
Citation: Wang, J.; Tao, T.; Lu, D.;

Wang, Z.; Wang, R. Research on the

Heterogeneous Autonomous

Underwater Vehicle Cluster

Scheduling Problem Based on

Underwater Docking Chambers. J.

Mar. Sci. Eng. 2024, 12, 162. https://

doi.org/10.3390/jmse12010162

Academic Editor: Rafael Morales

Received: 18 December 2023

Revised: 9 January 2024

Accepted: 12 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Research on the Heterogeneous Autonomous Underwater
Vehicle Cluster Scheduling Problem Based on Underwater
Docking Chambers
Jia Wang 1, Tianyi Tao 1 , Daohua Lu 2,*, Zhibin Wang 3 and Rongtao Wang 4

1 School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
wjjzhb@just.edu.cn (J.W.); tao_tt@stu.just.edu.cn (T.T.)

2 Marine Equipment and Technology Institute, Jiangsu University of Science and Technology,
Zhenjiang 212003, China

3 708th Research Institute of CSSC, Huangpu District, Shanghai 200011, China; wzb1988110@163.com
4 Shanghai Marine Equipment Research Institute, Shanghai 200031, China; wangrongtao1005@126.com
* Correspondence: ludaohua_just@126.com

Abstract: The onboard energy supply of Autonomous Underwater Vehicles (AUVs) is one of the main
limiting factors for their development. The existing methods of deploying and retrieving AUVs from
mother ships consume a significant amount of energy during submerging and surfacing, resulting
in a small percentage of actual working time. Underwater docking chambers provide support to
AUVs underwater, saving their precious energy and addressing this issue. When an AUV cluster
is assigned multiple tasks, scheduling the cluster becomes essential, and task allocation and path
planning are among the core problems in AUV cluster scheduling research. In this paper, based on the
underwater docking chamber, an Improved Genetic Local Search Algorithm with Prior Knowledge
(IGLSAPK) is proposed to simultaneously solve the task allocation and path planning problems.
Under constraints such as onboard energy supply, AUV quantity, and AUV type, the algorithm
groups AUVs, assigns tasks, and plans paths to accomplish tasks at different locations, aiming to
achieve overall efficiency. The algorithm first generates an initial population using prior knowledge
to improve its search efficiency. It then combines an improved local search algorithm to efficiently
solve large-scale, complex, and highly coupled problems. The algorithm has been evaluated through
simulation experiments and comparative experiments, and the results demonstrate that the proposed
algorithm outperforms other algorithms in terms of speed and optimality. The algorithm presented
in this paper addresses the grouping, task allocation, and path planning problems in heterogeneous
AUV clusters. Its practical significance lies in its ability to handle tasks executed by a heterogeneous
AUV group, making it more practical compared to previous algorithms.

Keywords: AUV swarm; genetic algorithm; local random search; task allocation; priori knowledge

1. Introduction

In recent years, the application of Autonomous Underwater Vehicles (AUVs) has
become increasingly widespread, and the tasks they need to complete have become more
complex. They are extensively utilized in marine surveys, mapping, environmental mon-
itoring, search operations, oil and gas exploration, and for inspections of underwater
pipelines and infrastructure. Due to limitations in space payloads, energy, and costs, a
single AUV cannot complete complex underwater missions effectively. An AUV cluster is
a system composed of multiple AUVs. AUV clusters can accomplish complex tasks more
efficiently and robustly. However, the traditional method of deploying and recovering
AUVs from a mother ship requires high sea conditions, which results in high costs and
involves certain unknown risks. The development of AUV clusters has greatly increased
the number of AUVs, posing significant challenges in deploying and recovering them. The

J. Mar. Sci. Eng. 2024, 12, 162. https://doi.org/10.3390/jmse12010162 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12010162
https://doi.org/10.3390/jmse12010162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0001-6914-8025
https://orcid.org/0000-0002-2010-1939
https://doi.org/10.3390/jmse12010162
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12010162?type=check_update&version=3

J. Mar. Sci. Eng. 2024, 12, 162 2 of 21

emergence of underwater docks has eased this problem. By using an underwater dock,
multiple AUVs can be deployed and recovered at once. Energy supply, data collection,
maintenance and repair, and other operations can be performed on AUVs underwater.
This approach provides a relatively stable underwater environment, greatly improving the
reliability and safety of AUV deployment and recovery. Additionally, AUVs do not need
to frequently surface or submerge, saving precious onboard energy. Based on underwater
docks, the scientific scheduling of AUV clusters is required for multiple task demands.

1.1. AUV Cluster Scheduling

AUV cluster scheduling refers to the assignment of tasks, path planning, and coordi-
nated control of a cluster composed of multiple AUVs. In order to improve the efficiency of
the overall mission, the allocation of tasks for multiple AUVs is determined based on the
cost and requirements of each task [1,2]. The problem studied in this paper consists of three
parts: heterogeneous AUV cluster grouping, task allocation within AUV teams, and path
planning. These three parts have been extensively researched, but their interdependence
poses significant challenges in solving the problem. They cannot be addressed separately
and require comprehensive consideration.

AUV cluster task allocation can be divided into two methods: centralized and dis-
tributed. The centralized task allocation method requires each AUV to send information
about its environment and the cost function for task execution to a central control center.
The control center then considers the AUVs and tasks to make reasonable assignments [3].
After obtaining the positions and statuses of all AUVs in the system, the control center
allocates the tasks based on their requirements. The objective is to minimize overall con-
sumption or travel distance. This means that AUVs only participate in the “execution”
step and not the “decision-making” step. The main centralized allocation methods include
model-based linear programming methods [4], objective clustering methods [5], genetic
algorithms [6], ant colony algorithms [7], particle swarm optimization [8], firefly algo-
rithm [9], etc. [10]. This method heavily relies on underwater communication and puts a
heavy computational burden on the control center. Therefore, it is preferred in situations
with good communication conditions and low computational complexity. The distributed
allocation method, on the other hand, involves AUVs communicating and “negotiating”
with each other to formulate allocation plans and then execute them. It can also be referred
to as decentralized allocation. The advantage of the distributed allocation method is that it
ensures maximum efficiency for individual AUVs and fully utilizes the intelligent elements
of AUVs. This algorithm is widely used in the field of robotics, including applications
in biological immune mechanisms [11], contract network algorithms [12], market auction
algorithms [13], as well as algorithms suitable for multi-agent information communication,
such as self-organizing maps (SOM) [14].

AUV clusters are divided into homogenous and heterogeneous types, and a com-
plex task requires collaboration among AUVs with different payloads. In underwater
environments, due to cost constraints, a single AUV cannot integrate all functions, and
thus, multiple types of heterogeneous AUVs are needed to collaborate on tasks. Therefore,
heterogeneous multi-AUV systems are receiving increasing attention. Reasonable AUV
task allocation can improve the efficiency of multi-AUV collaborative work and reduce the
cost of collaboration.

AUV clusters can be organized into master–slave and parallel configurations. In a
master–slave AUV system, one or a few vehicles serve as the master AUV with high-
precision equipment, while the remaining vehicles are configured as slave AUVs with
lower-precision equipment. During collaborative navigation, the master AUV transmits
its own position information to the slave AUVs. The slave AUVs utilize relevant acoustic
devices to obtain distance information between themselves and the master AUV. They then
combine this information to collaboratively correct their own error information, thereby im-
proving the overall navigation accuracy. Master–slave AUV systems can balance navigation
accuracy and equipment cost, making them widely applicable in practical scenarios.

J. Mar. Sci. Eng. 2024, 12, 162 3 of 21

For AUV path planning, there are currently many commonly used methods, such as
the A* algorithm [15], genetic algorithms [6,16–18], Ant Colony Optimization [7,19–22],
particle swarm optimization [19,23,24], and Differential Evolution [25–27]. With the increase
in environmental complexity and uncertainty, the requirements for AUV path planning are
becoming increasingly high [28,29]. In recent years, with the development of deep neural
networks, some self-learning methods, such as ones involving neural networks [30,31] and
reinforcement learning [32–34], have been introduced into AUV local path planning. Deep
reinforcement learning [35,36] combines deep neural networks and reinforcement learning
techniques and has also been proposed and applied to AUV local path planning [37].

1.2. Challenges and Innovations

The following issues need to be resolved:

1. How to group limited AUVs to complete all tasks with different requirements at each
task point while minimizing the overall cost? See Figure 1.

2. In cases with different requirements at each task point and with limitations on the
energy carried by the vessel, there is an issue with respect to how different task points
should be allocated to multiple AUV teams to ensure that overall consumption is
minimized. See Figure 2.

3. There is also an issue regarding the sorting of tasks while ensuring that the relevant
requirements are met to find the optimal solution, as shown in Figure 3.

4. In a scenario where all tasks need to be completed, the objective is to minimize overall
consumption, as shown in Figure 4.

J. Mar. Sci. Eng. 2024, 12, 162 3 of 22

improving the overall navigation accuracy. Master–slave AUV systems can balance navi-
gation accuracy and equipment cost, making them widely applicable in practical scenar-
ios.

For AUV path planning, there are currently many commonly used methods, such as
the A* algorithm [15], genetic algorithms [6,16–18], Ant Colony Optimization [7,19–22],
particle swarm optimization [19,23,24], and Differential Evolution [25–27]. With the in-
crease in environmental complexity and uncertainty, the requirements for AUV path plan-
ning are becoming increasingly high [28,29]. In recent years, with the development of deep
neural networks, some self-learning methods, such as ones involving neural networks
[30,31] and reinforcement learning [32–34], have been introduced into AUV local path
planning. Deep reinforcement learning [35,36] combines deep neural networks and rein-
forcement learning techniques and has also been proposed and applied to AUV local path
planning [37].

1.2. Challenges and Innovations
The following issues need to be resolved:

1. How to group limited AUVs to complete all tasks with different requirements at each
task point while minimizing the overall cost? See Figure 1.

2

3

3

3

1

3

3

3

A-AUV
demand

B-AUV
demand

C-AUV
demand

3

3

3

2

····

n

0

1

0

Task points

Type A Type B Type C

division

Group 1 Group 2 Group 3 Group n

····

AUV
Task

Figure 1. There are multiple task points, each specifying the type and quantity of AUVs required.
With several AUVs available, the task is to group these AUVs and then complete the respective tasks.

2. In cases with different requirements at each task point and with limitations on the
energy carried by the vessel, there is an issue with respect to how different task points
should be allocated to multiple AUV teams to ensure that overall consumption is
minimized. See Figure 2.

Figure 1. There are multiple task points, each specifying the type and quantity of AUVs required.
With several AUVs available, the task is to group these AUVs and then complete the respective tasks.

J. Mar. Sci. Eng. 2024, 12, 162 4 of 21
J. Mar. Sci. Eng. 2024, 12, 162 4 of 22

1 2 4

9989

6

8 37 33

10

Group n

AUV

Task

Figure 2. After grouping the AUVs, each task point has specific requirements for the quantity and
models of AUVs. How do we allocate the task points to AUV groups that meet their requirements?

3. There is also an issue regarding the sorting of tasks while ensuring that the relevant
requirements are met to find the optimal solution, as shown in Figure 3.

1

3

4

89

8

33

AUV
Task

Figure 3. Path planning for AUV groups.

4. In a scenario where all tasks need to be completed, the objective is to minimize overall
consumption, as shown in Figure 4.

1

34

89

8

33

56

7650

45

47

33

36 42

23

216846

····

The minimum total cost

AUV
Task

Figure 4. Complete all tasks with minimum total consumption.

The proposed algorithm has the following characteristics.
• The proposed algorithm simultaneously addresses the issues of AUV grouping, task

allocation, and path planning.
• By using prior experience to generate an initial population and incorporating local

search algorithms, the efficiency of the algorithm is significantly improved.
• The algorithm is based on underwater docks, which is in line with the current trend

of AUV deployment and retrieval, making it more practical.

Figure 2. After grouping the AUVs, each task point has specific requirements for the quantity and
models of AUVs. How do we allocate the task points to AUV groups that meet their requirements?

J. Mar. Sci. Eng. 2024, 12, 162 4 of 22

1 2 4

9989

6

8 37 33

10

Group n

AUV

Task

Figure 2. After grouping the AUVs, each task point has specific requirements for the quantity and
models of AUVs. How do we allocate the task points to AUV groups that meet their requirements?

3. There is also an issue regarding the sorting of tasks while ensuring that the relevant
requirements are met to find the optimal solution, as shown in Figure 3.

1

3

4

89

8

33

AUV
Task

Figure 3. Path planning for AUV groups.

4. In a scenario where all tasks need to be completed, the objective is to minimize overall
consumption, as shown in Figure 4.

1

34

89

8

33

56

7650

45

47

33

36 42

23

216846

····

The minimum total cost

AUV
Task

Figure 4. Complete all tasks with minimum total consumption.

The proposed algorithm has the following characteristics.
• The proposed algorithm simultaneously addresses the issues of AUV grouping, task

allocation, and path planning.
• By using prior experience to generate an initial population and incorporating local

search algorithms, the efficiency of the algorithm is significantly improved.
• The algorithm is based on underwater docks, which is in line with the current trend

of AUV deployment and retrieval, making it more practical.

Figure 3. Path planning for AUV groups.

J. Mar. Sci. Eng. 2024, 12, 162 4 of 22

1 2 4

9989

6

8 37 33

10

Group n

AUV

Task

Figure 2. After grouping the AUVs, each task point has specific requirements for the quantity and
models of AUVs. How do we allocate the task points to AUV groups that meet their requirements?

3. There is also an issue regarding the sorting of tasks while ensuring that the relevant
requirements are met to find the optimal solution, as shown in Figure 3.

1

3

4

89

8

33

AUV
Task

Figure 3. Path planning for AUV groups.

4. In a scenario where all tasks need to be completed, the objective is to minimize overall
consumption, as shown in Figure 4.

1

34

89

8

33

56

7650

45

47

33

36 42

23

216846

····

The minimum total cost

AUV
Task

Figure 4. Complete all tasks with minimum total consumption.

The proposed algorithm has the following characteristics.
• The proposed algorithm simultaneously addresses the issues of AUV grouping, task

allocation, and path planning.
• By using prior experience to generate an initial population and incorporating local

search algorithms, the efficiency of the algorithm is significantly improved.
• The algorithm is based on underwater docks, which is in line with the current trend

of AUV deployment and retrieval, making it more practical.

Figure 4. Complete all tasks with minimum total consumption.

The proposed algorithm has the following characteristics.

• The proposed algorithm simultaneously addresses the issues of AUV grouping, task
allocation, and path planning.

• By using prior experience to generate an initial population and incorporating local
search algorithms, the efficiency of the algorithm is significantly improved.

• The algorithm is based on underwater docks, which is in line with the current trend of
AUV deployment and retrieval, making it more practical.

2. The Optimization Model and Its Constraints
2.1. Problem Description

There are multiple tasks distributed across different locations within a certain area,
as shown in Figure 5. Each task has specific requirements in terms of AUV models and
quantities. The underwater dock houses several AUVs of different models, and the tasks
require different quantities and types of AUVs to work together in teams. Therefore, it is
necessary to group the AUVs, as shown in Figure 6. The onboard energy of the AUVs is
limited, and if the energy is not sufficient for covering the energy consumption for traveling

J. Mar. Sci. Eng. 2024, 12, 162 5 of 21

to the next location and returning, the AUVs will need to return to the dock for energy
replenishment. The objective is to complete all tasks while minimizing overall cost.

J. Mar. Sci. Eng. 2024, 12, 162 5 of 22

2. The Optimization Model and Its Constraints
2.1. Problem Description

There are multiple tasks distributed across different locations within a certain area,
as shown in Figure 5. Each task has specific requirements in terms of AUV models and
quantities. The underwater dock houses several AUVs of different models, and the tasks
require different quantities and types of AUVs to work together in teams. Therefore, it is
necessary to group the AUVs, as shown in Figure 6. The onboard energy of the AUVs is
limited, and if the energy is not sufficient for covering the energy consumption for travel-
ing to the next location and returning, the AUVs will need to return to the dock for energy
replenishment. The objective is to complete all tasks while minimizing overall cost.

Task
Underwater dock diagram

Figure 5. There are multiple task points in a water area, and there is an underwater dock in the
middle of the sea. Inside the dock, there are multiple AUVs. These AUVs will form a fleet to navigate
to the task points and complete all the tasks.

Figure 6. A diagram of an underwater dock allowing for AUV energy replenishment and infor-
mation exchange.

The completion of tasks can be divided into three parts: AUV grouping, task alloca-
tion, and path planning. AUV grouping involves grouping AUVs of different quantities
and types. Task allocation involves assigning different tasks to AUV teams. Path planning
involves determining the order in which tasks are completed. Each part is strongly cou-
pled and has a significant impact on the others. The grouping and task allocation are con-
strained by the availability of AUV quantities and types at each task point, while the path
planning is constrained by energy availability. Each part influences the others greatly, and
the previous task allocation and path planning decisions have a significant impact on

Figure 5. There are multiple task points in a water area, and there is an underwater dock in the
middle of the sea. Inside the dock, there are multiple AUVs. These AUVs will form a fleet to navigate
to the task points and complete all the tasks.

J. Mar. Sci. Eng. 2024, 12, 162 5 of 22

2. The Optimization Model and Its Constraints
2.1. Problem Description

There are multiple tasks distributed across different locations within a certain area,
as shown in Figure 5. Each task has specific requirements in terms of AUV models and
quantities. The underwater dock houses several AUVs of different models, and the tasks
require different quantities and types of AUVs to work together in teams. Therefore, it is
necessary to group the AUVs, as shown in Figure 6. The onboard energy of the AUVs is
limited, and if the energy is not sufficient for covering the energy consumption for travel-
ing to the next location and returning, the AUVs will need to return to the dock for energy
replenishment. The objective is to complete all tasks while minimizing overall cost.

Task
Underwater dock diagram

Figure 5. There are multiple task points in a water area, and there is an underwater dock in the
middle of the sea. Inside the dock, there are multiple AUVs. These AUVs will form a fleet to navigate
to the task points and complete all the tasks.

Figure 6. A diagram of an underwater dock allowing for AUV energy replenishment and infor-
mation exchange.

The completion of tasks can be divided into three parts: AUV grouping, task alloca-
tion, and path planning. AUV grouping involves grouping AUVs of different quantities
and types. Task allocation involves assigning different tasks to AUV teams. Path planning
involves determining the order in which tasks are completed. Each part is strongly cou-
pled and has a significant impact on the others. The grouping and task allocation are con-
strained by the availability of AUV quantities and types at each task point, while the path
planning is constrained by energy availability. Each part influences the others greatly, and
the previous task allocation and path planning decisions have a significant impact on

Figure 6. A diagram of an underwater dock allowing for AUV energy replenishment and inform-
ation exchange.

The completion of tasks can be divided into three parts: AUV grouping, task allocation,
and path planning. AUV grouping involves grouping AUVs of different quantities and
types. Task allocation involves assigning different tasks to AUV teams. Path planning
involves determining the order in which tasks are completed. Each part is strongly coupled
and has a significant impact on the others. The grouping and task allocation are constrained
by the availability of AUV quantities and types at each task point, while the path planning is
constrained by energy availability. Each part influences the others greatly, and the previous
task allocation and path planning decisions have a significant impact on subsequent tasks.
To achieve minimal overall consumption, both task allocation and path planning need to
be reasonable and coordinated with each other.

2.2. Modeling

Assumption: There are three types of AUVs, namely A, B, and C, in the underwater
dock. Each type of AUV has a different payload capacity and is used to fulfill various task
requirements. Specifically,

AUV = {AUV 1, AUV2, AUV3, . . . , AUVi} (1)

In this formula, “i” represents the index of the AUV. The AUVs are typically sorted in
the order of A, B, and C models.

J. Mar. Sci. Eng. 2024, 12, 162 6 of 21

According to the actual requirements, tasks are decomposed into different types of
task sets:

mission = {mission 1, mission2, . . . missionj
}

(2)

where j represents the index of the task.
Different types of tasks also require different types and quantities of AUVs. Often, a

single task requires the collaboration of multiple AUV models.

missionj =
{

AUVA
jn1, AUVB

jn2, AUVC
jn3, Mission_Energyj, sitej

(x,y,z)

}
(3)

In the above expression, “j” denotes the task number, “n” represents the required
quantity, Mission_Energyj indicates the energy consumed for the completion of this task
by an AUV. It is assumed that each AUV model consumes the same amount of energy for
the same task. sitej

(x,y,z) represents the location of the task, with the underwater dock being

set as the origin, denoted as siteO
(0,0,0).

To determine a set of AUV deployments based on the requirements of task missionj.

AUV_swarmj =
{

AUVi1 , AUVi2 , AUVi3 ,
}

(4)

AUV_swarmj denotes the configuration of the AUV for the j-th mission, while AUVi
with i indicates the i-th AUV.

Define the decision variable hj, which represents whether missionj is completed. A
value of 1 indicates that missionj has been completed; otherwise, it indicates that it has not
been completed.

hj =

{
1, Complete the mission;
0, Fail to complete the mission.

(5)

Each goal includes tasks that must be executed, totaling M tasks; that is,

M

∑
j=1

hj = M (6)

With the prerequisite of completing all tasks, the objective is to minimize costs, pri-
marily focusing on time to achieve the shortest overall duration.

Cost = min
M

∑
j=1

h_ cos tj (7)

where Cost represents the overall time cost, and h_cos tj denotes the time spent from

sitej−1
(x,y,z) to sitej

(x,y,z) to reach and complete the task.
Define the decision variable x(i,j) to represent whether missionj is executed. A value of

1 indicates that missionj is executed for AUVi; otherwise, it indicates that it is not executed.

x(i,j) =
{

1, AUVi → missionj;
0, other.

(8)

At the same moment, a task can be executed by multiple AUVs; that is,
n

∑
i=1

x(i,j) ≥ 1, j = 1, 2, . . . , M. (9)

At the same moment, any given AUV can only execute one task; that is,
n

∑
j=1

x(i,j) ≤ 1, i = 1, 2, . . . , N. (10)

The same AUV can execute a specific task only once; that is,

J. Mar. Sci. Eng. 2024, 12, 162 7 of 21

C

∑
c=1

x(i,j) ≤ 1. (11)

where c represents the number of times an AUV performs the same task.
When a group of AUVs is assigned a set of tasks, each AUV needs to assess its energy

status before undertaking the next task. The energy level after completing the subsequent
task should be sufficient for supporting its return. It is required that each AUV in the
group satisfies this constraint. If any AUV fails to meet this requirement, the entire group
must return.

E_remaini
j ≥ E_pathi

j→j+1 + E_missioni
j+1 + E_backi

j+1, i = 1, 2, . . . N; j = 1, 2, . . . M. (12)

where E_remaini
j represents the remaining energy of AUV i after completing task j, E_pathi

j→j+1

denotes the energy consumed in reaching the next task point, E_missioni
j+1 represents

the energy consumed by AUV i in executing task j, and E_backi
j+1 stands for the energy

consumed by AUV i in returning to the underwater dock at task point j + 1.
After completing a task and returning to the underwater dock, the AUV will undergo

energy replenishment, data exchange, and maintenance. Assuming different AUV models
consume the same amount of time and the duration is fixed, upon completing charging and
maintenance, the AUVs will be reorganized based on the task requirements to continue
task execution. MinT = 120 min.The time required for this process is at least 120 min, with
no specified maximum duration.

tD
j+1 − tA

j ≥ 120 (13)

where the unit is in minutes, tD
j+1 represents the moment of leaving the dock and commenc-

ing the j + 1 task, and tA
j represents the moment of completing the j task and arriving at the

dock. The time spent by the AUV entering and leaving the dock is entirely encompassed
within MinT.

The successful completion of the task relies on three underlying assumptions. These
are as follows:

Assumption 1. The marine environment is stable, and there is no interference from ocean currents.

Assumption 2. All target points are reachable, and there are no obstacles blocking the path.

Assumption 3. AUVs of different models consume the same amount of energy under the same
range of navigation.

Integrating the aforementioned constraints, establish a mathematical model for the
scheduling of a heterogeneous AUV cluster:

M
∑

j=1
hj = M

Cost = min
M
∑

j=1
h_ cos tj

n
∑

i=1
x(i,j) ≥ 1, j = 1, 2, . . . , M.

n
∑

j=1
x(i,j) ≤ 1, i = 1, 2, . . . , N.

C
∑

c=1
x(i,j) ≤ 1.

E_remaini
j ≥ E_pathi

j→j+1 + E_missioni
j+1 + E_backi

j+1, i = 1, 2, . . . N; j = 1, 2, . . . M.
tD
j+1 − tA

j ≥ 120

(14)

J. Mar. Sci. Eng. 2024, 12, 162 8 of 21

Therefore, each AUV group must be equipped to meet the minimum requirements for
each task before returning to the dock for charging after completing the mission, and the
charging time for each type of AUV is predetermined. Ultimately, the AUVs need to return
to the dock. The goal is to minimize the total number of dispatches of AUV groups and the
overall energy consumption.

3. Method

Solving the aforementioned problem poses significant challenges due to the complexity
introduced by a large number of variables and linear constraints, especially in the context
of large-scale problems. Relying on precise algorithms to address such issues proves
to be highly inefficient. There is a need for an efficient algorithm capable of obtaining
high-quality solutions within a reasonable timeframe. Therefore, this paper proposes a
metaheuristic algorithm called IGLSAPK. The algorithm is an improved genetic algorithm
that initially obtains a value through prior knowledge and incorporates a local search
algorithm during the iterative process. A flowchart of the algorithm’s process is illustrated
in Figure 7.

J. Mar. Sci. Eng. 2024, 12, 162 9 of 22

Start

Initialize the population
Gen=1

Evaluate fitness

Save the best individual

End

Gen>G？

Selection

Ordered Crossover

Mutation
Evaluate fitness

Elitism preservation

Gen=Gen+1

local searching algorithm

Reinsert offspring into
new population

Remove duplicate
individuals from the

population and replenish
the removed individuals

Display the current best
solution

Prior knowledge

N

Y

Figure 7. Complete flowchart of the algorithm’s process. Where G is the designated number of iter-
ations, and the iteration starts from 1, concluding when the count reaches G.

3.1. Chromosome Encoding
Using a genetic algorithm to solve the problem requires analyzing the problem and

designing a chromosome encoding method. Chromosome encoding is a crucial task as it
determines the feasibility and efficiency of the algorithm. The chromosome is composed
of task points and formation plans. The allocation plan is generated from the demands of
task points, so the number of task points is the same as the number of allocation plans.

Initially, 100 task points will be randomly generated, each containing three-dimen-
sional coordinate information and AUV demand information, as shown in Figure 8.

····

（−658 600 817）

3

3

3

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

9sum

（−513 −970 1558）

3

3

3

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

9sum

（138 17 1958）

1

0

0

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

1sum

（−446 −637 1206）

0

1

0

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

1sum

Figure 8. Partial task demands chart including three-dimensional coordinates and quantity require-
ments for various types of AUVs.

Figure 7. Complete flowchart of the algorithm’s process. Where G is the designated number of
iterations, and the iteration starts from 1, concluding when the count reaches G.

The approach begins by considering the demands of each task point as a formation
plan for AUVs, encoding them together with the task points to create a new coding format.
An initial population is generated using a total group generation algorithm that incorporates
prior knowledge, facilitating a more direct and efficient algorithm. Additionally, a penalty
factor is introduced, doubling the penalty for chromosomes violating the constraints
related to AUV types, quantity, and onboard energy limits. This accelerates the elimination

J. Mar. Sci. Eng. 2024, 12, 162 9 of 21

of chromosomes that violate constraints, thereby enhancing efficiency. To prevent the
algorithm from converging to local optima, a local search algorithm is incorporated into
the program, significantly improving convergence speed. As a result, a relatively optimal
solution is achieved after only 100 iterations. Further details on specific aspects will be
discussed in the following sections.

3.1. Chromosome Encoding

Using a genetic algorithm to solve the problem requires analyzing the problem and
designing a chromosome encoding method. Chromosome encoding is a crucial task as it
determines the feasibility and efficiency of the algorithm. The chromosome is composed of
task points and formation plans. The allocation plan is generated from the demands of task
points, so the number of task points is the same as the number of allocation plans.

Initially, 100 task points will be randomly generated, each containing three-dimensional
coordinate information and AUV demand information, as shown in Figure 8.

J. Mar. Sci. Eng. 2024, 12, 162 9 of 22

Start

Initialize the population
Gen=1

Evaluate fitness

Save the best individual

End

Gen>G？

Selection

Ordered Crossover

Mutation
Evaluate fitness

Elitism preservation

Gen=Gen+1

local searching algorithm

Reinsert offspring into
new population

Remove duplicate
individuals from the

population and replenish
the removed individuals

Display the current best
solution

Prior knowledge

N

Y

Figure 7. Complete flowchart of the algorithm’s process. Where G is the designated number of iter-
ations, and the iteration starts from 1, concluding when the count reaches G.

3.1. Chromosome Encoding
Using a genetic algorithm to solve the problem requires analyzing the problem and

designing a chromosome encoding method. Chromosome encoding is a crucial task as it
determines the feasibility and efficiency of the algorithm. The chromosome is composed
of task points and formation plans. The allocation plan is generated from the demands of
task points, so the number of task points is the same as the number of allocation plans.

Initially, 100 task points will be randomly generated, each containing three-dimen-
sional coordinate information and AUV demand information, as shown in Figure 8.

····
（−658 600 817）

3

3

3

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

9sum

（−513 −970 1558）

3

3

3

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

9sum

（138 17 1958）

1

0

0

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

1sum

（−446 −637 1206）

0

1

0

A-AUV
demand

Site B-AUV
demand
C-AUV

demand

1sum

Figure 8. Partial task demands chart including three-dimensional coordinates and quantity require-
ments for various types of AUVs.

Figure 8. Partial task demands chart including three-dimensional coordinates and quantity require-
ments for various types of AUVs.

Using the bubble sort method to sort the task points, first, sort the “sum” in descending
order. When two task points have the same “sum”, compare their A-AUV demand. If the
A-AUV demand is also the same, compare their B-AUV demand. If they are still the same,
compare their C-AUV demand. If the C-AUV demand is also the same, it means that the
AUV demands of the two task points are identical, and their order remains unchanged, as
shown in Figure 9. After sorting, assign numbers to the task points in sequence, totaling
100, with numbers ranging from 1 to 100.

Each row represents the data for a task point, including three-dimensional coordinate
information and the quantity and type demands of AUVs.

For the AUV scheduling problem with N task points, the following approach is taken:
first, sort the N task points and then consider the demands of these N task points as a
formation plan. Subsequently, assign numbers from 1 to N for the task points and from
N + 1 to 2N for the formation plans. In this scheme, the first N genes in the chromosome
represent the task points, and the subsequent N genes represent the formation plans. The
order of the first N genes indicates the sequence in which the task points are executed and
represents the path of the AUV formation, as shown in Figure 10.

Each task point contains three-dimensional coordinate information and specifications
regarding the AUV types and quantities required for that task point.

In terms of AUV formation, formations will be generated based on the demands of
task points. Normally, there would be 43 − 1 possible formation plans; however, in actual
scenarios, each formation plan may not necessarily be used only once. Therefore, based on
the AUV demands of each task point, corresponding formation plans are generated and
labeled accordingly. As mentioned earlier, they have been sorted, so the labeling starts with
101 for the demands of the first task point and continues in sequence. This results in a total
of 100 formation plans. As shown in Figure 11, scheduling plans can be generated based
on the formation plans.

J. Mar. Sci. Eng. 2024, 12, 162 10 of 21

J. Mar. Sci. Eng. 2024, 12, 162 10 of 22

Using the bubble sort method to sort the task points, first, sort the “sum” in descend-
ing order. When two task points have the same “sum”, compare their A-AUV demand. If
the A-AUV demand is also the same, compare their B-AUV demand. If they are still the
same, compare their C-AUV demand. If the C-AUV demand is also the same, it means
that the AUV demands of the two task points are identical, and their order remains un-
changed, as shown in Figure 9. After sorting, assign numbers to the task points in se-
quence, totaling 100, with numbers ranging from 1 to 100.

Each row represents the data for a task point, including three-dimensional coordinate
information and the quantity and type demands of AUVs.

Start

i>1

j<i

Sum[j]=Sum[j+1]

i=100

j=1

Sum[j]<Sum[j+1]

Swap(task[j],task[j+1])

i=i−1

End

A-AUV
demand[j]=A−AUV

demand[j+1]

B−AUV
demand[j]=B−AUV

demand[j+1]

C-AUV
demand[j]=C−AUV

demand[j+1]

A-AUV
demand[j]<A−AUV

demand[j+1]

B-AUV
demand[j]<B−AUV

demand[j+1]

C−AUV
demand[j]<C−AUV

demand[j+1]

Y

Y

j=j+1

Y

Y

Y

N

N

N

Y

Y

Y

N

N

N

N

N

Y

N

N

Y

Figure 9. Adopting the bubble sort algorithm to process data based on prior knowledge.

For the AUV scheduling problem with N task points, the following approach is taken:
first, sort the N task points and then consider the demands of these N task points as a
formation plan. Subsequently, assign numbers from 1 to N for the task points and from N
+ 1 to 2N for the formation plans. In this scheme, the first N genes in the chromosome
represent the task points, and the subsequent N genes represent the formation plans. The
order of the first N genes indicates the sequence in which the task points are executed and
represents the path of the AUV formation, as shown in Figure 10.

Each task point contains three-dimensional coordinate information and specifica-
tions regarding the AUV types and quantities required for that task point.

Figure 9. Adopting the bubble sort algorithm to process data based on prior knowledge.

J. Mar. Sci. Eng. 2024, 12, 162 11 of 22

Randomly generate 100 task points
1 2 3 4 5 6 98 99 100·······

6 （531 −298 1602）

3

2

3

A-AUV
demandSite
B-AUV

demand
C-AUV

demand
Figure 10. Randomly generate 100 task points, each comprising a serial number, three-dimensional
coordinates, and quantity requirements for 3 types of AUVs.

In terms of AUV formation, formations will be generated based on the demands of
task points. Normally, there would be 34 1− possible formation plans; however, in actual
scenarios, each formation plan may not necessarily be used only once. Therefore, based
on the AUV demands of each task point, corresponding formation plans are generated
and labeled accordingly. As mentioned earlier, they have been sorted, so the labeling
starts with 101 for the demands of the first task point and continues in sequence. This
results in a total of 100 formation plans. As shown in Figure 11, scheduling plans can be
generated based on the formation plans.

101 102 103 104 105 106 198 199 200·······

AUV grouping scheme

3 2 3Number
A-AUV B-AUV C-AUV

Figure 11. The 100 corresponding grouping plans, including the quantity of each type of AUV.

3.2. Data Preprocessing
For computational convenience, the data of the task points need to be processed to

obtain a 100 100× matrix. In this matrix, columns represent 100 formation plans, and
rows represent the demands of 100 task points. If a formation plan satisfies the demands
of a task point, the corresponding entry is 1; otherwise, it is 0. Since the demands of the
100 task points correspond to the respective formation plans, the matrix forms a main
diagonal of 1 s, indicating whether the formation plans satisfy the task points’ require-
ments. This information is stored in a matrix denoted as WORK, as shown in Equation
(14).

Figure 10. Randomly generate 100 task points, each comprising a serial number, three-dimensional
coordinates, and quantity requirements for 3 types of AUVs.

J. Mar. Sci. Eng. 2024, 12, 162 11 of 22

Randomly generate 100 task points
1 2 3 4 5 6 98 99 100·······

6 （531 −298 1602）

3

2

3

A-AUV
demandSite
B-AUV

demand
C-AUV

demand
Figure 10. Randomly generate 100 task points, each comprising a serial number, three-dimensional
coordinates, and quantity requirements for 3 types of AUVs.

In terms of AUV formation, formations will be generated based on the demands of
task points. Normally, there would be 34 1− possible formation plans; however, in actual
scenarios, each formation plan may not necessarily be used only once. Therefore, based
on the AUV demands of each task point, corresponding formation plans are generated
and labeled accordingly. As mentioned earlier, they have been sorted, so the labeling
starts with 101 for the demands of the first task point and continues in sequence. This
results in a total of 100 formation plans. As shown in Figure 11, scheduling plans can be
generated based on the formation plans.

101 102 103 104 105 106 198 199 200·······

AUV grouping scheme

3 2 3Number
A-AUV B-AUV C-AUV

Figure 11. The 100 corresponding grouping plans, including the quantity of each type of AUV.

3.2. Data Preprocessing
For computational convenience, the data of the task points need to be processed to

obtain a 100 100× matrix. In this matrix, columns represent 100 formation plans, and
rows represent the demands of 100 task points. If a formation plan satisfies the demands
of a task point, the corresponding entry is 1; otherwise, it is 0. Since the demands of the
100 task points correspond to the respective formation plans, the matrix forms a main
diagonal of 1 s, indicating whether the formation plans satisfy the task points’ require-
ments. This information is stored in a matrix denoted as WORK, as shown in Equation
(14).

Figure 11. The 100 corresponding grouping plans, including the quantity of each type of AUV.

J. Mar. Sci. Eng. 2024, 12, 162 11 of 21

3.2. Data Preprocessing

For computational convenience, the data of the task points need to be processed to
obtain a 100× 100 matrix. In this matrix, columns represent 100 formation plans, and rows
represent the demands of 100 task points. If a formation plan satisfies the demands of a
task point, the corresponding entry is 1; otherwise, it is 0. Since the demands of the 100 task
points correspond to the respective formation plans, the matrix forms a main diagonal
of 1 s, indicating whether the formation plans satisfy the task points’ requirements. This
information is stored in a matrix denoted as WORK, as shown in Equation (14).

WORK =

1 1 1 1 1 1 1 1 · · · 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 · · · 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 · · · 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 · · · 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 · · · 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 · · · 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 · · · 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 · · · 1 1 1 1 1 1 1 1

...
...

...
0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 1

100×100

(15)

Given the coordinates of each task point, the distances between each pair of task points
can be determined, including the dock, resulting in a total of 101 coordinate points. As
shown in Equation (15), the matrix is a square matrix of size 101 × 101, where the main
diagonal is entirely composed of 0 s. Rows and columns correspond to the 101 coordinate
points, and the values represent the distances between them. If we disregard the influence of
ocean currents, these distances can be considered as the energy consumption for movement.
In practical marine environments, ocean currents are often present. Thus, to account
for their impact, the data below can be modified according to actual ocean currents or
multiplied by relevant coefficients. However, this paper does not consider the influence. of
ocean currents at this time.

OCEAN =

0 1208.492 1905.632 1825.795 · · · 1850.779 1902.151 1962.931 1434.964
1208.492 0 1742.127 1270.379 · · · 1269.796 2229.182 1508.438 1313.938
1905.632 1742.127 0 639.5139 · · · 779.0372 1379.095 1248.187 489.1646
1825.795 1270.379 639.5139 0 · · · 334.797 1703.106 1024.552 575.2999

...
...

...
1850.779 1269.796 779.0372 334.797 · · · 0 1554.455 697.1349 703.0057
1902.151 2229.182 1379.095 1703.106 · · · 1554.455 0 1290.498 1352.749
1962.931 1508.438 1248.187 1024.552 · · · 697.1349 1290.498 0 1155.109
1434.964 1313.938 489.1646 575.2999 · · · 703.0057 1352.749 1155.109 0

101×101

(16)

3.3. Determining the Initial Population

According to the constraints imposed by the limitations and leveraging prior knowl-
edge, the initial population is generated, as shown in Algorithm 1. When the number and
types of AUVs in a formation are greater than or equal to the demands of a task point,
the task associated with that point can be executed. If the AUV count and types are less
than the task point’s demands, the task cannot be executed. Therefore, when forming

J. Mar. Sci. Eng. 2024, 12, 162 12 of 21

AUV formations, priority should be given to task points with higher AUV counts and
diverse AUV types. The AUV formation is established based on the demands of the task
points. The first step involves forming AUV formations to fulfill tasks associated with
high-demand task points, followed by randomly completing tasks associated with this
formation. The remaining AUVs are then grouped to maximize the completion of tasks
associated with other points. This approach involves sorting the formation plans according
to the allocation scheme and sequentially completing tasks associated with each task point.

Algorithm 1 Initial population generation algorithm based on prior knowledge

Input: Coordinates and demands of task points(newsorted_data), AUV-carried energy(cap),
Number of A-type AUVs(AUV_a), Number of A-type AUVs(AUV_b), Number of A-type
AUVs(AUV_c), Distance between task points(dist)
Output: Initial population(myinit_vc)
Set: c← 0//Task counter, m← 0//AUV task group counter

1: while any task in newsorted_data is not equal to 0
2: c← c + 1//new round of task scheduling
3: m← 0//clear AUV task group
4: cap← 10,000//Initialize the energy upper limit
5: residues← [AUV_a, AUV_b, AUV_c]//Remaining quantity of AUVs
6: for i← 1 to size(newsorted_data) do
7: if newsorted_data[i] != 0 then
8: if residues ≥ newsorted_data[i] then
9: m←m + 1//Create a new task group

10: route← []
11: for j← 1 to size(newsorted_data) do
12: if newsorted_data [i,j] != 0 then
13: append j to route
14: end if
15: end for
16: route← randomize(route)
17: new_route← [i, route]
18: for k← 1 to size(new_route) do//Check if cap is remaining
19: if cap >= required then
20: update cap, cell_route
21: zero newsorted_data [k]//Delete this task point
22: else
23: save cell_route to myinit_vc
24: break
25: end if
26: end for
27: end if
28: end if
29: end for
30: residues← residues—newsorted_data
31: end while
32: return myinit_vc

3.4. Fitness Function

In genetic algorithms, fitness is the primary indicator describing the performance
of an individual. Individuals are ranked based on the magnitude of their fitness, and
the fitness function is the driving force behind genetic algorithm operations [38]. For
maximization problems, individuals with higher fitness values are preferred, while for
minimization problems, those with lower fitness values are favored. The selection of the
fitness function directly affects the convergence speed of the genetic algorithm and its
ability to find the optimal solution. From a biological perspective, fitness is analogous to
the survival capability in the process of “survival of the fittest”, playing a crucial role in
the genetic process. Establishing a mapping relationship between the objective function

J. Mar. Sci. Eng. 2024, 12, 162 13 of 21

of the optimization problem and the fitness of individuals enables the optimization of the
objective function during the population evolution process.

Fit(x) =
1

f (x)
(17)

In this context, Fit(x) represents the fitness of an individual, and f (x) denotes the
total consumption after completing tasks where a larger value of f (x) corresponds to
lower fitness. In the algorithm proposed in this paper, fitness is defined based on the total
consumption involved in the completion of all tasks. After completing all tasks, the lower
the resource consumption for each task, the higher the fitness. Therefore, the algorithm
aims to minimize the consumption for each task and minimize the overall number of
task executions.

3.5. Penalty Factor

The introduction of a “penalty factor” enables the algorithm to search for solutions that
meet the problem requirements more efficiently [39]. When the chromosome encoding vio-
lates the problem’s constraints, the penalty factor reduces the probability of its selection, as
shown in Algorithm 2. This encourages the algorithm to converge more quickly and obtain
an optimal solution by penalizing solutions that do not adhere to the specified constraints.

P = N_ec× alpha + N_tc× belta + N_qc× c f num (18)

where N _ec is the count of violations against the vessel’s energy constraints, alpha is the
penalty function coefficient for violating the vessel’s energy constraints, N_tc is the count of
violations against AUV type constraints, belta is the penalty function coefficient for violating
AUV type constraints, N_qc is the count of violations against AUV quantity constraints,
and c f num is the penalty function coefficient for violating AUV quantity constraints.

3.6. Crossover Operation

Genetic algorithms maintain population diversity through crossover operators, where
chromosomes exchange portions of genes to form two new individuals. There are various
crossover operators designed for different optimization problems [40].

Currently, the standard crossover operators commonly used to address sorting and
scheduling problems include the Heuristic Crossover, Partially Mapped Crossover (PMX),
Edge Recombination Crossover (EER), Ordered Crossover (OX), Uniform Order-Based
Crossover (UOX), and Cycle Crossover (CX).

In Ordered Crossover (OX), random start and end positions are selected in both parent
chromosomes. The genes within the chosen region of parent chromosome 1 are copied
to the same position in offspring 1. Subsequently, the missing genes in offspring 1 are
sequentially filled in from parent chromosome 2. The other offspring is obtained in a similar
manner. Unlike PMX, OX does not require conflict detection, as shown in Figure 12.

3.7. Mutation Operation

The mutation probability is denoted as Pe. It is set so that the first gene of each
chromosome does not undergo mutation. For each other gene i, a random floating-point
number ri is generated in the range of 0 to 1. If ri is less than Pe, the gene is placed
in the mutation gene pool G and removed from the chromosome. Otherwise, the gene
remains unchanged. Subsequently, based on the “trial allocation method”, genes from G
are randomly inserted one by one into the chromosome.

J. Mar. Sci. Eng. 2024, 12, 162 14 of 21

Algorithm 2 Fitness algorithm with penalty factor

input: Chromosome(chrom),Shipboard battery capacity(cap)
output: Chromosome Cost(costF),Penalty function coefficient for violated battery
constraints(alpha), Penalty function coefficient for violated AUV type constraints(belta), Penalty
function coefficient for violated AUV quantity constraints(cfnum)
set: numcost = 0, cisu = 1, count = 0, sumcap = 0, alpha = 51,000, belta = 51,000, cfnum = 5000
1: violate_num = 0//Reset the count of violated battery constraints, violate_cus = 0//Reset

the count of violated AUV type constraints
2: Find the indices location0 in chrom where values are greater than 100
3: for i = 1 to length(location0)
4: if i = 1
5: route = chrom(1:location0(i))//Extract the path
6: xinghao = chrom(location0(i))//Record the AUV index
7: else
8: route = chrom(location0(i − 1):location0(i))
9: xinghao = chrom(location0(i))
10: end if
11: count = count + 1
12: VC{count} = route//Record the path
13: VC{count} = xinghao//Record the AUV serial number
14: end for
15: for h1 = 1 to 100
16: if VC{h1} is not empty
17: l1 = Path of VC{h1}
18: Check each task point in l1 one by one:
19: If there is a violation of the battery constraint, increment the violate_num by 1 and record it

in numcos.
20: If the constraint is satisfied, accumulate it in sumcap
21: end if
22: end for
23: for h2 = 1 to 100
24: if VC{h2} is not empty
25: Check if the task points on the path satisfy the AUV type constraints recorded in VC{h2}
26: If violated, increment the violate_cus counter
27: end if
28: end for
29: Initialize the AUV usage count to 0
30: for h3 = 1 to 100
31: if VC{h3} is not empty
32: Attempt to subtract the corresponding AUV usage count for this path scheme
33: If not exceeding the maximum usage count, then subtract accordingly
34: If exceeding the maximum usage count, then reset the AUV usage count to zero before

subtracting
35: end if
36: end for
37: costF = violate_num × alpha + violate_cus × belta + cisu × cfnum + numcost × 10 +

sumcap
38: costF = costF + 10,000

3.8. Local Search Algorithm

Due to the drawbacks of the crossover operator in genetic algorithms, where the
crossover rate results in randomness in chromosome crossover and cannot guarantee high-
quality offspring, it is necessary to select appropriate crossover partners for chromosomes.
Once parents are selected, the best crossover scheme is chosen for each pair of parents
to ensure the generation of the best possible offspring. By combining local optimization
algorithms with genetic algorithms, the quality of solutions is progressively improved,
accelerating the convergence speed.

J. Mar. Sci. Eng. 2024, 12, 162 15 of 21

J. Mar. Sci. Eng. 2024, 12, 162 16 of 22

sequentially filled in from parent chromosome 2. The other offspring is obtained in a sim-
ilar manner. Unlike PMX, OX does not require conflict detection, as shown in Figure 12.

Parent1

Parent2

Child2

Child1

11 12 13 14 15 16 17 101

101 12 13 14 15 11 17 16

12 11 15 14 17 13 16 101

101 11 15 14 17 16 12 13

Randomly select start and end points

Figure 12. Randomly select two parent individuals as the crossover objects. Choose a random sub-
string from the first parent individual and copy it to the corresponding position in the offspring
individual. Based on the order in the second parent individual, copy the remaining genes to the
offspring individual in the order of the unselected genes, ensuring that each gene is non-repetitive.

3.7. Mutation Operation
The mutation probability is denoted as eP . It is set so that the first gene of each chro-

mosome does not undergo mutation. For each other gene i , a random floating-point
number ir is generated in the range of 0 to 1. If ir is less than eP , the gene is placed in
the mutation gene pool G and removed from the chromosome. Otherwise, the gene re-
mains unchanged. Subsequently, based on the “trial allocation method”, genes from G
are randomly inserted one by one into the chromosome.

3.8. Local Search Algorithm
Due to the drawbacks of the crossover operator in genetic algorithms, where the

crossover rate results in randomness in chromosome crossover and cannot guarantee
high-quality offspring, it is necessary to select appropriate crossover partners for chromo-
somes. Once parents are selected, the best crossover scheme is chosen for each pair of
parents to ensure the generation of the best possible offspring. By combining local opti-
mization algorithms with genetic algorithms, the quality of solutions is progressively im-
proved, accelerating the convergence speed.

4. Simulation Experiment
4.1. Experimental Setup

To validate the effectiveness of the Improved Genetic Local Search Algorithm with
Prior Knowledge (IGLSAPK) proposed in this paper, a simulation experiment was con-
ducted. After 100 iterations of the program, the overall optimal solution was calculated.
The parameters for the genetic algorithm were set as follows: a population size of 100, 100
iterations, a crossover probability of 0.9, a mutation probability of 0.05, and a generation
gap of 0.9. The chromosome length was set to 200. The decision to iterate 100 times was
based on the observation that increasing the iteration count beyond 100 resulted in mini-
mal changes in the optimal value. Considering computational time costs, the iteration
count was set to 100. The chromosome length of 200 corresponds to 100 task points and
100 allocation schemes.

Figure 12. Randomly select two parent individuals as the crossover objects. Choose a random
substring from the first parent individual and copy it to the corresponding position in the offspring
individual. Based on the order in the second parent individual, copy the remaining genes to the
offspring individual in the order of the unselected genes, ensuring that each gene is non-repetitive.

4. Simulation Experiment
4.1. Experimental Setup

To validate the effectiveness of the Improved Genetic Local Search Algorithm with
Prior Knowledge (IGLSAPK) proposed in this paper, a simulation experiment was con-
ducted. After 100 iterations of the program, the overall optimal solution was calculated.
The parameters for the genetic algorithm were set as follows: a population size of 100,
100 iterations, a crossover probability of 0.9, a mutation probability of 0.05, and a genera-
tion gap of 0.9. The chromosome length was set to 200. The decision to iterate 100 times
was based on the observation that increasing the iteration count beyond 100 resulted in
minimal changes in the optimal value. Considering computational time costs, the iteration
count was set to 100. The chromosome length of 200 corresponds to 100 task points and
100 allocation schemes.

To compare the performance of the proposed algorithm, two other algorithms were
used for comparison: the Improved Genetic Local Search Algorithm (IGLSA) and the
Improved Genetic Algorithm with Priori Knowledge (IGAPK). IGLSA does not have prior
knowledge and initialization population algorithms, while IGAPK does not include a
local search algorithm, unlike IGLSAPK. The parameters are set the same as before, with
100 iterations.

4.2. Experimental Simulation and Result Analysis

Firstly, we validated the proposed Improved Genetic Local Search Algorithm with
Prior Knowledge (IGLSAPK). Within a specified region, 100 task points were randomly
generated, and for each task point, task requirements were generated randomly. Each task
point set a limit for each of the three types of AUVs, ensuring that the limit for each type
could not exceed three vessels. Through simulation experiments, an optimal deployment
scheme that minimizes the number of deployments while optimizing overall efficiency
was obtained. The final optimal paths meet the requirements of the task points while
minimizing overall consumption. The total number of deployments is 5, as shown in the
table below Table 1. Notably, during the second and third tasks, two groups are deployed
to accomplish the mission.

J. Mar. Sci. Eng. 2024, 12, 162 16 of 21

Table 1. Illustrative table of AUV group paths.

Mission Group Route Scheme Number Scheme

Mission1 Group1 0→ 4→ 64→ 66→ 8→ 94→ 14→ 69→ 24→ 2→ 25→ 100→
43→ 49→ 95→ 28→ 29→ 42→ 52→ 15→ 0 102 A3B3C3

Mission2
Group1 0→ 45→ 87→ 98→ 90→ 61→ 31→ 73→ 62→ 97→ 47→ 46

→ 63→ 13→ 71→ 0 112 A2B2C3

Group2 0→ 83→ 40→ 70→ 56→ 50→ 37→ 3→ 38→ 33→ 57→ 9→
17→ 68→ 89→ 86→ 0 103 A3B3C2

Mission3
Group1 0→ 39→ 75→ 84→ 99→ 58→ 92→ 77→ 36→ 81→ 55→ 0 125 A2B2C2

Group2 0→ 32→ 34→ 54→ 0 108 A3B2C3

Mission4 Group1 0→ 74→ 80→ 72→ 5→ 59→ 18→ 53→ 10→ 6→ 19→ 51→
65→ 85→ 44→ 67→ 20→ 48→ 76→ 91→ 93→ 0 105 A3B2C3

Mission5 Group1 0→ 23→ 60→ 11→ 26→ 1→ 7→ 21→ 41→ 88→ 79→ 22→
96→ 30→ 27→ 35→ 12→ 82→ 16→ 78→ 0 101 A3B3C3

The overall path is illustrated in Figure 13 (below). It can be observed that, based
on the requirements of each task point, all task points are traversed through 5 missions.
IGLSAPK simultaneously accomplishes the scheduling and path planning for AUVs, en-
suring minimum overall energy consumption. In large-scale problems, precise algorithms
often require extensive computation time, and with multiple constraints, the computa-
tional workload becomes significantly burdensome, often hindering the rapid acquisition
of effective solutions. In the presence of constraints such as AUV-type limitations, quan-
tity restrictions, and on-board energy limitations, where each constraint is coupled with
others, the difficulty of solving the problem sharply increases, leading to an exceptionally
large computational workload. Heuristic algorithms such as IGLSAPK can rapidly obtain
high-quality feasible solutions under these conditions.

J. Mar. Sci. Eng. 2024, 12, 162 18 of 22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. (a) The route map for all tasks; (b) the route map for Task 1; (c) the route map for Task 2,
Group 1; (d) the route map for Task 2, Group 2; (e) the route map for Task 3, Group 1; (f) the route
map for Task 3, Group 2; (g) the route map for Task 4; (h) the route map for Task 5.

Figure 13. Cont.

J. Mar. Sci. Eng. 2024, 12, 162 17 of 21

J. Mar. Sci. Eng. 2024, 12, 162 18 of 22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. (a) The route map for all tasks; (b) the route map for Task 1; (c) the route map for Task 2,
Group 1; (d) the route map for Task 2, Group 2; (e) the route map for Task 3, Group 1; (f) the route
map for Task 3, Group 2; (g) the route map for Task 4; (h) the route map for Task 5.

Figure 13. (a) The route map for all tasks; (b) the route map for Task 1; (c) the route map for Task 2,
Group 1; (d) the route map for Task 2, Group 2; (e) the route map for Task 3, Group 1; (f) the route
map for Task 3, Group 2; (g) the route map for Task 4; (h) the route map for Task 5.

Figure 14 depicts the genetic evolution curve over 100 iterations, where the horizontal
axis represents the number of iterations, and the vertical axis represents the optimal value
for each iteration. With the presence of penalty factors, the initial solutions exhibit higher
energy consumption. As the chromosomes undergo iterations, the solutions gradually
approach optimality, and around the 100th iteration, the convergence tends to plateau,
reaching a relative optimum.

J. Mar. Sci. Eng. 2024, 12, 162 19 of 22

Figure 14 depicts the genetic evolution curve over 100 iterations, where the horizontal
axis represents the number of iterations, and the vertical axis represents the optimal value
for each iteration. With the presence of penalty factors, the initial solutions exhibit higher
energy consumption. As the chromosomes undergo iterations, the solutions gradually ap-
proach optimality, and around the 100th iteration, the convergence tends to plateau,
reaching a relative optimum.

Figure 14. Iteration 100 times, where the horizontal axis represents the number of iterations, and the
vertical axis represents the optimal value.

5. Comparative Experiment
To further validate the effectiveness of the proposed IGLSAPK, simulations were con-

ducted separately for IGLSA and IGAPK. To ensure fairness in the experiments, the pa-
rameters and initial data were kept consistent with IGLSAPK, and an iteration count of
100 was used. After the simulation experiments, the data were compared and plotted on
a single graph (Figure 15).

It can be observed that IGLSA, lacking prior knowledge in generating the initial pop-
ulation and with the presence of penalty factors, started with a very high optimal value.
With the assistance of local search algorithms, the optimal value decreased rapidly after
multiple iterations. However, it required more iterations to achieve a value close to IG-
LSAPK. On the other hand, IGAPK, which is without a local search algorithm but benefits
from prior knowledge, started with the same optimal value as IGLSAPK. However, the
descent of the optimal value was much slower, requiring more iterations to approach the
values obtained by IGLSAPK. Additionally, IGAPK was more prone to getting stuck in
local optima. Despite this, each iteration ran relatively faster compared to IGLSAPK.

Table 2 reveals that the optimal values obtained with the initial population from prior
knowledge were reduced by 91%, 92%, 84%, and 58% in the 25th, 50th, 75th, and 100th
iterations, respectively, compared to IGLSA. It indicates that in the early stages where
optimal values are relatively small, the efficiency of the solution process is significantly
improved. By introducing the local search algorithm, the optimal values decreased by
38%, 49%, 44%, and 38%, respectively, compared to IGAPK. This suggests that the local
search algorithm facilitates the rapid convergence of optimal values, greatly enhancing
the efficiency of the solution process.

Figure 14. Iteration 100 times, where the horizontal axis represents the number of iterations, and the
vertical axis represents the optimal value.

5. Comparative Experiment

To further validate the effectiveness of the proposed IGLSAPK, simulations were
conducted separately for IGLSA and IGAPK. To ensure fairness in the experiments, the

J. Mar. Sci. Eng. 2024, 12, 162 18 of 21

parameters and initial data were kept consistent with IGLSAPK, and an iteration count of
100 was used. After the simulation experiments, the data were compared and plotted on a
single graph (Figure 15).

J. Mar. Sci. Eng. 2024, 12, 162 20 of 22

Figure 15. Comparison graph of IGLSAPK, IGLSA, and IGAPK algorithms after 100 iterations,
where the horizontal axis represents the number of iterations, and the vertical axis represents the
optimal value.

Table 2. A table comparing the optimal values for the IGLSAPK, IGLSA, and IGAPK algorithms at
the 25th, 50th, 75th, and 100th iterations.

Algorithm
Number of Iterations

25 50 75 100
IGLSAPK 106,482.50 85,298.34 82,935.19 82,768.82

IGLSA 1,250,001.21 1,080,032.35 530,031.92 200,031.78
IGAPK 173,131.74 170,121.81 150,023.62 135,021.43

6. Conclusions
This paper addresses the problem of AUV scheduling in underwater docks and pro-

poses the IGLSAPK algorithm. The algorithm tackles the coupled challenges of grouping,
task assignment, and path planning for a heterogeneous AUV fleet under complex con-
straints. Initially, the algorithm introduces a method to convert task point requirements
into AUV formation plans. By encoding AUV task points and formation plans simultane-
ously, the genetic algorithm efficiently addresses both AUV grouping and task assign-
ment. To enhance the algorithm’s efficiency, a knowledge-based initialization algorithm
was incorporated, enabling the rapid attainment of low optimal values in the initial itera-
tions. To further improve efficiency and prevent the algorithm from getting trapped in
local optima, an enhanced local search algorithm was introduced, significantly boosting
the algorithm’s performance. The results of our comparative experiments demonstrate
that IGLSAPK outperforms existing genetic algorithms, substantially increasing effi-
ciency. The proposed model is more applicable to real-world scenarios, and the intro-
duced OCEAN matrix can be adjusted based on actual ocean currents, making it more
adaptable to real marine environments.

In future research, we will study the AUV swarm scheduling algorithm for multiple
underwater docks and investigate the collaborative scheduling algorithm for AUV swarm
between surface mother ships and underwater docks.

Figure 15. Comparison graph of IGLSAPK, IGLSA, and IGAPK algorithms after 100 iterations,
where the horizontal axis represents the number of iterations, and the vertical axis represents the
optimal value.

It can be observed that IGLSA, lacking prior knowledge in generating the initial
population and with the presence of penalty factors, started with a very high optimal
value. With the assistance of local search algorithms, the optimal value decreased rapidly
after multiple iterations. However, it required more iterations to achieve a value close
to IGLSAPK. On the other hand, IGAPK, which is without a local search algorithm but
benefits from prior knowledge, started with the same optimal value as IGLSAPK. However,
the descent of the optimal value was much slower, requiring more iterations to approach
the values obtained by IGLSAPK. Additionally, IGAPK was more prone to getting stuck in
local optima. Despite this, each iteration ran relatively faster compared to IGLSAPK.

Table 2 reveals that the optimal values obtained with the initial population from prior
knowledge were reduced by 91%, 92%, 84%, and 58% in the 25th, 50th, 75th, and 100th
iterations, respectively, compared to IGLSA. It indicates that in the early stages where
optimal values are relatively small, the efficiency of the solution process is significantly
improved. By introducing the local search algorithm, the optimal values decreased by
38%, 49%, 44%, and 38%, respectively, compared to IGAPK. This suggests that the local
search algorithm facilitates the rapid convergence of optimal values, greatly enhancing the
efficiency of the solution process.

Table 2. A table comparing the optimal values for the IGLSAPK, IGLSA, and IGAPK algorithms at
the 25th, 50th, 75th, and 100th iterations.

Algorithm
Number of Iterations

25 50 75 100

IGLSAPK 106,482.50 85,298.34 82,935.19 82,768.82
IGLSA 1,250,001.21 1,080,032.35 530,031.92 200,031.78
IGAPK 173,131.74 170,121.81 150,023.62 135,021.43

J. Mar. Sci. Eng. 2024, 12, 162 19 of 21

6. Conclusions

This paper addresses the problem of AUV scheduling in underwater docks and pro-
poses the IGLSAPK algorithm. The algorithm tackles the coupled challenges of grouping,
task assignment, and path planning for a heterogeneous AUV fleet under complex con-
straints. Initially, the algorithm introduces a method to convert task point requirements
into AUV formation plans. By encoding AUV task points and formation plans simultane-
ously, the genetic algorithm efficiently addresses both AUV grouping and task assignment.
To enhance the algorithm’s efficiency, a knowledge-based initialization algorithm was
incorporated, enabling the rapid attainment of low optimal values in the initial iterations.
To further improve efficiency and prevent the algorithm from getting trapped in local
optima, an enhanced local search algorithm was introduced, significantly boosting the
algorithm’s performance. The results of our comparative experiments demonstrate that
IGLSAPK outperforms existing genetic algorithms, substantially increasing efficiency. The
proposed model is more applicable to real-world scenarios, and the introduced OCEAN
matrix can be adjusted based on actual ocean currents, making it more adaptable to real
marine environments.

In future research, we will study the AUV swarm scheduling algorithm for multiple
underwater docks and investigate the collaborative scheduling algorithm for AUV swarm
between surface mother ships and underwater docks.

Author Contributions: Conceptualization, J.W. and T.T.; methodology, J.W.; software, T.T.; validation,
J.W., T.T. and R.W.; formal analysis, J.W. and D.L.; investigation, Z.W. and D.L.; data curation, T.T.;
writing—original draft preparation, T.T.; writing—review and editing, J.W. and D.L; visualization,
T.T.; supervision, J.W.; project administration, J.W. and Z.W.; funding acquisition, D.L. and J.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Key Research and Development Program of Jiangsu Province
(No. BE2022062).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, T.; Sun, S.; Wang, P.; Dong, H.; Wang, X. A Multi-Objective Bi-Level Task Planning Strategy for UUV Target Visitation in Ocean

Environment. Ocean Eng. 2023, 288, 116022. [CrossRef]
2. Jin, N. Study on Firefly Algorithm and Its Application in Task Assignment of Multi-AUV System; Harbin Engineering University:

Harbin, China, 2016.
3. Zhang, W.; Wang, N.; Wei, S.; Du, X.; Yan, Z. Overview of Unmanned Underwater Vehicle Swarm Development Status and Key

Technologies. Harbin Gongcheng Daxue Xuebao/J. Harbin Eng. Univ. 2020, 41, 289–297. [CrossRef]
4. Wang, T.; Lima, R.M.; Giraldi, L.; Knio, O.M. Trajectory Planning for Autonomous Underwater Vehicles in the Presence of

Obstacles and a Nonlinear Flow Field Using Mixed Integer Nonlinear Programming. Comput. Oper. Res. 2019, 101, 55–75.
[CrossRef]

5. An AUV-Assisted Data Gathering Scheme Based on Clustering and Matrix Completion for Smart Ocean | IEEE Journals & Maga-
zine | IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/9068243 (accessed on 17 December 2023).

6. Hao, K.; Zhao, J.; Li, Z.; Liu, Y.; Zhao, L. Dynamic Path Planning of a Three-Dimensional Underwater AUV Based on an Adaptive
Genetic Algorithm. Ocean Eng. 2022, 263, 112421. [CrossRef]

7. Che, G.; Liu, L.; Yu, Z. An Improved Ant Colony Optimization Algorithm Based on Particle Swarm Optimization Algorithm for
Path Planning of Autonomous Underwater Vehicle. J. Ambient. Intell. Hum. Comput. 2020, 11, 3349–3354. [CrossRef]

8. Mousavian, S.H.; Koofigar, H.R. Identification-Based Robust Motion Control of an AUV: Optimized by Particle Swarm Optimiza-
tion Algorithm. J. Intell. Robot. Syst. 2017, 85, 331–352. [CrossRef]

9. Chandrawati, T.B.; Sari, R.F. A Review of Firefly Algorithms for Path Planning, Vehicle Routing and Traveling Salesman Problems.
In Proceedings of the 2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI), Batam, Indonesia,
16–17 October 2018; pp. 30–35.

https://doi.org/10.1016/j.oceaneng.2023.116022
https://doi.org/10.11990/jheu.201909039
https://doi.org/10.1016/j.cor.2018.08.008
https://ieeexplore.ieee.org/abstract/document/9068243
https://doi.org/10.1016/j.oceaneng.2022.112421
https://doi.org/10.1007/s12652-019-01531-8
https://doi.org/10.1007/s10846-016-0401-9

J. Mar. Sci. Eng. 2024, 12, 162 20 of 21

10. Wang, C.; Mei, D.; Wang, Y.; Yu, X.; Sun, W.; Wang, D.; Chen, J. Task Allocation for Multi-AUV System: A Review. Ocean Eng.
2022, 266, 112911. [CrossRef]

11. Polat, K.; Güneş, S. A New Method to Forecast of Escherichia Coli Promoter Gene Sequences: Integrating Feature Selection and
Fuzzy-AIRS Classifier System. Expert. Syst. Appl. 2009, 36, 57–64. [CrossRef]

12. Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Trans.
Comput. 1980, 29, 1104–1113. [CrossRef]

13. Akkiraju, R.; Keskinocak, P.; Murthy, S.; Wu, F. An Agent-Based Approach for Scheduling Multiple Machines. Appl. Intell. 2001,
14, 135–144. [CrossRef]

14. Zhu, D.; Cao, X.; Sun, B.; Luo, C. Biologically Inspired Self-Organizing Map Applied to Task Assignment and Path Planning of an
AUV System. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 304–313. [CrossRef]

15. Dechter, R.; Pearl, J. Generalized Best-First Search Strategies and the Optimality of A*. J. ACM 1985, 32, 505–536. [CrossRef]
16. Yan, S.; Pan, F. Research on Route Planning of AUV Based on Genetic Algorithms. In Proceedings of the 2019 IEEE International

Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Xi’an, China, 22–24 November 2019; pp. 184–187.
17. Zhang, Q. A Hierarchical Global Path Planning Approach for AUV Based on Genetic Algorithm. In Proceedings of the 2006

International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; pp. 1745–1750.
18. Naeem, W.; Sutton, R.; Chudley, J.; Dalgleish, F.R.; Tetlow, S. A Genetic Algorithm-Based Model Predictive Control Autopilot

Design and Its Implementation in an Autonomous Underwater Vehicle. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2004,
218, 175–188. [CrossRef]

19. Herlambang, T.; Rahmalia, D.; Yulianto, T. Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for
Optimizing PID Parameters on Autonomous Underwater Vehicle (AUV) Control System. J. Phys. Conf. Ser. 2019, 1211, 012039.
[CrossRef]

20. Wang, H.; Xiong, W. Research on Global Path Planning Based on Ant Colony Optimization for AUV. J. Marine. Sci. Appl. 2009, 8,
58–64. [CrossRef]

21. Yu, X.; Chen, W.-N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling in
Environments With Dense Obstacles. IEEE Trans. Evol. Computat. 2019, 23, 617–631. [CrossRef]

22. Ma, Y.-N.; Gong, Y.-J.; Xiao, C.-F.; Gao, Y.; Zhang, J. Path Planning for Autonomous Underwater Vehicles: An Ant Colony
Algorithm Incorporating Alarm Pheromone. IEEE Trans. Veh. Technol. 2019, 68, 141–154. [CrossRef]

23. Li, Z.; Liu, W.; Gao, L.-E.; Li, L.; Zhang, F. Path Planning Method for AUV Docking Based on Adaptive Quantum-Behaved
Particle Swarm Optimization. IEEE Access 2019, 7, 78665–78674. [CrossRef]

24. Wang, L.; Liu, L.; Qi, J.; Peng, W. Improved Quantum Particle Swarm Optimization Algorithm for Offline Path Planning in AUVs.
IEEE Access 2020, 8, 143397–143411. [CrossRef]

25. MahmoudZadeh, S.; Powers, D.M.W.; Yazdani, A.M.; Sammut, K.; Atyabi, A. Efficient AUV Path Planning in Time-Variant
Underwater Environment Using Differential Evolution Algorithm. J. Marine. Sci. Appl. 2018, 17, 585–591. [CrossRef]

26. Zhang, J.; Liu, M.; Zhang, S.; Zheng, R. AUV Path Planning Based on Differential Evolution with Environment Prediction. J. Intell.
Robot. Syst. 2022, 104, 23. [CrossRef]

27. Li, J.; Zhang, R.B. Multi-Auv Distributed Task Allocation Based on the Differential Evolution Quantum Bee Colony Optimization
Algorithm. Pol. Marit. Res. 2017, 24, 65–71. [CrossRef]

28. Cai, K.; Wang, C.; Cheng, J.; De Silva, C.W.; Meng, M.Q.-H. Mobile Robot Path Planning in Dynamic Environments: A Survey.
arXiv 2021, arXiv:2006.14195.

29. Mac, T.T.; Copot, C.; Tran, D.T.; Keyser, R.D. Heuristic Approaches in Robot Path Planning: A Survey. Robot. Auton. Syst. 2016, 86,
13–28. [CrossRef]

30. Sans-Muntadas, A.; Kelasidi, E.; Pettersen, K.Y.; Brekke, E. Learning an AUV Docking Maneuver with a Convolutional Neural
Network. IFAC J. Syst. Control 2019, 8, 100049. [CrossRef]

31. Fujii, T.; Ura, T. Neural-Network-Based Adaptive Control Systems for AUVs. Eng. Appl. Artif. Intell. 1991, 4, 309–318. [CrossRef]
32. Fang, Y.; Huang, Z.; Pu, J.; Zhang, J. AUV Position Tracking and Trajectory Control Based on Fast-Deployed Deep Reinforcement

Learning Method. Ocean Eng. 2022, 245, 110452. [CrossRef]
33. Duan, K.; Fong, S.; Chen, C.L.P. Reinforcement Learning Based Model-Free Optimized Trajectory Tracking Strategy Design for an

AUV. Neurocomputing 2022, 469, 289–297. [CrossRef]
34. Cao, X.; Sun, C.; Yan, M. Target Search Control of AUV in Underwater Environment With Deep Reinforcement Learning. IEEE

Access 2019, 7, 96549–96559. [CrossRef]
35. Wu, H.; Song, S.; Hsu, Y.; You, K.; Wu, C. End-to-End Sensorimotor Control Problems of AUVs with Deep Reinforcement Learning.

In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 5869–5874.

36. Carlucho, I.; De Paula, M.; Wang, S.; Petillot, Y.; Acosta, G.G. Adaptive Low-Level Control of Autonomous Underwater Vehicles
Using Deep Reinforcement Learning. Robot. Auton. Syst. 2018, 107, 71–86. [CrossRef]

37. Cheng, C.; Sha, Q.; He, B.; Li, G. Path Planning and Obstacle Avoidance for AUV: A Review. Ocean Eng. 2021, 235, 109355.
[CrossRef]

38. Nelson, A.L.; Barlow, G.J.; Doitsidis, L. Fitness Functions in Evolutionary Robotics: A Survey and Analysis. Robot. Auton. Syst.
2009, 57, 345–370. [CrossRef]

https://doi.org/10.1016/j.oceaneng.2022.112911
https://doi.org/10.1016/j.eswa.2007.09.010
https://doi.org/10.1109/TC.1980.1675516
https://doi.org/10.1023/A:1008363208898
https://doi.org/10.1109/TCDS.2017.2727678
https://doi.org/10.1145/3828.3830
https://doi.org/10.1243/1475090041737921
https://doi.org/10.1088/1742-6596/1211/1/012039
https://doi.org/10.1007/s11804-009-8002-7
https://doi.org/10.1109/TEVC.2018.2878221
https://doi.org/10.1109/TVT.2018.2882130
https://doi.org/10.1109/ACCESS.2019.2922689
https://doi.org/10.1109/ACCESS.2020.3013953
https://doi.org/10.1007/s11804-018-0034-4
https://doi.org/10.1007/s10846-021-01533-9
https://doi.org/10.1515/pomr-2017-0106
https://doi.org/10.1016/j.robot.2016.08.001
https://doi.org/10.1016/j.ifacsc.2019.100049
https://doi.org/10.1016/0952-1976(91)90045-8
https://doi.org/10.1016/j.oceaneng.2021.110452
https://doi.org/10.1016/j.neucom.2021.10.056
https://doi.org/10.1109/ACCESS.2019.2929120
https://doi.org/10.1016/j.robot.2018.05.016
https://doi.org/10.1016/j.oceaneng.2021.109355
https://doi.org/10.1016/j.robot.2008.09.009

J. Mar. Sci. Eng. 2024, 12, 162 21 of 21

39. Nanakorn, P.; Meesomklin, K. An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimization. Comput.
Struct. 2001, 79, 2527–2539. [CrossRef]

40. Arram, A.; Ayob, M. A Novel Multi-Parent Order Crossover in Genetic Algorithm for Combinatorial Optimization Problems.
Comput. Ind. Eng. 2019, 133, 267–274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0045-7949(01)00137-7
https://doi.org/10.1016/j.cie.2019.05.012

	Introduction
	AUV Cluster Scheduling
	Challenges and Innovations

	The Optimization Model and Its Constraints
	Problem Description
	Modeling

	Method
	Chromosome Encoding
	Data Preprocessing
	Determining the Initial Population
	Fitness Function
	Penalty Factor
	Crossover Operation
	Mutation Operation
	Local Search Algorithm

	Simulation Experiment
	Experimental Setup
	Experimental Simulation and Result Analysis

	Comparative Experiment
	Conclusions
	References

