering,
Guangzhou 510225, China; zhengjianhua@zhku.edu.cn (J.Z.); zhaoruolin@zhku.edu.cn (R.Z.);
zhangzihaoff@163.com (Z.Z.); fuyusha@zhku.edu.cn (Y.F.); lujunde@zhku.edu.cn (J.L.)

2 Guangzhou Key Laboratory of Agricultural Products Quality & Safety Traceability Information Technology,
Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

3 School of Information and Communication Engineering, Communication University of China,
Beijing 100024, China

* Correspondence: yanggaolin@zhku.edu.cn (G.Y.); shuangyinliu@zhku.edu.cn (S.L.)

Abstract: This study proposes Combining Attention and Brightness Adjustment Network (CABA-
Net), a deep learning network for underwater image restoration, to address the issues of underwater
image color-cast, low brightness, and low contrast. The proposed approach achieves a multi-branch
ambient light estimation by extracting the features of different levels of underwater images to
achieve accurate estimates of the ambient light. Additionally, an encoder-decoder transmission
map estimation module is designed to combine spatial attention structures that can extract the
different layers of underwater images’ spatial features to achieve accurate transmission map estimates.
Then, the transmission map and precisely predicted ambient light were included in the underwater
image formation model to achieve a preliminary restoration of underwater images. HSV brightness
adjustment was conducted by combining the channel and spatial attention to the initial underwater
image to complete the final underwater image restoration. Experimental results on the Underwater
Image Enhancement Benchmark (UIEB) and Real-world Underwater Image Enhancement (RUIE)
datasets show excellent performance of the proposed method in subjective comparisons and objective
assessments. Furthermore, several ablation studies are conducted to understand the effect of each
network component and prove the effectiveness of the suggested approach.

Keywords: underwater image processing; underwater image restoration; image formation model;
deep learning; attention mechanism

1. Introduction

Underwater images are essential information carriers for marine biodiversity observa-
tion and resource development [1]. Various applications necessitate the use of underwater
images. In the marine environment, clear and non-color-cast underwater images help
biologists in scientific research; in marine resource exploration, clear underwater images
assist in the resource extraction process; the development of underwater robotics relies on
clear and non-quality-degradation underwater images [2]. However, there is no easy way
to obtain clear and non-color-cast underwater images due to the following:

1. The light-scattering impact of water molecules and different microorganisms: light
reflection scatters after passing through water, resulting in blurred images and loss
of details.

2. The different wavelength frequencies cause different degrees of absorption underwa-
ter, resulting in bluish and greenish underwater images. Therefore, obtaining clear
and non-color-cast underwater images without relying on special equipment is a
significant technical challenge that needs to be solved.
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In recent years, scholars have explored underwater image recovery methods using
advancements in computer vision technology [3]. He et al. [4] proposed the Dark Channel
Prior (DCP) based on the statistical analysis of many natural terrestrial scene images. Then,
they used it with an image formation model to estimate the transmission map (TM) and
ambient light (Ac). The authors achieved adequate image restoration, providing a new
approach to solving the image restoration problem. This inspired many DCP-based image
restoration methods [5,6]. Given the good results achieved by DCP on natural terres-
trial images, many researchers have also applied DCP to underwater image restoration.
However, the imaging environments on land and underwater are different, the media are
different, and the scattering and refraction laws of light are also different, so it is not good
to directly copy DCP for restoration in underwater images. Therefore, researchers have
proposed many variants of DCP methods for underwater scenes, such as [7–9]. However,
the complexity of underwater scenes and artificial lighting effects make many underwa-
ter image restoration methods ineffective in recovery. Therefore, an essential component
of underwater image restoration is the capacity to precisely estimate the Ac and TM of
underwater images.

This paper presents the CABA-Net model for end-to-end underwater image restora-
tion. The proposed approach consists of the following three modules:

1. Ambient light (Ac) estimation: The ambient light accurate estimation module achieves
an accurate estimation of Ac by designing a separate feature extraction network
for each color channel and highlighting the most representative features through
the channel attention [10] structure so that the network can fully uncover the scene
information in the image.

2. Transmittance map (TM) estimation: The complexity of underwater scenes was fully
considered during the transmittance map estimation. So, in the design of the transmis-
sion map estimation module, the spatial attention [10] structure and the coder-decoder
structure were combined. The features with rich layers and a global perception field
were obtained through convolutional deconvolution and feature fusion operations. Fi-
nally, the estimated accurate Ac and accurate TM are substituted into the underwater
image formation model to obtain a preliminary recovered underwater image.

3. HSV brightness adjustment: The recovered underwater images’ brightness is further
adjusted by converting the underwater images to HSV color space and adjusting the
brightness of the images.

The major contributions of this study are as follows:

• We present a multi-branch ambient light accurate estimation module that indepen-
dently applies the convolution module with channel attention mechanism for each
color channel, achieving multiple layers combination features, and adaptively select-
ing the most representative features to precisely estimate the Ac.

• We propose an encoder-decoder transmission map estimation module that combines
attention structures. Feature extraction of different layers is achieved through a series
of downsampled and convolution operations with a spatial attention mechanism. The
upsampling and feature fusion operations incorporate different layers of features into
a unified structure to estimate the TM accurately.

• We introduce a parallel brightness adjustment module combining channel and spatial
attention in HSV color space to achieve further image correction. Additionally, we
propose a loss function that combines MSE, L1, SSIM, and HSV loss, deriving the
optimal weighting coefficients for this function through extensive experimentation.

The remainder of this paper is organized as follows: Section 2 introduces the related
works on DCP-based underwater image restoration; Section 3 of the paper discusses the
proposed method; Section 4 evaluates and discusses the results; and Section 5 presents
the conclusion.
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2. Relate Work
2.1. Underwater Image Formation Model

Light propagation in water is subject to absorption and scattering by water. According
to the Jaffe–McGlamery underwater image formation model [11], the underwater image
captured by the camera can be regarded as direct component as well as forward and
backward-scattered components, as shown in Figure 1.

1. The direct component: The reflected light from the scene that reaches the camera
after being attenuated during propagation. This represents the underwater image to
be recovered.

2. The forward component: The part of the light that reaches the camera after small
angle scattering during propagation after reflection from the scene surface, which is
the leading cause of blurred underwater images. In the underwater shooting process,
the camera is close to the subject, and its impact on the process can be negligible.

3. The backward scattering component: The portion of the light that reaches the cam-
era just after being scattered by suspended particles. This component is the main
contributor to the deterioration of the image contrast.

The following can be used to describe the underwater image formation model:

I(x) = Jc(x)tc(x) + Ac(x){1 − tc(x)}, c ∈ {r, g, b} (1)

where I(x) represents the underwater image, Jc(x) is the image to be recovered, and Ac(x)
is the ambient light. tc(x) is the transmittance at x. The transmittance of the whole image
can be formed into TM, indicating the light’s remaining intensity ratio as it reaches the
camera after being scattered and absorbed underwater. Each of the red, green, or blue color
channels is represented as x.

Figure 1. Underwater image formation model.

2.2. Ambient Light Estimation

A crucial component of underwater image restoration is Ac. The effectiveness of un-
derwater image restoration is directly related to its precision. The ambient light estimation
methods can be divided into DCP ambient light estimation and deep learning methods
based on the different principles and characteristics of estimating Ac.

Ambient light estimation method based on DCP: Setting the highest luminance pixel
in the underwater image as Ac is the simplest method for estimating ambient light [12].
However, Ac is incorrectly estimated in an underwater scene by interferences, such as
bubbles and suspended particles. It is unreasonable to estimate Ac from only the perspec-
tive of a single pixel. Authors in [13] propose using the brightness value in the image
corresponding to the first 0.1% pixels in the dark channel to represent Ac. Their approach
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reduces the effect of suspended particles in the water and improves the robustness of the
ambient light estimation algorithm. However, the above method only estimates Ac to a
certain extent, disregarding the fact that blue-green light decays much slower than red
light in underwater scenes. Drews et al. [14] proposed an accurate estimation of Ac by
selecting only the top 0.1% of pixels in the dark blue-green channel as the ambient light
estimate. To a certain extent, their approach eliminates the effect caused by the decay of the
red-light source. To further accurately estimate Ac, Yu et al. [15] accurately estimated Ac by
dividing the underwater image into six blocks and selecting flat regions using the pixel
variance of each region. Afterward, they applied the DCP method to find the Ac within
the selected regions. Additionally, the authors in [16] accurately estimated Ac by fusing
the depth-of-field obtained by blurring the red channel and the image. Then, the object
and background areas are separated according to the depth-of-field to obtain the ambient
light areas. Finally, they selected the top 0.1% brightest pixels in the background as Ac.
Muniraj et al. [17] proposed a saturation correction factor to adjust for color differences.
They then used the correction factor to obtain a precise measurement of Ac.

Deep learning method for ambient light estimation: Substantial progress has been
made in underwater image ambient light estimation using the recent advancement of deep
learning methods for feature extraction. Shin et al. [18] proposed a three-stage cooperative
ambient light estimation network with multiscale feature extraction, feature fusion, and
nonlinear regression to accurately estimate Ac. Peng et al. [19] introduced a method for
recovering images affected by scattering and absorption. The approach involves estimating
the transmission map by calculating the environmental light differences in the scene and
enhancing the degraded image using an image formation model. Subsequently, an adaptive
color correction method is employed for color restoration. Woo et al. [20] improves the
accuracy of the illuminant chromaticity estimation by leveraging the geometric shape
information from specular pixels on object surfaces. The method selects the image path
that generates the longest bisector line, leading to more precise illumination chromaticity
estimation. Experimental results demonstrate the superiority of this approach in locat-
ing illuminant chromaticity compared to state-of-the-art color constancy methods. Cao
et al. [21] presented a multiscale structure for estimating the ambient light by stacking
filters (size 5 × 5 and 3 × 3), pooling layers (2 × 2), and normalization layers to achieve
an accurate estimation of Ac. Yang et al. [22] first estimated the depth-of-field map of the
underwater image using the whole convolutional residual network. They estimated the
red channel ambient light and the attenuation ratio of the RGB color channels using the
depth-of-field map. The authors discovered the blue-green channel ambient light according
to the attenuation ratio of the RGB color channels and the red channel ambient light to
complete the estimation of Ac. Wu et al. [23] decomposed the underwater image into high-
frequency components (HF) and low-frequency components (LF) to avoid the parameter
errors caused by estimating the TM and Ac. They used the discrete cosine transform and
then transformed them into a two-stage (preliminary enhancement network, refinement
network) network to realize the estimation of Ac. Fayadh et al. [20] proposed a method for
estimating the optimal ambient light in underwater images based on local and global pixel
selections. They introduced a block greedy algorithm and a convolutional neural network
(CNN) to enhance image dehazing by combining pixel differences and the minimum energy
Markov random field (MRF), thereby improving the clarity and color balance performance
of underwater images.

2.3. Transmission Map Estimation

The accuracy of the estimated underwater image TM impacts the effectiveness of
underwater image restoration. The simplest TM estimates are made directly using the
DCP prior derived from the natural terrestrial scenes. However, the restoration effect
of DCP methods is ineffective because it does not consider how light diminishes in the
water. By analyzing the theory of underwater image formation, Carlevaris–Bianco et al. [24]
estimated the TM by calculating the difference between the most significant intensities
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of the blue-green and red channels. Unfortunately, their restoration effect is not ideal,
causing an incorrect estimation of the TM due to the appearance of light-colored areas or
artificial light sources in the background region. By analyzing the principle of underwater
imaging, Li et al. [25] proposed the Minimum Information Loss Principle (MILP) through
the analysis of the underwater imaging principle. Their approach first estimates the red
channel transmittance by reducing the information loss of the red channel in the local area.
Then, it estimates the blue-green channel transmittance using the ratio relationship of the
RGB channel transmittance to accurately estimate the transmittance map. Peng et al. [26]
first achieved the estimation of a depth map using gradient information, then estimated
the Ac using the scene depth information. Finally, the estimated depth map and Ac were
substituted into the image formation model to obtain an accurate TM. Pan et al. [27] pro-
posed a novel method for enhancing underwater images. The approach involves training a
convolutional neural network to estimate the transmission map, followed by refining the
transmission map using an adaptive bilateral filter. Finally, the output image is transformed
into a hybrid domain of the wavelet and directional filter bank for denoising and edge
enhancement processing. Based on the analysis of haze-line assumption, Berman et al. [28]
proposed a transmittance estimation method centered on the ratio between RGB channel
attenuation factors. They achieved the accuracy of underwater image transmittance map
estimation. However, most pixels will point in the same direction when the Ac brightness is
significantly greater than the scene, making it difficult to detect the haze line. Underwater
red light attenuates at a rate that is noticeably higher than green-blue light because of the dif-
ference between underwater and natural terrestrial scene images. Song et al. [29] show that
Jrgb
dark = 0.1 is more consistent with the underwater image situation based on many un-

derwater image statistics. Therefore, they used Jrgb
dark = 0.1 to replace the DCP prior and

combined Jrgb
dark = 0.1 with the underwater image formulation model to accurately estimate

the TM. Zhou et al. [30] has developed a dehazing method for underwater images under
different water quality conditions, utilizing a revised underwater image formation model.
The method relies on a scene depth map and a color correction approach to mitigate color
distortions. Firstly, a method for estimating the depth of underwater images is designed to
create a transmission map. Subsequently, based on the revised model and the estimated
transmission rates, the method estimates and removes backscatter. Liu et al. [31] addresses
the restoration and color correction issues of underwater optical images through an im-
proved adaptive transmission fusion method. The approach involves applying a modified
reverse saturation map technique to enhance the transmission map. Additionally, a novel
underwater light attenuation prior method is introduced. Li et al. [32] proposes a method
for estimating the transmission map of underwater images. The approach enhances con-
trast through grayscale quantization, utilizes Retinex color constancy to eliminate lighting
and color distortion, establishes a dual-transmission underwater imaging model to estimate
background light, backscatter, and direct component transmission. Dehazed images are
then generated through an inversion process.

3. Proposed Method

By analyzing the image formation model, we design an end-to-end network named
CABA-Net to accurately estimate Ac and TM in underwater image restoration methods,
utilizing a combination of attention mechanisms and brightness adjustments. Also, we
introduce a brightness adjustment module of the HSV color model to further improve
the hue and luminosity of the recovered image. The network framework structure is
illustrated in Figure 2. Firstly, the original underwater image is fed into the module
for a precise ambient light estimation to estimate the accuracy of Ac. Then, the original
underwater image is concatenated with the accurate Ac and passed through the TM accurate
estimation module to derive an accurate TM. Finally, the underwater image is restored by
substituting the estimated Ac and TM into the image formation model. However, issues
like poor contrast and dim brightness in some scenes remain in the corrected underwater
images. Therefore, we also introduce an HSV luminance adjustment module combining the
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spatial and channel attention mechanisms to complete the stretching of the scene contrast
and luminance.

Figure 2. Framework of CABA-Net. It consists of three components: the Ambient Light Estimate
Module, the Transmission Map Estimate Module, and the HSV Brightness Adjustment Module.
Initially, the original image undergoes processing by the Ambient Light Estimate Module to obtain
Ac. Subsequently, the Transmission Map Estimate Module generates TM. The combination of Ac

and TM is then input into an imaging model to produce the reconstructed image. Finally, the HSV
Brightness Adjustment Module is applied for brightness correction on the image.

3.1. Ambient Light Estimate Module

Figure 2a shows the details of the ambient light accurate estimation module that
achieves accurate RGB ambient light estimation. This is achieved by designing three
independent ambient light estimation branches for the input underwater image. Each
branch is further divided into three steps: shallow feature extraction, deep feature extraction
combined with channel attention mechanism, and feature fusion. First, two CBP modules
are used for shallow feature extraction: the input image is convolved with a step size of 1,
a size of 3 × 3, and 12 kernels. Then convolution outputs are batch-normalized to lessen
the effect of changes in the network data distribution on the model parameter training.
Finally, the nonlinearization of the normalized results using the P_ReLU activation function
is used to complete the extraction of shallow features from the input image. Relying on
shallow feature extraction modules may accurately estimate Ac in simple scenes. Still, it is
powerless in complex scenes. This study also introduces a channel attention mechanism
based on shallow features to enhance the precision and reliability of the estimation ambient
light method, enabling the network to further mine deeper features from shallow features.
Channel attention is first aggregated in the network using a maximum and global average
pooling to provide two feature weight matrices. Then, the two weight matrices are input to
a shared multilayer perceptron to generate a more representative eigenvector. After that,
the two eigenvectors are added together, and the Sigmoid function is applied to obtain the
final channel attention weight. Finally, deep feature extraction is achieved by multiplying
the feature map by the final channel attention weight. The shallow features and deep
features are combined in feature fusion to combine the multiple levels of features passing
through the CBP, CBS modules, and the GAP model, completing an accurate estimation
of Ac.
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Channel attention: For a given multi-channel feature map F ∈ RC×H×W , there is a
difference in the information depicted in each channel’s feature map. Channel attention
generates a weight matrix W ∈ RC×1×1, which is subsequently multiplied by the inputs.
This way, the network concentrates on the more relevant channel information and extracts
accurate and efficient valuable features. The structure of the channel attention is illustrated
in Figure 3.

Figure 3. Channel attention module. In a multi-channel feature map F, each channel’s feature map
contains distinct information. The Channel Attention Mechanism generates a weight matrix, allowing
the network to emphasize the most relevant channel information by element-wise multiplication
with the input. This process facilitates the extraction of accurate and efficient features, resulting in an
enhanced representation that highlights the significance of specific channels in the feature map.

3.2. Transmission Map Estimate Module

The TM is the proportion of the underwater light source remaining at the camera
after scattering and absorption. According to the Jaffe–McGlamery model of underwater
image formation, the TM encapsulates significant scene information and water conditions.
Therefore, the key to TM estimation is to extract more scene information and water con-
ditions in a complex scene with a large number of color-cast underwater images. The
traditional method can extract more features by increasing the depth of the convolutional
neural network. Unfortunately, the features suffer from decay and gradient disappearance
as the network layer deepens, resulting in the loss of the extracted features’ middle and
low-layer details; the recovery effect is inefficient. Therefore, we discard the previous
approach of using deeper convolutional neural networks for TM estimation. Instead, we
use an encoder–decoder structure to reduce the problem of feature loss between high-level
and low-level features. In addition, we introduce a spatial attention structure with complete
spatial information, focusing on the capability to purposefully allow the estimated TM to
retain more spatial location information and highlight certain key regions of the image to
achieve better TM estimation. The encoder-decoder module, combined with the attention
structure, consists mainly of three parts, as follows:

1. Encoder module: The underwater image and Ac are first concentrated. Two down-
samples are performed to obtain three levels of feature representation. The output
obtained from each downsample is subjected to two simple feature extractions to
complete the extraction of preliminary features.

2. Deep feature extraction combining spatial attention mechanism module: The prelimi-
nary extracted features are first subjected to maximum and global average pooling,
generating two feature descriptors for each spatial location. Then, the two feature
descriptors are superimposed, and a 7 × 7 size convolution kernel and Sigmoid func-
tion are used to generate a spatial attention map. Finally, the spatial attention map is
multiplied with the preliminary feature map to complete the extraction of essential
information and detailed features of underwater images.

3. Decoder module: The extracted deep features are upsampled and expanded to the
same size as the previous level features. Then, they are subjected to a feature extraction
of the previous level combined with the spatial attention mechanism to integrate
features from different levels.

The above steps were repeated twice to estimate a TM incorporating different layers
of features to accurately estimate the TM.
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Spatial attention: Spatial attention is more focused on the spatial location informa-
tion of features than channel attention. It learns the two-dimensional spatial weights
W ∈ R1×H×W by using the relationship between different spatial locations and then
multiplying them with the input features to direct the network to focus more on the es-
sential aspects of the spatial locations of the features. Figure 4 shows the structure of
spatial attention.

Figure 4. Spatial attention module. Introducing Spatial Attention: Spatial attention places greater
emphasis on the spatial location information of features compared to channel attention. It involves
learning two-dimensional spatial weights by capturing relationships between different spatial loca-
tions. These spatial weights are then multiplied with the input features to guide the network towards
the crucial aspects of spatial locations.

3.3. HSV Brightness Adjustment Module

HSV (Hue, Saturation, and Value) is a color representation model that characterizes
colors based on three components: hue, which represents the type of color; saturation,
indicating the intensity or vividness of the color; and value, determining the brightness or
lightness of the color. Compared to the RGB color model, HSV separates color attributes,
making it easier for users to understand and adjust different aspects of color. In the context
of underwater image processing, leveraging the HSV color space provides a more intuitive
and effective way to manipulate color attributes.

The estimated accurate Ac and TM introduced in the image formation model achieves
an effective correction of blurring and color-cast underwater images. However, the cor-
rected underwater images still suffer from insufficient contrast and darkness in some scenes.
Therefore, we enhance scene brightness by converting the recovered underwater image
from the RGB to HSV color space and then adjusting its brightness with a parallel channel
and pixel attention. The corrected underwater image is first applied to the HSV color space
by applying the rgb2hsv formula. Then, the channel attention is applied to the image
under the HSV color space to obtain the different layer features in the underwater image.
Similarly, spatial attention was also used in HSV color space images to brighten darker
pixels and inhibit overexposed pixels. Finally, the features extracted by spatial and channel
attention are fused by a 1 × 1 convolution. The hsv2rgb formula is applied to convert the
image into a RGB color space to complete the image’s contrast and brightness enhancement.

3.4. Loss Function

This study ensures that CABA-Net can generate images with sound and visual effects,
since the most common loss functions no longer accurately reflect the degree of optimization
of the image in all aspects. Therefore, we made the output image more closely resemble
the actual image by combining L1 loss, MSE loss, SSIM loss, and HSV loss in a weighted
combination, where Ii is defined as the predicted image and Îi is the precise ground truth
image. The following equation depicts the total loss function:

L = ωL1 · LL1 + ωMSE · LMSE + ωSSIM · LSSIM + ωHSV · LHSV (2)

where LL1, LMSE and LSSIM are the RGB color space loss function, and LHSV is the HSV
color space function. These functions and terms are defined in more detail below.
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MSE loss (LMSE): MSE loss is a common loss function in computer vision tasks. It
performs well in image content enhancement. It can be expressed as the squared difference
between the clear ground truth images and the predictions:

LMSE = ( Îi − Ii)
2 (3)

L1 loss (LL1): Adopting MSE loss as the loss function could obtain a good enhance-
ment effect to recover the image, but it will amplify the loss between the maximum and
minimum errors. Therefore, we introduced L1 loss to alleviate the outlier sensitivity prob-
lem introduced by the MSE loss. In addition, L1 loss produces less noise than MSE loss,
leading to a better restoration of darker regions. The following equation depicts LL1:

LL1 =
∥∥ Îi − Ii

∥∥
1 (4)

SSIM loss (LSSIM): The introduction of L1 loss has many benefits, but it can also
lead to problems such as blurring in the generated images. For this reason, the structural
similarity loss function is also introduced for enhancing texture and structural features to
alleviate the blurring problem caused by L1 loss. We first transform the RGB image to a
grayscale image and then compute the SSIM value for each pixel using an 11 × 11 image
block. The following equation depicts the SSIM value:

SSIM(x) =
2µI(x)µ Î(x) + c1

µ2
I (x) + µ2

Î
(x) + c1

·
2σI Î(x) + c2

σ2
I (x) + σ2

Î
(x) + c2

(5)

where µ Î(x) and µI(x) represent the means of the pixels in the predicted and clear ground
truth images. Similarly, σÎ(x) and σI(x) are the variances of the pixels in the predicted and
clear ground truth images. σI Î(x) denotes the cross-covariance. c1 is set to 0.02 and c2 to
0.03 [33]. The following equation depicts the SSIM loss:

LSSIM = 1 − 1
N

N

∑
i=1

SSIM(xi) (6)

HSV loss (LHSV): The HSV brightness adjustment module in the CABA-Net network
does the brightness adjustment in the HSV color space; thus, it is not enough to only
introduce the loss function in the RGB color space. Therefore, we introduce the HSV loss to
adjust the hue and luminosity of the recovered image. The following equation depicts the
HSV loss:

LHSV =
∥∥ŜiV̂i cos

(
Ĥi

)
− SiVi cos(Hi)

∥∥
1 (7)

where Ĥi and Hi are the predicted and clear ground truth image hue, which are taken
in the range between [0, 2π). Ŝi and Si are the predicted and clear ground truth image
saturations, taken in the range [0, 1]. V̂i and Vi are the predicted and ground truth image
values, respectively, taken in the range [0, 1].

Loss term weights: Based on the gathered literature, it is evident that MSE loss
plays a predominant role in the restoration of underwater scenes. Therefore, in selecting
parameters, we followed the parameter allocation methods outlined in references [34–36].
Specifically, we assigned a substantial weight to MSE, setting it at 0.8. We then explored
various combinations of weights for SSIM, L1, and HSV, considering values of 0.1 and
0.05. Through a series of experimental comparisons, we obtained PSNR, SSIM, MSE, VIF,
NIOE, UCIOE, UIOM, RSE, and FSIM indices for each scenario. The results, depicted in
the accompanying Figure 5, guided our selection of the optimal weight coefficients for
evaluation metrics (i.e., L1 = 0.1, SSIM = 0.5, HSV = 0.05), as our optimal parameters with a
thorough comparison.
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Figure 5. The results of different weights corresponding to evaluation metrics, including PSNR, SSIM, MSE, VIF, NIQE, UCIQE, UIQM, RSE, and FSIM.
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4. Experimental Results

This study compares underwater image enhancement methods, traditional under-
water image restoration, and deep learning for underwater image restoration methods,
and underwater image enhancement methods on two datasets of real underwater scenes
to assess the efficacy of the approach. Underwater image enhancement methods com-
pared include Histogram Equalization (HE) [37], Multiscale Fusion (MulFusion) [38], and
Wavelet-Based Dual-Stream (WBDS) [39]. Traditional underwater image restoration meth-
ods include Underwater Dark Channel Prior (UDCP) [14], Image Blurriness and Light
Absorption (IBLA) [26], and Dual-Background Light adaptive fusion and Transmission
Map (DBLTM) [40]. Meanwhile, the deep-learning underwater image restoration methods
include Combining Deep Learning and Image Formation Model (DLIFM) [41] and Learning
Attention Network (LANet) [42]. This section presents the network training details and
performs a series of qualitative visual comparisons in different scenes, followed by objective
quantitative comparisons. Finally, we performed several ablation experiments to validate
each element of CABA-Net and the loss functions.

4.1. Network Training Details

This study randomly chose 800 pairs of underwater images from the UIEB [43] to train
the CABA-Net. The training covers diverse underwater environments, various types of
underwater quality deterioration images, and a vast array of underwater image content.
However, there are still not enough underwater images to train the CABA-Net. Therefore,
we included 200 pairs of synthetic underwater images from the dataset in [44]. Both (1000 in
total) were used to train the CABA-Net. The input image was neither resized nor randomly
cropped to make the proposed network closer to the actual situation. We use the Adam
optimizer on Inter(R) i5-6500Q CPU, 16GB RAM, and an Nvidia GTX 3090 GPU with a
batch size of 1 across 500 epochs to train the model.

4.2. Subjective Evaluation

Figures 6–9 show the comparative results of image restoration between the proposed
method and other comparison methods. They can represent near, medium, far, and com-
plex underwater scenes. From Figures 6b–9b, the luminance of the underwater image is
enhanced the most, despite the HE method. Still, some scenes of the image process have
problems such as the overexposure and reddishness of the subject: the recovery effect
is inefficient. Figures 6c–9c, obtained by the MulFusion method, remove the blue and
greenish of underwater images to a certain extent. However, the scene-related information
is missing in the recovery process. The recovered images will have problems of redness and
excessive scene sharpness. The WBDS method uses a wavelet decomposition processing
and fusion to achieve underwater image recovery. However, the method does not only
improve the image brightness but also degrades the quality of the images, indicating that
the method does not apply to underwater image recovery, as shown in Figures 6d–9d.
Figures 6e–9e show that the image’s brightness processed with the UDCP method does not
increase, and the color distortion is severe: the restoration effect is inefficient, indicating
that the restoration method derived from natural terrestrial scenes combined with the
underwater image formation model does not apply to underwater image restoration. The
restoration effect of Figures 6f–9f processed by the IBLA method is not apparent, and the
image contrast of some scenes is reduced due to the inability to reasonably estimate the
TM. The images processed by the DBLTM method using NUDCP before being combined
with fused Ac were corrected in brightness and color reproduction. However, there is a
color cast in the restoration image in some scenes: the restoration effect is not apparent. To
some extent, the underwater image processed by the DLIFM method solves the problem of
a blue and greenish underwater image. However, the method uses a simple estimation of
the Ac and TM, which cannot properly recover the underwater image in complex scenes,
as shown in Figure 9h. The recovered image with the LANet method has a higher color
reproduction and a better recovery effect. However, the subject in some scenes will also
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have the phenomenon of tonal reddening: the recovery effect is still not ideal. In com-
parison, the proposed method solves the problem of subject color-casting in DBLTM and
LANet methods. It improves the image’s luminance to a great extent while maintaining the
original color of the image, allowing the corrected underwater image to maintain the most
natural tones.

Figure 6. Subjective comparison of restoration effect of near-scene underwater images. (a) Original
images, (b) HE [37], (c) MulFusion [38], (d) WBDS [39], (e) UDCP [14], (f) IBLA [26], (g) DBLTM [40],
(h) DLIFM [41], (i) LANet [42], and (j) the proposed method.

Figure 7. Subjective comparison of restoration effect of medium-scene underwater images. (a) Orig-
inal images, (b) HE [37], (c) MulFusion [38], (d) WBDS [39], (e) UDCP [14], (f) IBLA [26],
(g) DBLTM [40], (h) DLIFM [41], (i) LANet [42], and (j) the proposed method.

The quality of the restored image is based on how well the Ac and TM was obtained
throughout the restoration procedure. A further comparative experiment is carried out
to compare the estimation of Ac and TM by different methods. This section compares
only the remaining four methods, since HE, MulFusion, WBDS, and LANet methods do
not require estimating TM and Ac. The results are shown in Figure 10. Among the four
methods compared, the Ac estimated by the proposed method has the lowest pixel intensity,
lower than the Ac of UDCP, IBLA, DBLTM, and DLIFM. In addition, due to erroneous Ac

estimation, the foreground and background were wrongly reversed in the UDCP method,
decreasing the image’s luminance after enhancement. The IBLA method overestimates the
TM, and the recovery is inefficient. The DBLTM method can accurately estimate the Ac in
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simple scenes. However, they are useless in complex scenes, such as Figure 10c(IV). The
DLIMF can estimate a better TM, but the detailed outline estimation of the scene subject is
still not accurate enough. The transmission image obtained using the proposed method
has more foreground and background layers than the TM obtained from the other four
methods. The proposed method can discern the background and foreground sections of
the turtle and shipwreck images with precision. Furthermore, the method significantly
enhances the hue and luminance of the recovered underwater image, demonstrating the
potency of underwater image restoration.

Figure 8. Subjective comparison of restoration effect of far-scene underwater images. (a) Original
images, (b) HE [37], (c) MulFusion [38], (d) WBDS [39], (e) UDCP [14], (f) IBLA [26], (g) DBLTM [40],
(h) DLIFM [41], (i) LANet [42], and (j) the proposed method.

Figure 9. Subjective comparison of restoration effect of complex-scene underwater images. (a) Orig-
inal images, (b) HE [37], (c) MulFusion [38], (d) WBDS [39], (e) UDCP [14], (f) IBLA [26],
(g) DBLTM [40], (h) DLIFM [41], (i) LANet [42], and (j) the proposed method.
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Figure 10. Various methodologies are used to estimate TM examples. (I) and (III) are the recovered
images, (II) and (IV) are the transmission maps. (a) UDCP [14], (b) IBLA [26], (c) DBLTM [40],
(d) DLIFM [41], and (e) the proposed method.

4.3. Objective Assessment

We compare the objective evaluation of the recovered images acquired with other
underwater image recovery methods to demonstrate the efficacy of the proposed method.
There are two types of objective assessment, depending on the availability of a reference
image: full-reference image quality assessment (FR) and no-reference image quality assess-
ment (NR).

FR assessments requires the recovered image to have a corresponding actual reference
image to calculate the approximation. Commonly used FR metrics include:

Peak Signal-to-Noise Ratio (PSNR) [45]: PSNR measures the ratio of the maximum
possible power of a signal to the power of corrupting noise. Higher PSNR values indicate
less noise and better image quality.

Structural Similarity Index Metric (SSIM)s [46]: SSIM compares the structural simi-
larity between the recovered image and the reference image. A higher SSIM value suggests
a better preservation of the structural detail.

Mean Squared Error (MSE) [47]: MSE quantifies the average squared difference
between corresponding pixel values in the recovered and reference images. Lower MSE
values indicate better image similarity. In [48], the performance of the image fusion model
is evaluated using MSE.

Visual Information Fidelity (VIF) [49]: VIF evaluates the fidelity of visual informa-
tion in the recovered image compared to the reference image. VIF is commonly used to
compare the performance of image processing algorithms, such as image denoising, image
enhancement, or image compression.

Feature Similarity Index Metric (FSIM) [50]: FSIM assesses the similarity of structural
features between the recovered and reference images, taking into account luminance,
contrast, and structure, and providing a holistic measure of image quality. Higher FSIM
values signify better feature preservation.

Subjective Quality Assessment (SRE) [51]: SRE involves obtaining subjective evalua-
tions from human observers to assess the perceived quality of reconstructed or enhanced
images. It provides a perceptually relevant evaluation, capturing aspects that quantitative
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metrics may not fully address. SRE is essential for understanding how well algorithms
align with human perception and is commonly used in image processing research to gauge
the overall visual impact of techniques.

NR directly calculates the restoration image’s color, contrast, and saturation and
integrates them into an overall image assessment to represent the underwater image
quality. Commonly used NR metrics include:

Underwater Color Image Quality Evaluation (UCIQE) [52]: UCIQE assesses the color
quality of underwater images. Higher UCIQE values indicate better color reproduction.

Underwater Image Quality Measure (UIQM) [53]: UIQM provides a comprehensive
evaluation of overall image quality, considering factors like contrast and brightness. Higher
UIQM values represent better image quality.

Natural Image Quality Evaluator (NIQE) [54]: NIQE measures the naturalness of the
restored image. Lower NIQE values indicate more natural-looking images.

The metrics PSNR and MSE are regarded as conventional measures of image quality
among those mentioned above. However, it is worth noting that they are relative metrics
and may lack sensitivity to changes imperceptible to the human eye [55]. In contrast,
structural metrics such as SSIM and FSIM are more adept at simulating the human percep-
tion of image quality. Additionally, we considered VIF to provide a more comprehensive
assessment of visual information fidelity in the images. After careful consideration, we
selected a set of nine metrics, including PSNR, SSIM, MSE, VIF, RSE, FSIM, NIOE, UCIOE,
and UIOM, to evaluate our model. Through these metrics, we gain a more comprehensive
understanding of our method’s performance across various aspects.

The UIEB dataset served as the complete quality assessment of the FR evaluation
because there is no reference image for underwater images in the RUIE dataset. Table 1
shows the average scores for the full-reference image quality assessment (PSNR, SSIM, MSE,
VIF, FSIM, and SRE). The values of the no-reference image quality assessment (UCIQE,
UIQM, and NIQE) during the NR evaluation were calculated using the underwater images
of the RUIE and UIEB dataset, as presented in Table 1.

Table 1. The average PSNR, SSIM, MSE, VIF, FSIM, SRE, NIQE, UCIQE, and UIQM on the dataset
UIEB for various images for each method and average processing time per image of algorithms.

Full-Reference Quality Assessment No-Reference Quality Assessment Average Processing Time
per Image of AlgorithmsPSNR SSIM MSE VIF FSIM SRE NIQE UCIQE UIQM

HE 28.203 0.751 98.577 0.809 0.74 49.883 12.41 7.018 1.352 0.08 s
MulFusion 28.09 0.672 101.19 0.816 0.729 49.963 12.505 5.676 1.424 1.14 s

WBDS 28.59 0.61 104.447 0.641 0.695 49.441 15.128 5.648 0.883 3.59 s
UDCP 27.869 0.507 106.409 0.798 0.674 50.148 13.903 7.586 0.418 35.50 s
IBLA 28.127 0.566 100.921 0.741 0.728 47.221 13.253 2.231 0.316 91.29 s

DBLTM 28.074 0.755 102.131 0.81 0.703 50.068 13.95 4.978 1.118 61.36 s
DLIFM 28.627 0.846 90.19 0.822 0.73 47.545 15.681 4.166 1.039 0.51 s
LANet 28.792 0.89 89.459 0.819 0.747 50.883 13.936 4.21 0.912 3.56 s

Our 28.92 0.827 88.382 0.899 0.751 50.325 12.256 7.83 1.44 0.56 s

Table 1 demonstrates that our proposed method achieves SSIM and SRE values consis-
tently above 0.8 and 50, respectively. Moreover, compared to the suboptimal LANet, our
method shows improvements of 0.44%, 1.2%, 9.76%, and 5.35% in PSNR, MSE, VIF, and
FSIM values, respectively. Additionally, concerning image brightness, detail enhancement,
and visual perception, our proposed method restores underwater images closer to the
original, significantly enhancing image clarity and eliminating blurring effects compared
to other methods. For NR, our method outperforms the suboptimal HE, with NIQE and
UCIQE increasing by 1.24% and 11.5%, respectively, and UIQM improving by 1.12% com-
pared to the suboptimal MulFusion. This indicates a significant enhancement in the tone
and brightness of underwater images achieved by our proposed method. Furthermore,
we conducted experiments to compare the processing time required by different methods.
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The images used in this comparison had a size of 870 × 1230. The last column of Table 1
represents the average processing time for each algorithm per image. Compared to other
traditional methods, our approach ranks just below the He image enhancement method. In
contrast, among deep learning methods, it falls significantly below DBLTM and LANet. It
closely competes with the DLIFM method, showcasing a minimal difference. Therefore,
our approach demonstrates a considerable advantage in terms of restoration speed.

4.4. Application

The further effectiveness of the method was analyzed in terms of local feature point
matching and test results on a new dataset to demonstrate its efficacy and universal
applicability.

Local feature points matching: Local feature points matching is an essential visual
perception task, which is the foundation of photogrammetry, 3D reconstruction, and image
stitching. The quantity of local feature points is strongly connected with image quality,
indicating the degree of detail in the corrected underwater image. This paper uses the
original implementation of SIFT to calculate keypoint points, as shown in Figure 11. Among
the eight methods compared, the recovered underwater image of this study has the best
recovery effect and detects the most significant number of feature points, convincing
evidence that our method is effective.

Figure 11. Local feature points matching. (a) HE [37], 23 sift keypoints. (b) MulFusion [38], 1 sift
keypoints. (c) WBDS [39], 7 sift keypoints. (d) UDCP [14], 34 sift keypoints. (e) IBLA [26], 31 sift
keypoints. (f) DBLTM [40], 34 keypoints. (g) DLIFM [41], 37 sift keypoints. (h) LANet [42], and 61 sift
keypoints. (i) The proposed method, 74 sift keypoints.

Robustness test: Several subjective evaluations were also conducted in the RUIE [41]
dataset to further illustrate the efficacy and robustness of the method. Many underwater
images from real ocean sceneries are included in the RUIE. These images can be separated
into the UIQS and UCCS based on the disparity between image visibility and color cast.
The UIQS can be divided into five levels (A, B, C, D, and E) based on the difference in
the UCIQE value. The UCCS is separated into three levels based on the different values
of blue channels in the CIElab color space: bluish, greenish, and blue-green. This study
randomly selected five levels of images from the UIQS (Figure 11a) and three levels of
images from the UCCS (Figure 11a. The results of the subjective evaluations are shown in
Figure 12(I–VIII).

From Figure 12(I–V), our method could demonstrate a good recovery effect in the
face of five distinct levels of images from the Underwater Image Quality Set of A–E. It
removes the blurring effect and addresses the underwater image’s color-cast problem. From
Figure 12(VI–VIII), it is evident that our method can successfully correct the color-cast in



J. Mar. Sci. Eng. 2024, 12, 7 17 of 21

all three color-biased underwater images from the Underwater Color Cast Set, not only
recovering the blue-biased and green-biased underwater images to their original colors
but also not causing the reddish phenomenon in the underwater subjects. The proposed
method has the best recovery effect and robustness among the eight underwater image
recovery methods.

Figure 12. Robustness test of the restoration results of RUIE data set underwater images. (a) Original
images, (b) HE [37], (c) MulFusion [38], (d) WBDS [39], (e) UDCP [14], (f) IBLA [26], (g) DBLTM [40],
(h) DLIFM [41], (i) LANet [42], and (j) the proposed method. I–VIII denote the five classes (A, B, C, D,
and E) classified by the UIQS and the three classes bluish, greenish, and blue-gree of the blue channel
of the UCCS according to the CIElab color space, respectively.

4.5. Ablation Study

We conducted a network and loss function ablation study to demonstrate that the
proposed method produces the best underwater image recovery results when the three
network and loss function modules act simultaneously.
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Network Ablation Study: To determine the effect that each network component mod-
ule has on the results, an ablation analysis is performed on the ambient light module (w/o
BK Model), transmission map module (w/o TM Model), and HSV brightness adjustment
module (w/o HSV Model). A simple convolution module is used to replace the feature
extraction module proposed in this paper in each ablation study for a comparative study.
The network ablation experiment results for objective quality are displayed in Table 2.

Table 2. The average PSNR, SSIM, MSE, VIF, FSIM, SRE, NIQE, UCIQE, and UIQM values using all
modules and after removing any one module.

Full-Reference Quality Assessment No-Reference Quality Assessment

PSNR SSIM MSE VIF FSIM SRE NIQE UCIQE UIQM

Full Model 28.92 0.827 88.382 0.899 0.751 50.325 12.256 7.83 1.44
w/o AL Model 28.675 0.796 89.322 0.823 0.571 41.295 17.031 3.683 1.067
w/o TM Model 28.623 0.818 90.361 0.821 0.634 44.371 17.23 4.965 1.192

w/o HSV Model 28.049 0.731 102.112 0.815 0.619 42.79 16.528 3.55 0.801

Replacing any feature extraction modules in the CABA-Net network with a simple
feature extraction module cannot be optimal for each image quality assessment, as depicted
in Table 2. The only way to achieve the best restoration of underwater images is to combine
all three modules simultaneously, as shown in this study.

Loss Function Ablation Study: Ablation experiments were conducted on the above
four loss function to verify the effects of the MSE loss (w/o MSE Model), SSIM loss (w/o
SSIM Model), L1 loss (w/o L1 Model), and HSV loss (w/o HSV Model) in the loss function
on the experimental results. In each ablation experiment, one of the losses was removed for
comparative study. The loss function ablation experiment results for objective quality are
displayed in Table 3.

Table 3. The average PSNR, SSIM, MSE, VIF, FSIM, SRE, NIQE, UCIQE, and UIQM values using all
four loss functions and without one of the loss function.

Full-Reference Quality Assessment No-Reference Quality Assessment

PSNR SSIM MSE VIF FSIM SRE NIQE UCIQE UIQM

Full Model 28.92 0.827 88.382 0.899 0.751 50.325 12.256 7.83 1.44
w/o MSE Model 28.672 0.802 89.495 0.82 0.691 46.507 14.947 3.101 1.184
w/o L1 Model 28.587 0.816 90.908 0.821 0.671 47.211 17.088 3.81 1.014

w/o SSIM Model 28.672 0.805 89.45 0.82 0.669 46.601 18.403 4.947 1.184
w/o HSV Model 28.654 0.791 89.643 0.821 0.674 45.967 16.929 3.101 1.088

Table 3 shows that by removing any of the proposed loss functions, none of its
evaluation assessments can be optimal. The only way to achieve the best restoration
of underwater images is to combine all four loss functions in this network (i.e., the loss
functions proposed in the proposed methods).

5. Conclusions

This study proposes a new method integrating attention mechanism and brightness
modification for underwater image recovery. Ac is precisely estimated by using a con-
volution module with a channel attention mechanism for each color channel to merge
different layers’ characteristics and autonomously pick the most representative features.
The accurate estimation of the TM is achieved by extracting features for different layers
through a series of convolution operations with a spatial attention mechanism in the en-
coder stage. Then, we incorporate the different layer features into a unified structure using
the upsampled operation and feature fusion in the decoder stage. Finally, the precisely
estimated Ac and TM are substituted into the image formation model and adjusted in the
HSV color space based on the parallel attention mechanism to complete the restoration of
the underwater images. Several experimental analyses prove that the underwater image
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restoration method combining the attention mechanism and brightness adjustment can
be adapted to different water environments, effectively improving the image contrast and
color, strengthening the image information, and conforming the recovered image to the
features of the human eye’s visual system.
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