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Abstract: Effective supply‑chain risk assessment is the basis for developing sustainable supply poli‑
cies, and it has received growing attention in global oil supply systemmanagement. Dynamicalmod‑
eling and data‑driven modeling are two main risk assessment technologies that have been applied
in crude oil supply networks. Dynamical risk modeling and data‑driven risk modeling offer distinct
advantages in capturing the complexities anddynamics of the system. Considering their complemen‑
tary strengths, a hybrid modeling framework combining system dynamics and data‑driven neural
networks is proposed for risk assessment of crude oil transportation network. Specifically, the sys‑
tem dynamics module is to capture and interpret the underlying dynamics and mechanisms of the
transportation network, while the deep neural networksmodule is to discover the nonlinear patterns
and dependencies of risk factors from various inputs. Based on joint training, the hybrid model can
ultimately develop the capability of risk prediction with a small amount of data. In addition, it can
consider the dynamic nature of crude oil transportation networks to interpret the predicted results
of the risk level for decision‑makers to make specific risk‑mitigating policies. Extensive experiments
based on China’s scenario have been conducted to demonstrate the effectiveness of the proposed
hybrid model, and the results show that our model achieves higher accuracy in risk prediction com‑
pared to the current state of the art. The results also present an explanation for China’s policy change
of building a resilient crude oil transportation system.

Keywords: hybrid modeling; risk assessment; crude oil supply; system dynamics

1. Introduction
Sustainablemaritime transportation aims tominimize environmental impacts and en‑

hance shipping safety and resilience [1,2]. In recent years, it has played a more crucial role
in global crude oil supply as there is a growing variety of risks and uncertainties, including
geopolitical conflicts, natural disasters, human accidents, and disruptions in infrastructure
or logistics [3,4]. These risks arising from different sources could lead to severe social, envi‑
ronmental, and economic consequences [5]. In this situation, systematic risk assessments
that focus on identifying and quantifying the major risk sources and critical vulnerabilities
have attracted growing research attention [5,6]. Risk assessment can provide comprehen‑
sive information and insights for decision‑makers to develop resilient policies to mitigate
risks and enhance the sustainability of the crude oil transportation system. China, as the
world’s largest energy consumer and crude oil importer, relies heavily on the global crude
oil transportation network and supply chain. In the past decades, the risks of its global
crude oil transportation have greatly influenced China’s policy making and operation of
building a sustainable oil supply network [7]. The complexity and requirement of risk as‑
sessment for China’s oil supply system underscores the importance of developing effective
and comprehensive risk assessment frameworks and methods [8].

When assessing the risk of a crude oil supply system, the main difficulties lie in the
complexity and interconnectedness of transportation networks [9]. For example, China’s
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international and domestic crude oil supply relies on various transport modes, including
ships, pipelines, tankers, and trucks, and involves different stakeholders, such as produc‑
ers, shippers, and receivers [10]. Furthermore, the risks involved span multiple dimen‑
sions, including technical, environmental, and social factors. These factors interact with
each other in a variety of ways and often change over time, increasing the complexity of
quantifying and assessing and managing risks [11]. In this case, the key challenge in the
risk assessment of a global oil supply network is how to incorporate the complex dynamics
and uncertainties of the supply network in a comprehensive risk modeling framework.

In the past decades, researchers have developed several risk assessment models in
crude oil supply networks, mainly including the event tree model (ETM), failure mode
and effective analysis (FMEA), the system dynamics (SD) model, and the neural network
(NN) model. From the view of system modeling, existing risk assessment models can
be roughly grouped into two categories: dynamical modeling and data‑driven modeling.
Each of them applies different methods to describe key factors and their complex, non‑
linear dynamics for quantitatively assessing or predicting the system risk.

The first category is the dynamical model, which has been studied for many years.
Dynamical models are generally defined with a set of mathematical formulas with speci‑
fied parameters or a series of related indicators of risk. A typical instance is the SD model,
which involves building multi‑dynamic models for simulating the interactive behaviors of
components of the supply system over time [12]. It captures the interconnectedness and
feedback loops between various components, typically considering multiple factors such
as supply and demand fluctuation, the topological structure of transportation network, the
capacity of transport facility, and price volatility. These factors are represented as differ‑
ent variables and parameters within the system, and their interactions are defined by a
series of differential equations, thereby allowing for the quantitative analysis of risk evo‑
lution [13]. By integrating input parameters or introducing different policy variables into
an SD model, we can estimate the risk and predict the influences of different policies on
the crude oil supply system. In addition, an SD model, as the result of dynamical model‑
ing, uses known dynamical models to quantitatively describe the chains of causal relation‑
ships of various factors [14]. Thus, it can consider the interconnected dynamic changes
related to supply and demand, feedback mechanisms, time delays, and other factors and
reveal the characteristics and patterns of risk evolution of the system. However, dynamics‑
related risk assessment models rely on a number of pre‑defined parameters, functions, or
equations that are mostly derived from decision‑makers’ subjective understanding, empir‑
ical assumptions, and simplifications that might not fully capture real‑world complexities,
making them difficult to be applied to accurately assess novel risks and predict potential
influences.

Another category is the data‑driven risk prediction model that has attracted great
attention in recent years. It focuses on applying machine learning methods such as deep
neural networks to recognize and classify data by learning the mapping from input to out‑
put [15]. The input of this type of model is a set of historical state data of the system of
interest, and the output is often the risk level or risk value. In the analysis of global crude
oil supply problems, neural‑network‑based models are successfully used to predict the
risk of pipeline, vessel failures, and supply shortage [9]. Data‑driven risk prediction mod‑
els can learn complex patterns and nonlinear relationships of risk factors within the system
if there are enough data, making them particularly suitable for capturing the intricate dy‑
namics of system. Additionally, they have the ability to adapt and generalize well to novel
phenomena or changes in the system [16]. Despite the capabilities of risk prediction and
classification, such data‑driven models heavily rely on the number and quality of training
datasets, which aremostly limited or biased in the global oil transportation field [9,17]. For
example, there are only dozens of annual data samples of the crude oil import and export
for China. Additionally, such types of models haveweak interpretability of risk prediction
results, as the weights and parameters in neural network models are difficult to interpret.
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Without fully understanding causal relationships of risk factors, it will be difficult to for‑
mulate responsive strategies or policies.

Dynamical risk modeling and data‑driven risk modeling offer distinct advantages in
capturing the complexities and dynamics of the systems. Considering their complemen‑
tary strengths, this paper aims to develop and validate a data‑ and model‑driven hybrid
risk assessment model that combines system dynamics and artificial neural networks to
predict the risk of China’s crude oil supply system. In this paper, we establish an SDmodel
and neural network for the system of interest and define the hybrid modeling process as
a joint risk prediction and parameter optimization problem. The trained hybrid model
can capture complex, nonlinear patterns of various risk factors using small amounts of
data [18]. In addition, it can interpret predicted oil supply risk results from the underlying
dynamics for decision‑makers to make specific risk‑mitigating policies.

This paper focuses on China’s global crude‑oil supply system and successfully uses a
small set of historical data to train a hybrid risk assessment model. Themain contributions
are summarized as follows.

• To capture the dynamics of risk evolution of the crude oil supply system, the main
potential risk factors and their casual relationships are identified. An SD model con‑
sidering multiple risk factors is developed.

• To achieve accurate risk prediction and interpretation, a novel hybridmodel that com‑
bines system dynamics and multilayer neural networks is proposed.

• Simulation experiments under different oil supply scenarios for China have been con‑
ducted to demonstrate the effectiveness of the hybrid model. Some important con‑
clusions were draw from the simulation results for optimizing the policy of resilient
crude‑oil supply.

The rest of the paper is organized as follows. Section 2 reviews the existing literature
on risk assessment of the global oil transportation and supply. Section 3 presents the im‑
plementation and testing of the proposed hybrid model, including the system dynamics
model, neural network model, and the hybrid modeling problem. Section 4 provides case
studies and experiments to evaluate the performance and effectiveness of the hybrid frame‑
work. Finally, Section 5 concludes the paper and discusses future research directions.

2. Related Work
Our research is connected to two areas of study in the literature: the application of

system dynamics and the use of neural network methods in maritime transportation net‑
work research.

The maritime transportation system is a complex system that involves interactions
among various participants, such as ocean carriers, terminal operators, shippers, freight
forwarders, inland logistics service providers, and governments. System dynamics can
effectively describe the nonlinear relationships in the maritime transportation market by
placing emphasis on feedback mechanisms and dynamic evolution. Oztanriseven et al.
provide a summary of the applications of system dynamics in maritime disruption, port
operations, vessel‑related decisions, and other relationships [19]. Engelen et al. develop
a system dynamics model to investigate the relationship between freight rates in the dry
bulk markets [20]. Jeon et al. examine the cyclical characteristics of the container ship‑
ping freight index by utilizing system dynamics to analyze the relationship between sup‑
ply and demand [21]. Wan et al. propose a system dynamics framework to investigate
the risk in inland waterway transportation, considering both intelligent ships and tradi‑
tional ships [22]. Kong et al. construct a system dynamics carbon abatement model that
explores the interaction between different factors from a supply chain perspective, with a
case study conducted at Shanghai Port in China [23]. Nursyamsi et al. analyze the impact
of government policies on the maritime economy and industry in Indonesia [24]. Car‑
lucci et al. present a system‑dynamics‑based simulation model that studies the effects of
maritime transportation development on port cities, aiming to support government policy
decision‑making [25].
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The neural network method has been widely applied in the transportation field for a
considerable amount of time, with Dougherty (1995) providing a comprehensive review
of its applications in transportation research. Within maritime transportation, neural net‑
works are commonly used to predict various aspects such as vessel time series, cargo vol‑
ume, freight rates, and fuel consumption [26–29]. These predictions assist shipping com‑
panies in making accurate ship scheduling and freight planning decisions, leading to im‑
proved transport efficiency and resource utilization. Additionally, neural networks have
the capability to forecast the future position and behavior of ships by learning from histori‑
cal vessel trajectory data and relevant environmental conditions [30–33]. This information
is crucial for dynamic vessel positioning, route optimization, and risk management. Neu‑
ral networks are also capable of analyzing and predictingmarine environment and climate
conditions to provide marine and climate change monitoring [34,35]. This enhances ma‑
rine risk management capability.

In addition to the abovementioned two methods, other methods are also used for
risk assessment in maritime transportation [11,36,37]. From the literature review, we find
that both system dynamics and neural networks have been applied in risk analysis or risk
management in the maritime transportation system. System dynamics can provide ex‑
planations for the internal structure and behavior of systems, analyzing the relationships
and interactions between various components of the system. Neural networks, through
learning from large amounts of data and pattern recognition, can offer explanations for
the correlations among complex data. In this paper, we combine these two approaches
from a new angle to propose a hybrid modeling framework to better understand the oper‑
ational mechanisms and influencing factors of the crude oil supply system of China. This
combinationmakes themodelmore flexible and effective in dealingwith uncertainties and
changes in supply risk assessment.

3. Methodology
Risk is the potential for loss or damage resulting from exposure to uncertain events or

circumstances. It is generally conceptualized as a rate describing the likelihood (or proba‑
bility) of an event happening with negative consequences [38]. In a risk assessment model,
risk can be formulated as Equation (1):

r = f (X,C), (1)

where f is a quantitative function, r is the risk rate or level, X = {x1, x2, . . . , xn} is the
set of potential risk factors (i.e., variables) denoted by x, and C = {c1, c2, . . . , cm} is the
set of possible negative consequences. China’s oil supply system involves multiple risk
factors with complex interactions, increasing the complexity of defining an appropriate
risk assessment function. To address this issue, we have developed a hybrid model for
risk assessment. Specifically, we first develop a system dynamicsmodel to describe critical
risk factors and their causal relations. Building on this, we define a set of important state
variables as inputs to design a neural network and ultimately train the network with the
system dynamics model jointly to construct a hybrid model. In this section, we present the
implementation of the above models.

3.1. Development of a System Dynamics Model
A crude oil supply system for a country involves various components and risk factors.

To capture its dynamics, we adopt the SDmethodology to describe the inherent non‑linear
system behaviors and their changes by modeling the causal structure of the key factors.
The causal structure mainly consists of multi variables and a chain of cause‑and‑effect rela‑
tions. These relations shape several feedback loops whose interactions form the dynamics
of the system of interest. In our work, we firstly identify the key risk factors and their
causal relations by investigating China’s global crude oil transportation system and then
define the overall feedback structure of the system.
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3.1.1. Identification of Critical Risk Factors
Over the last few decades, China’s crude oil supply has been divided into two parts:

domestic supply and international supply. The oil supply system comprises two subsys‑
tems accordingly, each with its own set of risk factors. From the perspective of supply
chain security, we try to identify critical factors that may pose security risks to sustainabil‑
ity of oil supply for each subsystem. In addition to routine risk factors directly influencing
the volume of oil supply and demand, we also consider more factors that have significant
indirect impacts on supply–demand balance and long‑term sustainability.

(1) Risk factors in domestic supply

texless Due to long‑term dependence on overseas imports, China has made efforts to in‑
crease domestic supply, which serves as the cornerstone of sustainable oil supply, particularly
in crisis situations. Currently, there are three primary factors that pose risks to domestic supply.

• texless Transport disruption, which mainly considers the possibility and potential con‑
sequence of transport line disruption. In the mainland of China, local oil transport
mostly relies on pipelines and ships, and the potential disruptions are mostly due
to natural hazards, particularly the earthquakes that may occur along pipelines and
transshipment sites. Routine accidents are ignored here because of their little impact.
The lower the probability of natural disaster is, the lower the risk of transport disrup‑
tion is.

• Supply shortage, which could be caused by domestic oil underproduction and insuf‑
ficient oil reserves. This part of risk is characterized by the national resource security
level, the reserve‑to‑production ratio, and the safety level of the stockpile compared to
the suggested security level in the Agreement on an International Energy Programme
(I.E.P.) The higher the oil production and reserves are, the lower the oil supply short‑
age is.

• Technological threats, which mainly arise from the current technological competition
among countries and cybersecurity. These non‑energy‑related factors are becoming
growing concerns for the energy supply system. Since key techniques and equipment
for China’s oil exploitation and further processing are dependent on oversea imports,
the technological blockade from other countries could limit the efficiency and sus‑
tainability of local oil production. Such risk can be represented by the gap between
domestic and foreign technology levels in core equipment manufacturing and inno‑
vation capability. Cybersecurity threats refer to potential cyberattacks on physical
facilities, which have arisen quickly in recent years. They can be determined by the
likelihood of cyberattacks and critical facility resilience. In general, the lower the tech‑
nological competition and cybersecurity risks are, the lower the oil production and
supply risk are.

(2) Risk factors in international supply

China became the primary importer of crude oil in 1993 and has heavily relied on
international sources to meet its oil demand. This has also exposed China to multiple
supply risk factors related to politics, finances, and technologies. Based on our theoretical
investigation and collected data, these factors can be briefly summarized into three parts.

• Procurement risk, which refers to the potential for unfavorable outcomes or disrup‑
tions when purchasing crude oil from the third‑party countries or regions. Such risk
mainly arises from geopolitics. We defined it from three aspects: the local political
stability of oil‑exporting countries, the stability of bilateral relationships, and the con‑
centration of sources of oil imports. The local political stability of a source is evaluated
empirically depending on its domestic situation. The concentration is represented by
the external dependency ratio on different sources, and the bilateral relationship is
quantified by the current bilateral relationship development scores that are calculated
through analyzing thousands of diplomatic matters. Diverse oil suppliers and stable
bilateral relationships will lead to a low procurement risk.
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• Maritime transport disruption, whichmainly involves international oil transport lines.
During China’s maritime oil transport, this means the political stability of countries
along transport lines and the crisis response capability of building temporary lines.
The former is mainly determined by the stability of transport lines. The political sta‑
bility of international oil transport lines can be indicatedwith political stability indices
provided by international organizations.

• Finance threats, which are considered from the perspectives of oil prices and the na‑
tional oil pricing capabilities. In recent years, China has openedmore crude oil futures
trading, enhancing the connectedness between oil and finance. International oil price
fluctuations pose growing influence on China’s crude oil market, especially on the
overseas oil procurement costs and volume, ultimately threatening domestic oil sup‑
ply sustainability. Oil price fluctuations are generally quantified by the variance of oil
export prices. The smaller the variance is, the more stable the international oil trade
price is, and the lower the financial risk is. Additionally, oil pricing ability depends
on the renminbi (RMB) internationalization and bargaining power. The higher the
internationalization index is, the higher the discourse power that leads to a lower oil
procurement cost is.

The above discusses several critical risk factors. Indeed, there are many other fac‑
tors that may directly or indirectly impact the oil supply of China. Table 1 summarizes
the main risk sources and their corresponding micro factors that we identified in a hier‑
archical manner. The whole crude‑oil supply system exists with different layers of risk
sources. After disregarding some minor risk factors, there are a total of 12 remaining risk
factors contributing to the overall risk. Additionally, potential quantitative indices have
been specified to provide potential measurement of these factors.

Table 1. The main risk factors in China’s crude oil supply system.

Subsystems Risk Sources Critical Factors Indices

Domestic supply

Local transport risk Line disruption caused by
natural hazards Pipeline disruption probability

Supply shortage
Oil underproduction

Reserve/production ratio

Resource security degree

Oil reserves insufficiency Strategic oil reserve safety level

Technological threats
Technology competition and

blockade

Equipment manufacturing level

Technological innovation index

Cybersecurity attacks Cybersecurity risk index

International supply

Maritime transport risk

Crisis response capability Capability of opening
temporary lines

Stability of oil maritime
transport lines Transport channels stability index

Procurement risk

Political stability of
oil‑exporting countries Political stability index

Concentration of oil suppliers External dependency ratio on
different importers

Stability of international
relations Bilateral relation scores

Finance threats

International oil price
fluctuation Variance in oil export price

Oil pricing capability
RMB internationalization index

Bargaining power index
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3.1.2. Definition of Causal Relation and Stock‑Flow Diagram
To analyze how the critical risk factors interact with each other, this paper establishes

a system dynamics (SD) model to depict their potential causal relationships. The bound‑
aries and subsystems of the SDmodel are identified, leading to the construction of a causal
loop diagram. As illustrated in Figure 1, there are positive and negative influences among
the variables, which could lead to causal loops. There are in total nine feedback loops in the
causal relation diagram, each of which specifies a relation of cause to effect. For example,
the overall oil supply is determined by both the volume of crude oil imports and domestic
supply. To maintain supply–demand balance, an increase in China’s domestic oil supply
will reduce crude oil imports and vice versa, resulting in negative feedback loop between
them. Another example is that increasing crude oil imports from international markets
causes fluctuations in oil prices, which in turn enhances China’s bargaining power in oil
procurement. The increased bargaining power further promotes oil import, resulting in
positive feedback. In theory, feedback loops reveal the dynamics of the risk evolution
of the oil supply system. There is a real case to prove these feedback loops. During the
COVID‑19 pandemic, international oil prices plunged due to reduced demand for energy.
However, China increased its oil imports at that time because of extremely low overseas oil
prices. This, in turn, led to a significant short‑term contraction of domestic oil production
capacity. The constructed causal relation diagram provides the basis for interpreting risk
assessment results.
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The feedback loops in the causal relation diagram definemultiple self‑reinforcing and
balancing feedback mechanisms of critical factors. Building on this, we further construct a
stock‑flow diagram to quantitatively analyze dynamical behaviors of the system. A stock‑
flow structure is a graphical representation of the system’s components, their interconnec‑
tions, and the flows between them. The stock‑flow structure consists of stocks, represent‑
ing accumulations of variables, and flows, representing the rates at which these variables
change over time. Stocks are akin to reservoirs, while flows correspond to the inflows and
outflows into and out of these reservoirs. Let us have a stock variable represented as φi,
which has inflows Ii and outflows Oi. The change in stock over time is determined by the
governing equation dφi/dt = g(Ii, Oi), where g is a function specifying the relations the
stock and other relevant variables. By specifying these variables and governing equation
in the stock‑flow structure, we can simulate the behavior of the system and gain insights
into its long‑term dynamics.

Figure 2 presents the stock‑flow structure of China’s crude oil supply system. The
systemdynamics are quantitatively defined by time‑varying differential variables and gov‑
erning equations. There are five stock variables: domestic oil transport volume (DVt),
domestic oil reserves (RV), domestic oil production

(
DVp

)
, international oil imports vol‑
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ume (IV), and international transport volume (IVt). They represent the quantities that
accumulate over time. There are also many flow variables with auxiliary variables. When
formulating stock‑flow structures, the information about variable relations in causal loops
is transferred into governing equations. To set up reasonable equations for expressing dif‑
ferent causal relations, we searched dozens of publications from different disciplines. In
this SD model, there are 19 governing equations, listed in Appendix B. The notable one is
the mathematical equation for quantifying the overall risk of the oil supply system, which
is the most important output. From the view of sustainable supply, we defined the risk
in two parts at the system level: supply–demand imbalance and external dependence [31].
The specific formula is a weighted function, as shown in Equations (2)–(4),

r = ω1(1 − rd) + ω2ri, w ∈ [0, 1] (2)

rd =

{
1 , IV + DVp ≥ D
IV+DVp

D , else
(3)

ri =
IV

IV + DVp
(4)

where r is the measurement of risk level, r ∈ [0, 1], ω1 and ω2 are the risk‑aversion coeffi‑
cients, rd is the degree of imbalance of oil supply and demand, ri is the ratio of the volume
of international oil imports to the total supply, and D is the overall domestic demand. In
practice, the accuracy of governing equations that together determine the dynamics of the
oil supply system completely depends on the knowledge and expertise of modelers.
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Figure 2. The stock‑flow diagram of China’s crude oil supply.

A dozen governing equations in the SD model involve lots of unknown parameters
that need to be calibrated. In this paper, we try to calibrate these unknown parameters by
searching for the potential value range from the literature and collecting multi‑source sta‑
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tistical data to validate them from the reports or yearbooks of international and domestic
organizations. To be specific, we calibrated key parameters by solving equations fitting
the historical data for stock variables. However, there are some parameters that have not
been predefined or observed before, such as bilateral relation indexes between China and
its oil‑importing countries or areas. Extra investigations on parameter calibration are thus
required. For example, to acquire the bilateral relation indexes, an event‑based effect anal‑
ysis is applied to collect 1174 diplomaticmatters happening between related countries. The
recent development of bilateral relations can be evaluated through a scoring system based
on a statistical analysis of both negative and positive events that have affected the national
relations. Mathematical description is presented in Appendix C. The results are ultimately
compared with historical situations. As shown in Figure 3, the bilateral relations scores be‑
tween China and the main oil‑exporting countries in the world has increased gradually in
themost recent twenty years. This is consistent withwhat has been known about the status
of China’s energy diplomacy, which is committed to improving multilateral relations.
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After parameter calibration, one can run the stock‑flow model for prediction. The
dynamics of variables are defined by the set of equations underlying themodel. By varying
the values of variables, the effect of these variations on the output is observed. In this way,
we can run the model for predicting unknown changes in stock variables and assessing
the overall risk by setting up scenarios for various oil supply situations. This makes the
model become a useful tool for developing the relevant policies of resilient and sustainable
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oil supply management. However, an oil supply system is an open complex system in
which many factors can impact the equations and their parameters. While it is feasible
to calibrate them, doing so requires significant disciplinary knowledge and manual work.
Furthermore, the calibrated parameter values may not be the unique optimal solution, and
even the best parameter value could vary as the systemevolves. As a result, it is hard for the
SDmodel to capture complete dynamics and accurately predict the future in the long term.

3.2. Design of a Hybrid Risk Assessment Model
When putting it into practice on an oil supply risk assessment, the SD model is ca‑

pable of interpreting predicted results but weak for capturing the complex, time‑varying
dynamics of the system. To tackle this issue, we combine neural networks with the system
dynamics model to develop a hybrid model to achieve a better prediction in oil supply risk
assessment. The hybrid model can use observed data to adjust parameters, thereby saving
lots of manual work. In addition, it can also generate various explanatory scenarios for
policy assessment.

3.2.1. Problem Statement
Risk assessment for oil supply systems aims to build a risk measurement function. In

general, a neural network represents a function to be approximated, f : x → y . Given a
finite sequence of variables, s = {x1, x2, . . . , xn} and the marginal result vector r, a neu‑
ral network is formulated as a mapping function, r = f (s|w), where w is a hyperparam‑
eter vector of the network. When training a neural network, the adjustment of weight
parameters relies on pre‑assigned training data. Defining two complementary state sets,
O = {ŝ1, ŝ2, . . . , ŝNo} and C = {s1, s2, . . . , sNc} respectively represent the observed state
space and the collocation state space, where No and Nc are the size of this two‑state set.
The observed state set contains historical observed state data of the system of interest, and
the collocation (unobserved) state set contains state data obtained through system dynam‑
ics simulations and stochastic sampling‑based known parameter distributions. It provides
additional information that can help train the model. Denote r as the risk level assessed
by a set of variables {x1, x2, . . . , xn}, which is divided into K levels, and the level K means
the highest risk. To acquire risk observation results, the expert scoring method is applied
to assess a risk level for each element of the observed state set. Denote ro as the observed
risk set, ro = {r̂i, i = 1, 2 . . . , No}, which has the same size as the observation state set.
The final observation data consists of pairwise observed state and risk level, denoted as
{ ŝi, r̂i|i = 1, 2, . . . , No }. In practice, experts have diverse understanding of potential threats
and uncertainties of the oil supply system, so there could be different risk level assessments
for the same state. Instead of averaging the results, we argue that diverse risk assessment
results can better reflect the risky situation of a complex, uncertain oil supply system. Thus,
we need to build a one‑to‑many mapping in the neural network. In this paper, we define
risk assessment as a multi‑classification task that generates a probability distribution for
describing the potential risk level in a given system state.

Assume we have an SD model for a crude‑oil supply system with given stock‑flow
structure. As defined in Section 3.1.2, the output of the model is a risk value that is mainly
determined by the governing equations with a set of parameters, denoting these param‑
eters as vector θ. Thus, we have r = g(s|θ). Similarly, the risk value r will be mapped
to a risk level to keep consistent with the output of the neural network. The prediction
accuracy of the SD model is mainly influenced by the parameter vector θ.

With the above notations, we provide a problem statement for a hybrid framework to
assess the risk of an oil supply system. Assume we select a neural network parameterized
with weight vector w and have already built a system dynamics model with parameter
vector θ, and there are the observed state set O, the collocation state set C, and the ob‑
served risk set ro. The neural network model maps a set of observed states to a risk level,
denoted as f ( ŝi|w) : ŝi → r̂i . Building on this, we further define risk assessment of the
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hybrid model as a joint risk classification and parameter‑discovery problem, which can be
specifically formulated as an optimization problem:

min
w,θ

−
N
∑

i=1

K
∑

k=1
ri,klog(pi,k)

s.t. pi,k = f (ŝi|w, θ), ŝi ∈ O, and θ ⊆ Θ,
(5)

where pi,k is the predicted probability of risk level k (ri,k, viewed as a true label)with inputs
of ŝi, and Θ is the solution space of unknown parameter θ of the SD model. Note that,
in practice, the parameters of θ should be trainable to adapt to dynamic updates during
model training.

3.2.2. The Hybrid Architecture
As highlighted before, the hybrid risk assessment should combine amechanistic mod‑

ule and a data‑based learning module. In this paper, the hybrid model we designed con‑
sists of an SDmodel and an artificial neural network (ANN). As illustrated in the structure
in Figure 4, the upper module is the SDmodel that has been defined in Section 3.1. It takes
collocation states as inputs and outputs a risk level. Considering the lack of sufficient train‑
ing data, we have pre‑calibrated the key model parameters based on empirical knowledge
and information so that the parameters can be trained using small‑sample observation
data during joint training. The bottom module is the ANN associated with neurons and
edges, and each edge involves a weight parameter that needs to be specified during model
training with observation data. The ANN includes both observation states and colloca‑
tion states as inputs, and it uses a SOFTMAX [39] function as output layer to generate
a probability distribution of different risk levels. It is necessary to note that other types
of neural networks, like deep neural networks, are also applicable but may require more
training data.
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(1) Inputs variable and state data

Observation and collocation states set are the basis for training a hybrid model. Ob‑
served data contain a set of state–risk pairs. In practice, independent system variables shall
be set as observed state variables for the hybrid model. In terms of the oil supply system of
China, for example, there are nineteen key independent variables (i.e., the non‑stock vari‑
ables), as presented in Figure 1, which describes the underlying risk factors. These state
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variable values are extracted from the annual global oil trade data and national statistical
data in the petroleum industry, allowing us to obtain the observed states of the oil supply
system for different years. Subsequently, domain experts are invited to assess the oil sup‑
ply security situation each year and provide an assessment of the annual risk value that is
within [0, 1]. The risk value is divided into five levels from low risk to high risk by equally
splitting the risk value range, as explained in Table 2. Here, in the questionnaire survey
results, experts show different risk perceptions for the same situation, thereby leading to a
probability distribution of observed risk levels. A specific oil supply state and correspond‑
ing risk level are assessed by an expert form an observation data sample {ŝi, r̂i}. Different
from extracting an observed state from reality, the collocation state is considered as the
situation that has not been observed. This means there is no existing observed result for a
collocation state. In this case, there are few constraints for collocation states, so they can be
discovered based on available mechanism‑related knowledge. In the oil supply manage‑
ment context, the collocation states can be produced by defining changes in the non‑stock
variables, like adding fluctuation to constant variableswith a statistical distribution to form
multiple plausible situations. After running the pre‑calibrated SDmodel, the risk level for
one collocation state is acquired. Thus, we can define collocation data samples {si, rs

i,c}. It is
important to note that the available observation data on the oil supply situation are quite
limited on an annual basis. Introducing collocation data is necessary and will significantly
improve the accuracy of model training.

Table 2. The risk level classification for a crude oil supply system.

Range [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]

Risk level Low Medium–low Medium Medium–high High

(2) Loss function selection

When inputting state data into the hybrid model during training, the SD model will
predict a risk level denoted as rs

c, but the ANN will generate probabilities for each poten‑
tial risk level. In this situation, we introduce cross‑entropy as the loss function. In fact, to
achieve accurate prediction and simultaneously calibrate unknown parameters for the SD
model, we need to minimize two components of risk assessment discrepancy. One is the
difference between the observed risk level and the ANN‑predicted risk level (rm

o ), and the
other is the difference between the SD model predictions (denoted as rm

c ) and the ANN
predictions (denoted as rm

c ) using collocation data. Risk assessment discrepancies are com‑
puted using the cross‑entropy formula. To consider both components of the discrepancies
together, we introduce a weighted loss function as follows:

Lossθ,w = βHo(r,p) + (1 − β)Hc(r,p)

= −
No
∑

i=1

K
∑

k=1
ri,klog(pi,k)−

Nc
∑

i=1

K
∑

k=1
ri,klog(pi,k),

(6)

where β is the weight referring to the importance of the two parts of the discrepancy, H is
the cross‑entropy function. In each training epoch, the loss value is calculated and used to
determine the gradients of the parameter corrections. Decision‑makers can also define a
threshold of loss value for terminating training process.

(3) Training algorithm and final outputs

In our work, a multilayer neural network with two hidden layers and nine nodes
in each hidden layer was chosen after comparative validation. Since the loss function is
cross‑entropy, the Adam optimizer [40] is used in our work to train the model and opti‑
mize parameters. During training, Lossθ,w will be calculated to simultaneously update the
system dynamics parameter θ and the neural network parameter w in a gradient descent
algorithm. As the key parameters of the SD model have been preliminarily calibrated in
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advance, it could converge quicker than the ANN. It is hence necessary to define different
learning rates for the two modules.

The final output of the joint training process is a learned neural network and a learned
SD model with new estimated parameters. When assessing the risk of an oil supply situ‑
ation, the ANN is responsible to predict probabilities for potential risk levels, and the SD
model is mainly to produce the changes in stock variables of the oil supply system. We
calculate the expectation of risk level by multiplying each possible risk level by its respec‑
tive probabilities as the final risk assessment result, and in addition, we further analyze
the state changes of stock variables via the SD model to interpret the evolution dynamics
of the risk and its impacts on the oil supply chain. That is to say, the hybrid model can
provide risk prediction results that carry physical meanings well.

3.3. Test and Performance Evaluation
By employing data‑driven joint parameter training, the hybrid model enables us to

capture the complex nonlinear relationships among the various risk factors of an oil supply
system. As a result, it could provide accurate risk prediction and result interpretation,
thereby enhancing risk assessment reliability. To test the hybridmodel, we firstly collected
the state data of the key variables for China’s crude oil supply system from 2001 to 2021 and
defined a collocation state dataset. The twelve identified critical risk factors involve fifteen
independent variables (n = 15). The risk is divided into five levels, as mentioned above.
Next, we invited experts from the fields of supply chainmanagement and national security
to provide subjective assessment on the risk level of different states. The observation data
and its risk level assessments are attached in Appendix D. Half of the observation data and
all collocation data have been used as training data. So, only the rest of the observation data
from 2012 to 2021 are taken as test data. The test data are used to evaluate the hybridmodel
performance on risk assessment. In this section, risk prediction and result interpretation
experiments are conducted.

Risk assessment in the hybrid model is a risk classification task. When given an input,
the model can output a probability distribution of five risk levels through the SOFTMAX
layer, and the expected risk value can be calculated from this probability distribution. The
range of the SOFTMAX function is [0, 1]. That is why we normalize the risk value to a
range of 0 to 1 in our work. Figure 5 presents the expectation of predicted risk levels and
the mean estimate of “true risk levels” assessed by experts for the most recent ten years.
The risk value on the right vertical axis is within [0, 1]. The bigger the value is, the higher
the risk level is. It is obvious that the predictions fit the true values well in different years,
showing a high classification precision and recall. This indicates that the hybridmodel can
produce risk estimates that are consistent with the domain experts’ assessments.

In addition to risk prediction, the hybrid model also supports risk interpretation. Ac‑
cording to the international experience, a 50% dependence on imported oil is taken as a
“safety warning line” that corresponds to a medium risk level. According to Figure 5, the
risk level of China’s oil supply has consistently remained at a medium to high level and
has shown a continuous increase from 2012 to 2021. To identify potential causes, the state
values of four important stock variables of the oil supply system are predicted by the SD
module, which are domestic oil transport volume (DVt), domestic oil production

(
DVp

)
,

international oil transport volume (IVt), and international oil imports (IV). These four
stock variables directly determine the oil supply risk, and their state changes can repre‑
sent the compensative effects of various risk factors and their interactions on oil supply.
As listed in Appendix D, the predicted stock state values have very few errors compared
to the observed data. From 2012 to 2021, China’s international oil imports kept increasing
significantly, but the growth rate of domestic oil transport and production lags far behind.
In 2021, China’s external dependency on crude oil even reached 72%. This provides an ex‑
planation of why the risk of China’s oil supply has grown significantly for a long time. In
fact, we can conductmore cause–effect analyses on predicted risk results, such as the grow‑
ing technological competition between China and the United States, which has increased
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the oil supply risk in China since 2019. The above results demonstrate that the hybrid
model not only provides accurate risk predictions but also supports result interpretation.
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4. Scenario Analysis for China’s Crude Oil Supply System
This paper employs a system dynamics simulation to conduct sensitivity analysis on

various factors affecting the overall oil supply risk in China at four levels of variation: 2%,
4%, 6%, and 8%. The analyzed factors include the interruption probability of crude oil
pipelines, the safety level of reserves, technological innovation capabilities, the stability
index of transportation channels, and the development of bilateral relations. These fac‑
tors have been considered as critical uncertain factors in China’s crude oil supply chain.
Five simulation scenarios are proposed to explore the changes in China’s crude oil supply
volume and potential risk.

This section focuses on studying the impact of individual indicator variations on crude
oil supply security. The oil supply risk is measured by the expected risk generated by the
hybrid model. The risk level classification that a risk value specifies has been elaborated in
Table 2. According to this classification, if the change in risk value caused by an uncertain
factor is greater than 0.2, there would be a step change in the risk level, suggesting signif‑
icant attention to the insecurity factor. The results of the policy simulation scenarios are
presented below.

(1) Scenario simulation based on reduced line transportation capacity

Transportation capacity in this context refers to the capacity of the transportation
pipeline that intersects with the primary seismic zone in China. The greater the transporta‑
tion capacity of this pipeline, the higher the potential for opportunity loss in oil transporta‑
tion, resulting in a decrease in total transportation volume and an increase in transporta‑
tion risk. As shown in Figure 6, when lowering the interruption probability of pipelines
intersecting with earthquake‑prone zones, the overall risk of the oil supply can be dimin‑
ished, although the extent of the reduction is relatively small. Consequently, it can be
inferred that China needs to enhance infrastructure resilience to ensure the stability of do‑
mestic oil transport.
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(2) Scenario simulation based on improving the security level of oil reserve

The strategic crude oil reserves play an important role in China’s oil supply system,
especially under crisis situations. The higher the security level of the oil reserve is, the
larger the domestic oil reserves are, leading to increased total supply capability and re‑
duced transportation risk. Figure 7 presents the simulated changes of the domestic oil
reserves and reserve/production ratio over recent years when adjusting the reserve secu‑
rity level. It is obvious that enhancing the security level of domestic oil reserves leads to an
increase in the domestic oil reserves, which will consequently improve the oil supply ca‑
pability during crises (Figure 7a). Similarly, an increase in the reserve‑to‑production ratio
can be observed in Figure 7b. texless The reserve‑to‑production ratio, measured by the ratio
of domestic oil reserves to exploitation, reflects the potential exploitation years for domestic
oil. The above simulation results indicate that enhancing the security level of oil reserves can
improve both short‑term emergency supply capability and long‑term supply sustainability.
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(3) Scenario simulation for improving technological innovation capability

The term “technological innovation capacity” in this context mainly refers to the in‑
novation capacity of domestic oil exploitation and production technology. The greater
the technological innovation capacity is, the higher the domestic oil production is, lead‑
ing to increased total supply and a reduction in the overall supply risk. Considering the
current situation, China’s technological innovation capacity index in petrochemical equip‑
ment and technologies stands at amoderate levelworldwide. By setting different increases
in the index, we can simulate the influences of technological innovation capability on oil
production and overall supply risk.
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As shown in Figure 8a, enhancing the technological innovation capability will in‑
crease the volume of domestic oil production, resulting in an overall boost in oil supply.
Although technological innovation capability primarily influences the changes in domestic
oil production, the increase in domestic oil production could indirectly lead to a reduction
in international oil imports. That is to say, the improvement of technological innovation
capacity could help reduce oil import dependence and hence mitigate the overall oil sup‑
ply risk. This conclusion can be indicated in Figure 8b, where the risk obtains a bigger
reduction for a larger increase in technological innovation capability.
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(4) Scenario simulation based on enhancing transport channel stability

China heavily relies on maritime shipping routes, pipelines, and other transport in‑
frastructure for the efficient and reliable transport of crude oil fromglobal suppliers. Ensur‑
ing the stability of these international oil transportation channels is crucial for its oil supply
security. In our work, we quantify the stability of the transport channels using an index.
Based on the current situation, the primary international oil transport channels, notably
the Strait of Hormuz, experience frequent geopolitical conflicts, significantly impacting
global oil transport. By changing the transport channel stability index during simulations,
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as shown in Figure 9a, it can be observed that enhancing the stability of transport channels
can lead to a significant increase in the international oil transport volume. This could be
simply because a higher transport channel stability brings a lesser disturbance in transport
capability, which ultimately results in a reduction in transport disruption risk. This can
be indicated in Figure 9b. The bigger increase in the transport channel stability index will
lead to a larger reduction in the overall supply risk. The above results show that interna‑
tional transport channel stability is a sensitive factor and enhancing this stability would
effectively mitigate the oil supply risk and contribute to a more stable oil supply chain.
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(5) Scenario simulation based on improved bilateral relations with oil‑trading countries

The bilateral relation scores are used to quantify the stability of China’s international
relationships with the oil‑trading countries, as discussed before. In the current diplomatic
situation of China, the measured average score of bilateral relation development is 3.96
(i.e., a moderate level). We set different scenarios for bilateral relation improvements to
explore the changing patterns of the oil supply system risk.

According to the simulation results, improving bilateral relationshipswith oil‑trading
countries can bring a positive impact on reducing oil supply risk. Figure 10a illustrates that
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a higher score in bilateral relations leads to a greater increase in international oil imports.
Furthermore, Figure 10b shows a similar trend, as a stronger improvement in bilateral re‑
lations development results in a larger reduction in overall supply risk. Therefore, it can
be concluded that closer bilateral relations contribute to lower oil supply risks. In practi‑
cal terms, establishing close and stable bilateral relations with oil‑trading countries helps
to mitigate the risks associated with crude oil procurement and transportation. This is
achieved through a reduction in accidents and trade disputes occurring in the oil trad‑
ing process.
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5. Conclusions
Risk assessment plays a vital role in formulating sustainable crude‑oil supply policies.

However, the global crude‑oil supply system is a complex system that involves various risk
factors, which significantly increases the complexity of risk assessment. In this paper, we
conduct a data‑ and model‑driven crude oil supply risk assessment of China considering
maritime transportation factors. A hybridmodeling framework combining systemdynam‑
ics and data‑driven neural networks is proposed to assess the risk. The hybrid model pro‑
posed can leverage the advantages of both dynamic modeling and data‑based modeling.
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It can capture the complex, nonlinear relationships of the risk factors of the oil supply sys‑
tem with limited data and in the meantime allow for the interpretability of the underlying
dynamics. Computational experiments based on China’s scenario have been conducted to
demonstrate the effectiveness of the proposed hybrid model, and the results provide some
management insights: (1) The government needs to enhance infrastructure resilience, es‑
pecially to ensure the stability of domestic oil supply. (2) By improving the safety level
of domestic oil reserves, the overall risk of oil supply can be reduced. (3) Improving the
innovation capacity of oil extraction technologies helps mitigate the overall risk associated
with oil supply. (4) By improving the development of bilateral relations with oil‑trading
countries, the overall oil supply risk will be decreased.

In our study, we have only collected China’s oil supply data for recent decades and
used a combination of a relatively simple system dynamics and neural networks to as‑
sess the risks associated with crude oil supply. We did not compare the effectiveness of
our method with other methods, nor did we take into account the specific ocean trans‑
portation conditions of the crude oil. Even so, we think that the advantages of the hybrid
modelsmake it as a promising approach formore applications inmaritime fields. In future
research, the following aspects could be considered to extend the hybridmodel: (1) The im‑
pacts of different types of ocean transportation vehicles could be studied. (2) Multi‑modal
transportation could be included in the import schemes of crude oil. (3) Other data‑ and
model‑driven approaches could be integrated together to conduct similar risk assessments.
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Appendix A

Table A1. The definition of symbols.

Symbols Symbols

Ppipe
Pipeline interruption probability caused by
natura hazards λship Domestic shipping transport ratio

κ Reserve/production ratio Sline Stability of global oil transport lines
Lres Crude oil reserve safety level Spol Political stability index of exporting countries
Ieq Equipment manufacturing level dcon Degree of concentration of oil import sources
Ctech Technological innovation capability Irel International relation stability index
Ics Cybersecurity risk index Ibp Bargaining power index
Copen Temporary line opening capacity D Domestic oil demand
Ire Critical facilities resilience index DCt Domestic oil transport capacity
λed External dependency ratio ICt International maritime transport capacity
Ibr Bilateral relations index RVstr Strategic oil reserves
varp Variance of oil export prices NI Daily net imports
IRMB RMB internationalization index RV Domestic oil reserve volume
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Table A1. Cont.

Symbols Symbols

DVt Domestic oil transport volume RVexp Exploitable oil reserve volume
Ct Line transport capacity IV International oil import volume
η Interruption recovery efficiency ∆IV Changes in international oil imports
DVpro Domestic oil production volume µ Annual average oil imports
∆Vd Changes in domestic oil production τm Rate of change in international oil imports
∆Pd Changes in domestic oil productivity τd Rate of change in domestic oil supply
λpro Oil productivity fluctuation ratio IVt International oil transport volume
DV Domestic supply volume ∆Vt Changes in international oil transport volume
V The overall oil supply ω Oil‑importing risk aversion degree

Appendix B

TableA2. Themain governing equations of the systemdynamicsmodel for China’s crude oil supply.

Variables Types Unit Equations

Opportunity loss of oil transport volume A Wt/Year LossT = CT Ppipe Ire η

Critical facility resilience A Dmnl
Ire =WITH LOOKUP (<Time * Unit conversion >,
([(1, 0)–(10, 1)], (1, 0.3628), (2, 0.3922), (3, 0.4216),
(4, 0.451), (5, 0.4804))

Domestic oil transport volume L Wt DVT = cT − LossT
Domestic oil transport capacity A Wt/Year DCT = λship·D
Strategic oil reserves A Wt/Year RVstr = Lres·90·NI
Domestic oil reserves L Wt RV = RVstr + RVexp·κ
Domestic oil production L Wt DVprod = INTEG (+∆V, initial productivity)
Changes in domestic oil production A Wt/Year ∆Vd = ∆Pd·DVpro
Oil productivity fluctuation ratio A Wt/Year λpro = 0.5279 · Ctech + 0.4721· Ieq

Domestic oil supply A Wt dDV
dt = τd(

dDVpro
dt + dRV

dt + dDVt
dt )

International oil transport volume L Wt IVt = INTEG (+∆Vt, initial transport value)
Changes in international oil transport volume A Wt/Year ∆Vt = dICT

dt ·IVt
International oil imports L Wt IV = INTEG (+∆IV, initial import value)
Changes in international oil imports A Wt/Year ∆IV = µ·λ

The rate of change in oil imports A Dmnl τm = 0.1699 IRMB + 0.2302 Ibr + 0.1381 varp +
0.2106 λeddcon + 0.1807 Spol + 0.119 Ibp

Changes in international oil transport capacity A Wt/Year ∆ICt = 0.488 Copen +0.512 Sline
Unit conversion C fraction/Year 1
The overall oil supply A Wt V = DVs + IVm
Risk level A Dmnl r = w·rd + (1 − w)·ri,w ∈ [0, 1]

* L, R, A, T respectively denote stock variables (level variables), flow variables, auxiliary variables, and table
functions.

Appendix C. The General Assessment of Bilateral Relations
The scoring systemworks through a simple mechanism. Denoting a bilateral relation

score between two countries, such as b, bi is the score after experiencing a diplomatic
event i, quantified with an event influence score ei. As a new diplomatic event could also
cause a change in bilateral relations, we have the following formula:

bi+1 =

{
c−bi

c ei+1
c+bi

c ei+1
,s.t. bi ∈ [−c, c], ei ∈ [−ε, ε]

In our work, c = 9, ε = 6. When an event has a positive promoting effect on the rela‑
tionship (ei ≥ 0 ), the bilateral relations will become closer. If continuous positive events
occur, the positive promoting effect of the event gradually decreases. When ei < 0, the
same goes the other way. In the tensest situation of bilateral relations, the negative pro‑
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moting effect of a negative event tends toward 0. That is to say, negative events cannot
make the bilateral relations score between the two countries less than −c.

Appendix D.

Table A3. The observation and forecast value of different oil volume.

Year 2012 2013 2014 2015
Stock

Variable Observation Forecast ˉ
r Observation Forecast ˉ

r Observation Forecast ˉ
r Observation Forecast ˉ

r
Domestic oil
transport
volume

12,652.42 12,652.40
0.44

12,731.76 12,403.47
0.45

12,806.97 12,154.54
0.47

12,552.95 11,905.60
0.49Domestic oil

production 20,747.80 20,747.80 20,991.90 20,998.34 21,142.90 21,153.38 21,455.60 21,474.49
International
oil transport
volume

27,109.12 26,865.60 28,212.40 28,098.51 30,835.77 30,939.48 33,549.13 33,233.48

International
oil imports 26,865.63 26,865.60 28,050.40 28,040.31 30,775.75 30,841.67 32,968.51 33,757.46

Year 2016 2017 2018 2019
Domestic oil
transport
volume

12,478.22 11,656.67
0.51

11,747.38 11,407.74
0.53

11,507.51 11,158.80
0.55

11,761.06 10,909.87
0.48Domestic oil

production 19,968.50 19,946.79 19,150.60 19,108.22 18,392.40 18,331.72 19,101.40 19,057.04
International
oil transport
volume

38,103.78 38,311.90 41,996.65 42,214.02 46,190.13 46,888.25 58,102.20 59,737.18

International
oil imports 37,809.72 38,681.38 41,510.31 42,927.28 45,927.13 47,532.59 58,021.20 60,702.88

Year 2020 2021
Domestic oil
transport
volume

10,979.99 10,660.94
0.54

10,563.84 10,412.01
0.59Domestic oil

production 19,500.00 19,465.21 19,900.00 19,875.03
International
oil transport
volume

54,201.00 55,468.45 51,292.00 52,090.69

International
oil imports 54,037.00 56,323.82 50,874.90 53,075.98 5

r is the mean estimate of risk values provided by experts. The unit of observation data is wt.
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