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Abstract: In the present document a compilation of empirical, semiempirical, and theoretical expressions for the 

water-vapor pressure and specific humidity-based mass transfer coefficients employed in the Dalton equation is 

presented. 

 
1. Turbulence-induced vertical transport in the atmospheric surface layer 

 

a. Empirical approach 

 

Daily and monthly evaporation rates can be effectively parameterized in terms of routinously 

measured meteorological observables among which the wind velocity is the key aerodynamic driver 

for water-vapor mass transfer across the sea-atmosphere interface (next to the relative fugacity or its 

proxies as the thermodynamic driving force of evaporation) (e.g., Wüst 1920, Sverdrup 1936, Jacobs 

1942, 1951, Sutton and Simpson 1934, Penman and Keen 1948, Tomczak 1939, Brogmus 1958, 1959, 

Budyko 1963, Dammann 1965, Sellers 1965,  Richter 1969, 1977, 1978, 1997, Richter et al. 1979, Kunz 

1972; Dyck and Peschke 1983, pp. 137–141; Vietinghoff 2000; DWA 2018, pp. 103-122, Table 15) [22, 23, 

91-97, 27, 98, 26, 99-107]. The first trials to directly calculate the evaporation can be probably traced back 

to Dalton (1798) [2], who proposed the following simple relation: 

 
𝑋𝐸 = 𝑓(𝑈) ∆𝑒,      ∆𝑒 = 𝑒𝑒𝑞(𝑆𝐴, 𝑇) − 𝑒 .     (1) 

 
Here, 𝑋𝐸 = {𝐸, 𝐽𝐸} denotes the evaporation metrics, which can be either the evaporation velocity (or 

evaporation rate), 𝐸 (in units of m s-1), or the water-vapor mass flux density, 𝐽𝐸 (in units of kg m-2 s-1). 

The quantity ∆𝑒 denotes the thermodynamic driving force of evaporation, given by the difference 

between the equilibrium water-vapor pressure, 𝑒𝑒𝑞(𝑆𝐴, 𝑇), as a function of the salinity and temperature, 

and the actual water-vapor pressure, 𝑒. The aerodynamic prefactor 𝑓(𝑈) is a nonlinear function of the 

wind velocity, 𝑈, and is called “wind function”. The unit of 𝑓(𝑈) depends on the choice of 𝑋𝐸. In the 

literature, Eq. (1) is frequently given in form of a tailored equation expressed in non-SI units. The 

aerodynamic prefactor is not a universal (generally valid) function of 𝑈, but depends on several factors, 

such as the local wind field, which is influenced by topography, orographic roughness, shore conditions 

(morphology, vegation, house building), location of the measurement site etc. This holds true especially 

for inland waters. Correspondingly, there are different types of wind functions. Already Tomczak 

(1939) [95] addressed the question, whether it is allowed to extrapolate the local water-vapor mass flux 

density, 𝐽𝐸, to the whole free water area, 𝐴𝐸, i.e., to determine the total evaporation mass flux from 



multiplication of the mass flux density with the free-water area, 𝐹𝐸 = 𝐽𝐸𝐴𝐸. The author denied the 

answer. Based on the evaporation theory of Sutton and Simpson (1934) [93], Tomczak (1939) [95] 

analyzed the influence of the fetch on the evaporation rate and derived an analytical expression for the 

wind function, which depends next to 𝑈on the degree of turbulence, and on the geometrical dimensions 

of the free-water area. A further discussion of this problem can be found in Richter (1969) [99]. A 

consequence of this problem is that the validity of empirical relations is more or less restricted to the 

special conditions of their derivation. Hence, special care is required when extrapolating empirical 

relations from one place to another. Compilations and critical reviews of empirical and semiempirical 

correlations for the estimation of the evaporation of free water areas can be found, e. g., in Vietinghoff 

(2000, pp. 51–60) [106] and DWA (2018, p. 103-122, Table 15) [107]. 

 

b. Rationale of the Monin-Obukhov similarity theory 

 

In contrast to empirical and semiempirical approaches for daily and monthly means, the determination 

of instantaneous evaporation fluxes, e.g., in model applications, requires the explicit consideration of 

the atmospheric stability, which controls the turbulence exchange of water vapor in the atmospheric 

surface layer (ASL). Such approach requires the completion of empirical findings by additional 

theoretical considerations.  

The Monin-Obukhov similarity theory (MOST) serves as a master theory for the treatment of ASL 

turbulence. This theory was originally published in Russian in 1954, later translated and published in 

German and English languages (e.g., Monin and Obuchow 1958; Monin and Obukhov 1990) [108, 109]. 

A review of the history, assumptions, rationale, and predictive power of the MOST can be found in, e. 

g., Foken (2004) [110]. Owing to its widespread presence in atmospherically relevant literature, 

especially on atmospheric boundary layer (ABL) physics (e.g., PalArya 1988; Foken 1990; Schmugge 

and André 1991; Garratt 1992; Kaimal and Finnigan 1994; Stull 1997; Etling 2010; Foken 2016; Emeis 

2022) [111-119], here one can abstain from a comprehensive review of referenced sources. The 

explanations given below will focus on the rationale of this theory. 

 

The MOST is based on the following assumptions: 

1. The application of the MOST is restricted to the ASL, the height of which is denoted as 𝐻. 

2. The universal laws predicted by the MOST rely on similarity considerations, which are typically 

applied in aero-hydrodynamics and thermal physics. 

3. The flow is assumed to be horizontally homogeneous and to be free of acceleration.  

4. Vertical motions are neglected. 

5. Turbulence is assumed to be in a quasi-steady state. 

6. The turbulent fluxes of momentum and heat are assumed to be independent of height, i.e., the ASL 

is approximated as a “constant-flux layer”.  

7. In the system of equations describing the momentum, mass, and heat budgets of a thermally 

inhomogeneous medium, terms containing the viscosity and thermal conductivity of the fluid are 

neglected. Under the condition of fully developed turbulence these terms must only be considered in 

the description of the details of the microstructure of the wind and temperature field. 

8. The differences between the temperature and the potential temperature in the ASL and their vertical 

gradients are negligibly small. However, in the vicinity of isothermal states, these differences become 

important and must be considered. 

In its orginal form, the MOST is formulated for a dry ASL (Monin and Obuchow 1958) [108], but it is 

commonly agreed, that the rules for the heat flux can also be applied to specific humidity or any other 

passive tracer, hence the heat-flux relations are applicable to scalar fluxes. Under these conditions, the 

MOST describes the turbulence in a thermally inhomogeneous medium by only four independent 

observables (e. g., Foken and Richter 1991, p. 9 therein) [120], namely 

1. the screening height 𝑧, 



2. the buoyancy parameter 𝛽𝐵 = 𝑔/𝑇 with 𝑔 denoting the gravitational acceleration, and 𝑇 the 

temperature at the screenibng height, 

3. the momentum flux 𝐽𝑈 = −|𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 | = −𝜚𝐴𝑉𝑢∗
2 (in units of N m-2), with 𝜏𝑥𝑦 and 𝜏𝑦𝑧 denoting the 𝑥𝑦- 

and 𝑦𝑧-components of the Reynolds stress tensor, 𝜚𝐴𝑉 the mass density of humid air, and 𝑢∗ the friction 

velocity, and finally 

4. the sensible heat flux 𝐽𝑇 = 𝜚𝐴𝑉𝑐𝑃(𝑤
′𝑇′)𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (in units of W m-2), with 𝑐𝑃 denoting the isobaric heat capacity 

of humid air,  (𝑤′𝑇′)𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = −𝑢∗𝑇∗ the kinematic heat flux (in units of K m s-1), 𝑇∗  the kinematic scaling 

temperature, 𝑤 = 𝑤̅ + 𝑤′ the vertical velocity, and 𝑇 = 𝑇̅ + 𝑇′ the temperature employing the Reynolds 

decomposition in a mean part (overbar) and a deviatoric part (apostroph). 

 

These four quantities define a dimensionless stability parameter 𝜁, 

 

𝜁 =
𝑧

𝐿
,    𝐿 = −

𝑢∗
3

𝜅 𝛽𝐵(𝑤′𝑇′)𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,     (2) 

 

with a characteristic turbulence length scale, 𝐿, serving as a key scaling length of the MOST, which 

found entrance in the literature as Monin-Obukhov length (MOL). The quantity 𝜅 is the Von Karman 

constant. The upper limit of the ASL height is estimated to amount 

 

𝐻 ≈ 𝛼 × 250 m,      
𝑢∗

2(0)−𝑢∗
2(𝐻)

𝑢∗
2(0)

≤ 𝛼,  

 

where 𝛼 is a prescribed parameter controlling the vertical gradient of the momentum flux (vanishing 

vertical gradient at 𝛼 = 0). For 𝛼 = 0.2 the ASL height amounts 𝐻 = 50 m. The most important 

prediction of the MOST is the existence of similarity laws for the vertical gradients of the horizontal 

wind velocity, 𝑈 = |𝑈⃗⃗ |, 𝑈⃗⃗ = 𝑢𝑖 + 𝑣𝑗 , the temperature, 𝑇, and the specific humidity, 𝑞: 

 
𝜅 𝑧

𝜒∗
 
𝜕𝜒̅

𝜕𝑧
= Φ𝜒(𝜁),     𝜒̅ = {𝑈̅, 𝑇,̅ 𝑞̅},      𝜒∗ = {𝑢∗, 𝑇∗, 𝑞∗} 

 

↷      
𝜅 𝑧

𝑢∗

𝜕𝑈̅

𝜕𝑧
= Φ𝑈(𝜁),    

𝜅 𝑧

𝑇∗

𝜕𝑇̅

𝜕𝑧
= Φ𝑇(𝜁),     

𝜅 𝑧

𝑞∗

𝜕𝑞̅

𝜕𝑧
= Φ𝑞(𝜁) .        (3) 

 

The quantities Φ𝑈(𝜁), Φ𝑇(𝜁), and Φ𝑞(𝜁) are  are universal similarity functions for momentum, heat, and 

humidity, which must be empirically determined. In the limiting case of neutral stratification one has 

𝐽𝑇 = 0, resulting in 𝐿 → ∞ and 𝜁 = 0. The restoration of the logarithmic wind profile under neutral 

conditions requires Φ𝑈(0) = 1. The quantities 𝑢∗,  𝑇∗, and 𝑞∗ are independent of altitude and serve as 

characteristic scaling properties. A direct consequence of the MOST is the mutual interdependence of 

momentum, heat, and evaporation fluxes. 

Now it is assumed, that the validity of the relations given in Eq. (3) is restricted to turbulent layers of 

thicknesses ∆𝑧|𝑈 = 𝑧 − 𝑧0, ∆𝑧|𝑇 = 𝑧 − 𝑧0,𝑇, and ∆𝑧|𝑞 = 𝑧 − 𝑧0,𝑞 for momentum, heat, and moisture 

transport, respectively. The quantities 𝑧0, 𝑧0,𝑇, and 𝑧0,𝑞 are the aerodynamic roughness lengths for 

momentum, temperature, and specific humidity defining the lower height of the applicability of the 

MOST scaling laws. Adding a nutritive zero, 1-1=0, to the right-hand side of the first scaling relation in 

Eq. (3), the integration over the height from the aerodynamic roughness length 𝑧0 to the screening 

height 𝑧 delivers: 

 

∆𝑈̅=𝑈̅(𝑧) − 𝑈̅(𝑧0) =
𝑢∗

𝜅
∫

Φ𝑈(𝜁(𝑧′))

𝑧′

𝑧

𝑧0
 d𝑧′ =

𝑢∗

𝜅
[ln

𝑧

𝑧0
+ 𝐼] , 

 

𝐼 = ∫
Φ𝑈(𝜁(𝑧′))−1

𝑧′

𝑧

𝑧0
 d𝑧′= - [Ψ𝑈(𝜁) − ∫

1−Φ𝑈 (𝜁
′)

𝜁′

𝜁0

0
 d𝜁′] , 

 



Ψ𝑈(𝜁) = ∫
1−Φ𝑈 (𝜁

′)

𝜁′

𝜁

0
 d𝜁′  

 

↷  ∆𝑈̅ =
𝑢∗

𝜅
[ln

𝑧

𝑧0
− Ψ𝑈 (

𝑧

𝐿
) + Ψ𝑈 (

𝑧0

𝐿
)] .    (4) 

 

Analogously, carrying out the integration of the second relation in Eq. (3) from 𝑧0,𝑇 to 𝑧 with 𝑇̅(𝑧0,𝑇) =

𝑇̅𝑠 and of the third relation from 𝑧0,𝑞 to 𝑧 with 𝑞̅(𝑧0,𝑞) = 𝑞̅𝑠 one arrives at the following integrals: 

 

∆𝑇̅ = 𝑇̅(𝑧) − 𝑇̅𝑠 =
𝑇∗

𝜅
∫

Φ𝑇(𝜁(𝑧′))

𝑧′

𝑧

𝑧0,𝑇
 d𝑧′ =

𝑇∗

𝜅
[ln 

𝑧

𝑧0,𝑇
 −  Ψ𝑇 (

𝑧

𝐿
) + Ψ𝑇 (

𝑧0,𝑇

𝐿
)], 

 

Ψ𝑇(𝜁) = ∫
1−Φ𝑇 (𝜁

′)

𝜁′

𝜁

0
 d𝜁′,        (5) 

 

∆𝑞̅ = 𝑞̅(𝑧) − 𝑞̅𝑠 =
𝑞∗

𝜅
∫

Φ𝑞(𝜁(𝑧′))

𝑧′

𝑧

𝑧0,𝑞
 d𝑧′ =

𝑞∗

𝜅
[ln 

𝑧

𝑧0,𝑞
 −  Ψ𝑞 (

𝑧

𝐿
) + Ψ𝑞 (

𝑧0,𝑞

𝐿
)], 

 

Ψ𝑞(𝜁) = ∫
1−Φ𝑞 (𝜁

′)

𝜁′

𝜁

0
 d𝜁′ .        (6) 

 

Considering ∆𝑈̅, ∆𝑇̅, and ∆𝑞̅ as given, and inserting 𝑢∗ from Eq. (4) together with 𝑇∗ from Eq. (5) into 

Eq. (2), one obtains a transcendental equation for the determination of 𝐿, the knowledge of which allows 

the determination of 𝑢∗, 𝑇∗, and 𝑞∗: 

 

𝑢∗ =
𝜅 ∆𝑈̅

ln
𝑧

𝑧0
− Ψ𝑈(

𝑧

𝐿
)+Ψ𝑈(

𝑧0
𝐿

)
 ,     (7) 

 

𝑇∗ =
𝜅 ∆𝑇̅

ln
𝑧

𝑧0,𝑇
− Ψ𝑇(

𝑧

𝐿
)+Ψ𝑇(

𝑧0,𝑇
𝐿

)
 ,     (8) 

 

𝑞∗ =
𝜅 ∆𝑞̅

ln
𝑧

𝑧0,𝑞
− Ψ𝑞(

𝑧

𝐿
)+Ψ𝑞(

𝑧0,𝑞
𝐿

)
 .     (9) 

 

By virtue of 𝐽𝑈 = −𝜚𝐴𝑉𝑢∗
2, 𝐽𝑇 = −𝜚𝐴𝑉𝑐𝑃𝑢∗𝑇∗, and analogously,  𝐽𝑞 = −𝜚𝐴𝑉𝐿𝑉𝑢∗𝑞∗, with 𝐿𝑉 denoting the 

specific heat of evaporation, one arrives at the following flux representations for the turbulent transfer 

of momentum, sensible heat, and latent heat: 

 

𝐽𝑈 = −𝜚𝐴𝑉𝐶𝑈[∆𝑈̅]2,    𝐶𝑈 =
𝜅2

ln
𝑧

𝑧0
− Ψ𝑈(

𝑧

𝐿
)+Ψ𝑈(

𝑧0
𝐿

)
 ,     (10) 

 

𝐽𝑇 = −𝜚𝐴𝑉𝑐𝑃𝐶𝑇∆𝑈̅∆𝑇̅ ,     𝐶𝑇 =
𝜅2

[ln
𝑧

𝑧0
− Ψ𝑈(

𝑧

𝐿
)+Ψ𝑈(

𝑧0
𝐿

)][ln 
𝑧

𝑧0,𝑇
 − Ψ𝑇(

𝑧

𝐿
)+Ψ𝑇(

𝑧0,𝑇
𝐿

)]
 ,  (11) 

 

𝐽𝑞 = −𝜚𝐴𝑉𝐿𝑉𝐶𝑞∆𝑈̅∆𝑞̅ ,     𝐶𝑞 =
𝜅2

[ln
𝑧

𝑧0
− Ψ𝑈(

𝑧

𝐿
)+Ψ𝑈(

𝑧0
𝐿

)][ln 
𝑧

𝑧0,𝑞
 − Ψ𝑞(

𝑧

𝐿
)+Ψ𝑞(

𝑧0,𝑞
𝐿

)]
 .  (12) 

 

Here, 𝐶𝑈, 𝐶𝑇, and 𝐶𝑞 denote the drag coefficient, the Stanton and the Dalton number, respectively. The 

application of Eqs. (10), (11), and (12) requires the specification of the similarity functions, Φ𝜒(𝜁), and 

the boundary conditions at 𝑧0, 𝑧0,𝑇, and 𝑧0,𝑞. The availability of the Dalton number, 𝐶𝑞, allows a 

unique determination of the vapor-pressure and specific humidity-based transfer coefficients, 𝐷𝑒 and 

𝐷𝑞 = 𝐶𝑞∆𝑈̅, appearing in the Dalton equation. 

 

 



c. Applicational aspects and compilation of transfer coefficients 

 

The MOST serves as the theoretical fundament of countless meteorological and metrological 

applications in parameterizing and measuring near-surface turbulent fluxes. For example, the MOST is 

part of the flux parameterization in several community models for numerical weather prediction 

(NWP) and global circulation models (GCM), such as, 

• the NWP model COSMO of the German Weather Service (e. g., Doms et al. 2013) [121], 

• the Integrated Forecast System (IFS) of the European Center for Medium-Range Weather 

Forecasts (ECMWF) (e. g., ECMWF-IFS 2021, https://www.ecmwf.int/en/publications/ifs-

documentation) [122], 

• the NCAR-GCM (e. g., Large and Pond 1981, 1982, Large et al. 1997, Large and Yeager 2004, 

2009, Brodeau et al. 2017) [123-128], and 

• the TOGA-COARE-GCM (e. g., Webster and Lukas 1992, Fairall et al. 1996a, b, 1997, 2003a, b, 

2011, Andreas 2003, Andreas et al. 2008; Brunke et al. 2003; Zeng et al. 2003; Edson et al. 2013; 

Yusup et al. 2018) [129-141]. 

 

While retaining the basic physical assumptions of the theory, the specific implementation is subject to 

manifold modifications and enhancement to continuously ensure best agreement with available state-

of-the-art empirical and theoretical findings and to remove still existing biases in the flux 

parameterization (e.g., Yu 2019) [142]. The variety of specifications concerns, e.g., 

• the specification of the empirical similiarity functions, Φ𝜒(𝜁), underlying the determination of 

the stability functions, Ψ𝜒(𝜁), and the drag coefficient and the Stanton and Dalton numbers (e. 

g., Dyer and Hicks 1970, Dyer 1974, Paulson 1970; Businger et al. 1971; Kaimal et al. 1971, 1976, 

Skeib 1980; Foken and Skeib 1983; Skeib and Richter 1984; Holtslag 1987; Högström 1988; Foken 

1990, 1991; Garratt 1992; Kaimal and Finnigan 1994; Fairall et al. 1996b; ECMWF-IFS 2021) [143-

153, 112, 154, 114, 115, 131, 122],  

• the parameterization of the surface-roughness lengths, at 𝑧0, 𝑧0,𝑇, and 𝑧0,𝑞 (e. g., Smith 1988, 

Miller et al. 1992, Beljaars 1995, Fairall et al. 1996a,b, 1997, 2003a, 2011; Large and Yeager 2009; 

Doms et al. 2013; Edson et al. 2013; Liu et al. 2013) [155-157, 130-133, 135, 127, 121, 140, 158], 

and 

• the refinement of the description of the exchange processes in the molecular boundary layer 

and the viscous intermediate (buffer) layer, i. e., at 0 ≤ 𝑧 ≤ {𝑧0, 𝑧0,𝑇, 𝑧0,𝑞} (e. g., Owen and 

Thomson 1963, Kondo 1975, Foken et al. 1978, Liu et al. 1979, Foken 1979a, b, 1984, 1986; Foken 

and Richter 1991; Richter and Skeib 1991) [159, 160, 20, 161-165, 120, 166], e.g., within the 

framework of the surface-renewal theory (e. g., Brutsaert 1975; Soloviev and Schlüssel 1994, 

1998; Clayson et al. 1996; Fairall et al. 1996a; Zappa et al. 1998; Mengistu and Savage 2010; 

Horvath and Chatterjee 2018; Hu et al. 2018) [167-170, 130, 171-174]. 

 

Table S1 contains a compilation of selected empirical and semi-empirical expressions of the vapor 

pressure and specific humidity-based transfer coefficients, 𝐷𝑒 and 𝐷𝑞, appearing in the Dalton equation. 
 


