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Abstract: Water quality prediction, a well-established field with broad implications across various
sectors, is thoroughly examined in this comprehensive review. Through an exhaustive analysis of
over 170 studies conducted in the last five years, we focus on the application of machine learning
for predicting water quality. The review begins by presenting the latest methodologies for acquiring
water quality data. Categorizing machine learning-based predictions for water quality into two
primary segments—indicator prediction and water quality index prediction—further distinguishes
between single-indicator and multi-indicator predictions. A meticulous examination of each method’s
technical details follows. This article explores current cutting-edge research trends in machine
learning algorithms, providing a technical perspective on their application in water quality prediction.
It investigates the utilization of algorithms in predicting water quality and concludes by highlighting
significant challenges and future research directions. Emphasis is placed on key areas such as
hydrodynamic water quality coupling, effective data processing and acquisition, and mitigating
model uncertainty. The paper provides a detailed perspective on the present state of application and
the principal characteristics of emerging technologies in water quality prediction.

Keywords: machine learning; water quality prediction; water quality index; remote sensing; coastal area

1. Introduction

In recent years, the industrialization and urbanization of coastal areas have experi-
enced increasing population pressures [1–4]. A significant volume of wastewater generated
by local residents is often discharged into the sea after undergoing rudimentary water
treatment [5–7]. The discharge of sewage into the receiving water body will significantly
increase turbidity and organic and inorganic substances, thereby changing the living envi-
ronment of marine organisms [8]. Discrepancies between sewage treatment standards and
marine water quality standards, particularly concerning specific key pollution values in
certain countries, have led to the degradation of seawater quality due to the discharge of un-
treated sewage [9]. Furthermore, the growing industrial sector and population necessitate
additional land for infrastructure development [10–12], making coastal reclamation [13–15]
a prominent topic. This activity, in turn, has instigated alterations in marine hydrodynamic
factors in coastal regions [16,17]. Reports illustrate the adverse effects of coastal erosion,
hurricanes, typhoons [18,19], and coastal flooding [20]. These occurrences not only have
environmental consequences but also impact aquaculture development [21,22] and bathing
areas [23,24]. To address these challenges, considerable efforts have been directed towards
predicting water quality and hydrodynamic movements in coastal regions.

Numerical models, which derive results from rules and data [25], have been a fre-
quently employed method for predicting changes in water quality [8,26–28] and hydro-
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dynamic movement [29], with a variety of models available. Despite their capability to
generate accurate simulations, their usage is significantly constrained by limitations. Firstly,
accuracy heavily depends on the selection of model parameters [30,31], posing a challenge
for beginners lacking a solid grasp of the underlying theories. Secondly, in an effort to
minimize complexity, numerous assumptions are integrated into numerical models, often
tailored to specific situations, rendering them less adaptable for direct application in differ-
ent environments. Furthermore, long-term and large-scale predictions have proven to be
exceedingly time consuming [32,33] and demand substantial computational space, making
it challenging to achieve real-time and prompt results during unexpected situations. In
response to these challenges, scientists have been actively seeking solutions to address
these inherent shortcomings.

In recent years, advancements in computer science have enabled integrating machine
learning into numerical simulations, offering high-speed and precise predictions [34,35].
Initially, the application of machine learning in coastal simulation faced limitations due to
the challenge of obtaining oceanic data. However, recent progress in satellite remote sensing
and unmanned aerial vehicle observation has alleviated these data constraints [36–38].
For instance, Nagur Cherukuru et al. [39] developed a semi-analytical remote sensing
model, facilitating the retrieval of suspended sediment and dissolved organic carbon
in coastal waters. This breakthrough enables the exploration of potential correlations
between water quality metrics and satellite imagery. The substantial increase in available
data, a fundamental aspect for training machine learning models [40,41], has played a
pivotal role. Machine learning, as a field in computer science, seeks implicit relationships
between input and output values, facilitating the rapid discovery of connections and the
establishment of criteria for prediction without restrictive assumptions. The expanded
dataset has significantly enhanced the effectiveness of machine learning applications.

This review primarily focuses on presenting the latest applications of machine learning
technologies in the identification and prediction of water quality. Additionally, we provide
an overview of the most recent methods for acquiring water quality data. Various cases
of water quality prediction, including chlorophyll-a, salinity, dissolved oxygen, and water
quality index prediction, are examined. Furthermore, the paper explores water quality
predictions through the coupling of hydrodynamics.

The subsequent sections of the paper are organized as follows: Section 2 delves into
data acquisition techniques, providing insights into the methods employed. Section 3
comprehensively discusses the most recent advancements in water quality prediction
through machine learning. Finally, the conclusions drawn and directions for future work
are explored in Section 4.

2. Acquiring Water Quality Data

The identification and collection of water pollution data constitute pivotal steps in
understanding the status of water quality [42,43]. Seawater quality is predominantly char-
acterized by its chemical, physical, and biological properties. Various water parameters [5],
including physical parameters (such as water temperature, total suspended solids, turbidity,
and total dissolved solids), chemical parameters (such as chemical and biochemical oxygen
demand, and dissolved oxygen) [44–46], biological parameters (such as Escherichia Coli
and enterococci levels [47]), can be collected by water quality inspectors.

Remote sensing, particularly via satellites, offers broader spatial coverage [48,49] and
requires less time compared to traditional field measurements. Leveraging the specific
reflection wavelength characteristics of objects, remote sensing enables the extraction of
data from images. For instance, water with a higher algae content exhibits the reflectance at
wavelengths of 550 nm [50]. Researchers have explored the potential correlation between
water quality and satellite images, deriving water quality parameters from these images
through empirical formulas [51,52]. Remote sensing algorithms can convert spectral re-
flectance into chlorophyll concentration, and widely used sensors such as SeaWiFS [53–57],
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MODIS [53,57,58], CZCS, MERIS [57,59], and OLCI [60] facilitate this process. Figure 1
illustrates the steps in obtaining water quality data through remote sensing.
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Figure 1. Steps for inverting water quality data from remote sensing data. The establishment of
spectral reference libraries is a prerequisite for extracting data from remote sensing monitoring [61].

In recent years, substantial strides have been conducted on leveraging optical features
to obtain water quality information [62–64]. Advancing water quality research necessitates
more precise data [65,66]. Consequently, methods that integrate optical features with
water quality parameters have been developed. Demonstrating feasibility, the use of
remote sensing to measure physical and chemical parameters in marine water has been
validated, such as turbidity, suspended sediment, dissolved organic carbon, chemical
oxygen demand (COD), ammonia nitrogen (NH3-N), dissolved oxygen (DO), Secchi disc
depth, and total suspended solids. Vaibhav Garg et al. [67] have shown that it is possible
to detect turbidity using Sentinel-2 multispectral remote sensing data through red and
near-infrared wavelengths. Cherukuru et al. [39] have successfully developed a new semi-
analytical remote sensing inversion model for retrieving suspended sediment and dissolved
organic carbon in coastal waters. High-performance inversion results were achieved for
four water quality parameters: chemical oxygen demand (COD), turbidity, ammonia
nitrogen (NH3-N), and dissolved oxygen (DO), indicating the potential application value
of near-surface remote sensing in inland, coastal, and various water bodies [68]. Yuan Fong
Su et al. [69] established univariate and multivariate water quality evaluation models for
retrieving sea surface reflectance using SPOT remote sensing images, applying them to
SPOT multispectral images to generate distribution maps for three water quality variables:
Secchi disc depth, turbidity, and total suspended solids. The study demonstrated the
feasibility of utilizing satellite remote sensing images for coastal water quality mapping.

Machine learning has excelled in normalizing the difference in chlorophyll, turbidity,
and the salinity index, successfully classifying water quality in Sentinel-2 images. The
Classification and Regression Tree method has accurately identified macroscopic bloom
locations with over 98% accuracy [70]. Figure 2 shows the steps in building a machine
learning model.
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Figure 2. Steps for building a model through machine learning. (1) Data collection: Identify the
specific water quality parameters you want to predict. Gather a comprehensive dataset. (2) Data
mugging: Clean the dataset by handling missing values, outliers, and irrelevant features. (3) Feature
extraction: Identify relevant features that contribute to the prediction task. (4) Feature engineering:
Transforming raw data into better representations of the essential features of a problem. (5) Model
selection: Choose appropriate machine learning algorithms. (6) Model training: Train the selected
model using the training dataset. (7) Model evaluation: Assess the model’s performance on the
testing dataset using appropriate evaluation metrics.

It is crucial to emphasize that water quality indicators lacking optical mechanisms,
which rely on mathematical models or intermittent methods, cannot be directly measured
through remote sensing. Based on a high correlation between non-optical active parameters
and optical active parameters, in a study by Hanyu Li et al. [71], Landsat 5/8 remote
sensing images and measured total nitrogen (TN) and total phosphorus (TP) were utilized
to investigate the modeling effects of machine learning methods. The results confirmed that
machine learning algorithms are well suited for inverting non-optical activity parameters
in coastal water bodies.

3. Utilization of Machine Learning in Water Quality Prediction

Changes in water quality in coastal areas are influenced by both natural and anthro-
pogenic factors [72–76]. Pollutants in the marine environment are not only from sewage
discharge but also from natural activities, whereby water bodies transport pollutants
through inherent circulation processes [77,78], including rainfall, runoff [79], seawater
intrusion, and tidal intrusion, ultimately merging into the ocean. Water quality pollu-
tion encompasses a broad spectrum of sources and complex causes, rendering accurate
results challenging through mechanistic analysis. Nonetheless, given the extensive impact
and threats posed to industrial production, human lives, and the ecological environment,
real-time identification and prediction of water quality pollution are imperative.
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3.1. Single Water Quality Prediction Using Machine Learning

Machine learning is well suited for predicting water quality as it can identify the factors
causing changes and reveal potential complex relationships between variables [80,81] and
their predicted outcomes. Machine learning models have found extensive applications
across various fields [82–85]. For instance, a neural network-based algorithm has been
utilized to monitor turbidity in the marine environment [86]. Jun Ma et al. [87] employed a
combination of Deep Matrix Factorization and Deep Neural Network to accurately predict
BOD values. Furthermore, Decision Forest, Decision Jungle, and Boosted Decision Tree
achieved accuracy scores exceeding 99% for predicting Escherichia Coli and enterococci
levels [47].

3.1.1. Prediction of Chlorophyll-a

Chlorophyll is a crucial water quality parameter commonly employed to assess
biomass [88,89]. Elevated chlorophyll values indicate eutrophication within a water
body [90,91], often associated with increased pollutant input, diminished dissolved oxygen,
and the emergence of toxic cyanobacteria blooms. Two primary sources provide chloro-
phyll data: on-site measurements, which possess inherent limitations discussed earlier,
and numerical simulation technology. Despite numerous attempts to predict chlorophyll
content through numerical simulations, challenges arise due to the complex interplay of
physical and mixing processes involving other physicochemical parameters related to water
quality, as well as external factors such as light and temperature.

Given the uncertainties associated with marine biochemical parameters, numerical
simulations have not yielded entirely satisfactory results in simulating phytoplankton
biomass. Growing efforts and promising results are emerging in the realm of data-driven
modeling for water quality [92–94]. For instance, Xin Yu et al. [95] employed Visible
Infrared Imaging Radiometer Suite satellite data from 2011 to 2018 and to train a machine
learning-based model and utilized a data interpolation empirical orthogonal function.
Driven by external forcing including river discharge, nutrient loadings, solar radiation,
wind, and air temperature, the data-driven model achieved an average root mean square
error of 1.85 µg/L for the entire bay with overall satisfactory performance.

In a study by Yong Sung Kwon et al. [96], machine learning techniques utilizing
bands from 1 to 4 obtained from Landsat-8 Operational Land Imager satellite images
demonstrated satisfactory performance, highlighting the effectiveness of combining remote
sensing and machine learning for estimating chlorophyll-a concentration. Huanmei Yao
et al. [97] utilized the Gradient Boosting Decision Tree model to estimate Chl-a concen-
trations, combining Landsat 8 OLI satellite data with a nominal 30 m spatial resolution
from the United States Geological Survey with field measurements. The Gradient Boosting
Decision Tree model exhibited a higher accuracy (MAE = 0.998 µg/L, MAPE = 19.413%,
and RMSE = 1.626 µg/L) compared to different physics models.

Acknowledging the efficacy of machine learning as a prediction method, scientists
continually explore optimal machine learning-based models for prediction. Hae-Ran Kim
et al. [98] determined that the integrated learning method Extreme Gradient Boosting,
combined with the single model Support Vector Regression, achieved superior results
compared to six other machine learning algorithms (Regression Tree, Support Vector Re-
gression, Bagging, Random Forest, Gradient Boosting Machine, and Extreme Gradient
Boosting) in predicting Chl-a concentration. In another study, Diego Gómez et al. [99]
evaluated the performance of Random Forest, Support Vector Machine, Artificial Neu-
ral Network, and Deep Neural Network algorithms. ANN demonstrated better perfor-
mance under specific conditions, but when considering more factors, the other three
methods were preferable. The most successful outcome was achieved by the Random
Forest algorithm without using any feature selection techniques, yielding R2 = 0.92 and
RMSE = 0.82 mg/m3. Mohebzadeh and Lee [100] employed three machine learning tech-
niques (Support Vector Regression, Random Forest Regression, and Long Short-Term
Memory) as a downscaling approach, concluding that second degree multiple polynomial
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regression and Support Vector Regression–Radial Basis Function could produce high-
resolution Chl-a maps. Junan Lin et al. [101] used four machine learning models (Support
Vector Regression, Random Forest Regression, Wavelet Analysis—Back Propagation Neural
Network, and Wavelet Analysis—Long Short-Term Memory) to predict chlorophyll-a in
coastal waters, successfully forecasting algal blooms, with Wavelet Analysis—Back Propa-
gation Neural Network and Wavelet Analysis—Long Short-Term Memory outperforming
the others. Jie Niu et al. [102] incorporated particulate organic carbon and particulate
inorganic carbon as predictive factors in machine learning and deep learning models to
estimate Chl-a concentration along the coast. The results showed that the Gaussian pro-
cess regression model outperformed the deep learning model in terms of stability and
robustness. Due to differences and varying data characteristics, a universally superior
method cannot be determined; the appropriate approach should be selected based on data
characteristics and local conditions.

Although the mentioned machine learning algorithms can yield highly satisfactory
results, certain studies have noted limitations in algorithms like Support Vector Ma-
chines [103], attributing this to their low-computational efficiency due to the nonlinear
relationship between variables and outputs.

In addition to commonly used traditional machine learning methods, increasingly spe-
cialized machine learning algorithms are being developed. Hua Su et al. [104] introduced
LightGBM, surpassing traditional methods and OLCI Chl-a products. Nima Pahlevan
et al. [105] presented the mixed density network (MDN) simulation applicable to MSI and
OLCI data.

3.1.2. Prediction of Salinity

Salinity is a pivotal factor influencing the physical, chemical, and biological processes
in the ocean [106–108]. The salt content in seawater directly impacts its density [109,110],
consequently influencing circulation and stratification. Salinity distribution plays a crucial
role in the growth and reproduction of marine organisms. To gain a deeper understanding
of salinity distribution, a method has been devised, relying on historical data to train
machine learning models and extract developmental trends. Guillou et al. [111] delved into
machine learning algorithms to simulate the nonlinear and intricate relationship between
salinity and input parameters (such as tide-induced free-surface elevation, river discharges,
and wind velocity). Priyanka Chawla et al. [112] developed an effective regression and
machine learning model for predicting water quality salinity and forecasting future salinity
levels based on historical records. Lal and Datta [113] created independent models (Artifi-
cial Neural Network, Gaussian Process, and Support Vector Regression) to construct both
homogeneous and heterogeneous models capable of predicting salinity concentrations. The
results highlight the superiority of the heterogeneous model over all independent models
and numerical salt transport models.

3.1.3. Prediction of Dissolved Oxygen

Dissolved oxygen, representing molecular oxygen in the water environment [114,115],
is influenced by factors such as atmospheric pressure, water temperature, and salt content.
A decrease in atmospheric pressure, an increase in water temperature, or higher salt content
can lead to a decrease in dissolved oxygen. The dissolved oxygen level in water results from
the comprehensive effects of water quality and environmental conditions. Typically ranging
between 5–10 mg/L in source water, it approaches saturation in natural water surfaces.
Excessive reproduction of algae can cause dissolved oxygen to become supersaturated. In
cases of pollution by organic and inorganic reducing substances, dissolved oxygen may
decrease or approach zero, activating anaerobic bacteria and deteriorating water quality.
Water hypoxia poses a severe environmental challenge in coastal areas worldwide [116],
leading to significant economic losses when dissolved oxygen falls below a critical threshold,
causing mass deaths of aquatic organisms [116,117].
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The successful application of past cases has proven the possibility of machine learning
for predicting dissolved oxygen. Eric Ariel L. Salas et al. [118] trained two machine learning
algorithms, Random Forest and Support Vector Machine, to predict spatiotemporal varia-
tions in dissolved oxygen concentrations using spectral predictors derived from Sentinel-2
images, yielding accurate results. Manuel Valera et al. [119] compared the performance of
Random Forest and Support Vector Machine, with Random Forest consistently performing
slightly better, given its ease of tuning and training.

Despite the feasibility of machine learning-based dissolved oxygen prediction, ac-
quiring water quality data in challenging environments remains a hurdle. Seongsik Park
et al. [120] introduced redox potential as a preferred input variable, using machine learning
to predict dissolved oxygen—a cost-effective method.

3.1.4. Prediction of Multiple Water Quality Parameters

Compared with the prediction of specific water quality parameters, methods for
predicting multiple water quality parameters can achieve better results. For instance,
Yuan-Fong Su et al. [69] discovered that a multivariate model considering the wavelength-
dependent comprehensive impact of various seawater components on sea surface re-
flectance outperformed the univariate model. Identifying the model with multiple parame-
ters which predicts the best results has been widely studied. Yong Hoon Kim et al. [121]
used three machine learning methods (Random Forest, Cubist, Support Vector Regres-
sion) to predict chlorophyll-a and suspended particulate matter indicators in coastal en-
vironments, with Support Vector Regression showing superiority. Shang Tian et al. [122]
compared four machine learning algorithms (Extreme Gradient Boost, Support Vector
Regression, Random Forest, and Artificial Neural Network) in retrieving chlorophyll-a, dis-
solved oxygen, and ammonia nitrogen from inland reservoirs, with Extreme Gradient Boost
showing superior performance. Patricia Jimeno-Sáez et al. [123] utilized machine learning
(Multi-layer Neural Networks and Support Vector Regression) to predict chlorophyll-a
levels based on target dataset information from nine different water quality parameters,
demonstrating satisfactory results with the Support Vector Regression model outperform-
ing them all. Xiaotong Zhu et al. [124] estimated chlorophyll-a, turbidity, and dissolved
oxygen in the Shenzhen Bay area using an ensemble machine learning model based on
Sentinel-2 satellite remote sensing images, yielding satisfactory performance. Nguyen
et al. [125] applied three machine learning methods (Decision Tree, Random Forest, Gradi-
ent Augmented Regression, and Ada Augmented Regression) based on Sentinel-2 images
to establish a seawater quality parameter model, with Random Forest producing the best
results. Shengyue Chen et al. [126] trained Random Forest, Support Vector Machine, and
Backpropagation Neural Network models using water temperature, hydrogen ion concen-
tration, conductivity, dissolved oxygen, and turbidity as water quality datasets to estimate
total phosphorus, total nitrogen, and ammonia nitrogen in small-scale coastal basins, with
the Random Forest model outperforming the Support Vector Machine and Backpropagation
Neural Network models in estimation performance. Table 1 lists the simulation parameters
mentioned above and the best model in the simulation. Researchers select models based on
the simulation area and simulation parameters.

Table 1. Comparison table of existing research performance.

Author Algorithms Predicted Parameters Best Algorithms

Yong Hoon Kim
et al. [121] Random Forest, Cubist, Support Vector Regression Chlorophyll-a and suspended particulate

matter indicators
Support Vector

Regression

Shang Tian
et al. [122]

Extreme Gradient Boost, Support Vector Regression,
Random Forest, and Artificial Neural Network

Chlorophyll-a, dissolved oxygen, and
ammonia nitrogen

Extreme Gradient
Boost

Patricia Jimeno-Sáez
et al. [123]

Multi-layer Neural Networks and Support
Vector Regression

Chlorophyll-a (based on target dataset of
nine different water quality parameters)

Support Vector
Regression
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Table 1. Cont.

Author Algorithms Predicted Parameters Best Algorithms

Xiaotong Zhu [124]

ensemble machine learning model (Extreme
Gradient Boosting, Support vector regression,

Multi-Layer Perception, and mixture
density networks)

Chlorophyll-a, turbidity, and
dissolved oxygen

Ensemble machine
learning model

Nguyen et al. [125] Decision Tree, Random Forest, Gradient Augmented
Regression, and Ada Augmented Regression

Total suspended solids, chlorophyll-a,
chemical oxygen demand, and

dissolved oxygen
Random Forest

Shengyue Chen
et al. [126]

Random Forest, Support Vector Machine, and
Backpropagation Neural Network models

Total phosphorus, total nitrogen, and
ammonia nitrogen Random Forest

3.2. Prediction of Coastal Water Quality Index Using Machine Learning

The water quality index, providing an overall assessment of a water body at a specific
location and moment [127–129], is a method developed for analyzing the water quality
of marine systems [130]. Its primary advantage lies in the use of simple mathematical
functions that can convert multifaceted information into a straightforward numerical
expression, conveying the environmental status to the public. This method is relatively
easy for non-professionals to comprehend. Typically, this technique comprises four crucial
elements [131,132]: (i) indicator selection process [133]; (ii) sub-index process; (iii) indicator
weighting process; and (iv) aggregation function. The calculation is as follows:

WQI = ΣWiQi (1)

where Qi is the water quality of a single parameter, Wi is the weight of the corresponding
water quality parameter.

Sangeeta Pati et al. [134] developed a water quality index employing cluster analysis
to categorize data into three water quality characteristics. Discriminant analysis was then
applied to generate discriminant functions, effectively measuring multiple parameters
of Indian coastal waters. The results demonstrated the utility of the WQI method in
handling complex nutrient data and identifying pollution sources. Values of water quality
parameters corresponding to the water quality index value are shown in Figure 3.
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Currently, the uncertainty of the WQI model has been revealed by several
studies [136–140]. The uncertainty of the water quality index model mainly arises from the
indicator selection process and the indicator weighting process. Problems occur due to
inappropriate sub-indexes, parameter weightings, inappropriate aggregation functions,
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or an overestimation of the WQI index that does not reflect the real information of water
quality. To address these issues, some research has attempted to solve the uncertainty
and provide accurate predictions of the water quality index [138,141–145]. Several studies
have applied various machine learning algorithms such as Extreme Gradient Boosting,
Support Vector Machine, Random Forest, and Decision Tree algorithms [146] to compare
the algorithm performance in predicting WQIs correctly.

Michelle C. Tanega et al. [147] applied machine learning classification algorithms such
as Random Forest, Decision Tree, and Support Vector to calculate the water quality index
and water quality classification of Lake Taal in the Philippines. The results showed that
the accuracy of Random Forest was the highest at 95.0%, followed by decision trees with
the same accuracy. The accuracy of support vector machines was 93.33%. Md Galal Uddin
et al. [137] proposed an improved Water Quality Index (WQI) model for predicting coastal
water quality, which is more objective and data driven, and is less susceptible to masking
and fuzzy errors. This model uses the machine learning algorithm Extreme Gradient
Boosting to rank water quality indicators based on their impact and importance. Zohreh
Sheikh Khozani et al. [148] attempted to use intelligent models with different functions
to predict the water quality index. Using three different machine learning techniques,
including Multi-layer Perceptron, Convolutional Neural Network, and Short-term Memory,
to perform WQI prediction. All three models have shown good performance in predicting
WQI, effectively shortening the calculation time and reducing errors in the derivation
process of sub-indicators. Guize Liu et al. [149] proposed a prediction system based on the
Support Vector Machine and Particle Swarm Optimization algorithm. The results show that
the maximum error of the water pollution index prediction model for sample prediction
is 2.41%, the average error is 1.24%, and the root mean square error is 5.36 × 10−4, with a
correlation coefficient of 0.91 squared. The SVM-PSO algorithm has good sewage prediction
ability. Md Galal Uddin et al. [134] conducted in-depth research on indicator selection
techniques to reduce significant uncertainty in evaluation. Analyzing the effects of 18
different FS technologies, constructing 15 water quality indicator combinations, and testing
the performance of the model using nine machine learning algorithms. The results indicate
that the Random Forest algorithm can effectively select key water quality indicators. The
Deep Neural Network algorithm predicts a subset more accurately.

These methods have achieved relatively effective results but have not fundamentally
improved WQI. Md Galal Uddin et al. [136] used machine learning techniques to improve
the newly developed Weighted Quadratic Mean-WQI model architecture to reduce model
uncertainty. They used eight widely used machine learning algorithms, Decision Tree,
Extra Tree, Extreme Gradient Boosting, Random Forest, Support Vector Machine, K-Nearest
Neighbors, Linear Regression, and Gaussian Naïve Bayes, to reduce the uncertainty of the
WQI model and improve the model architecture in modeling coastal WQIs.

3.3. Prediction of Water Quality through Coupling Hydrodynamics and Water Quality

The primary distinction between nearshore waters and natural rivers is that the
upstream of natural river reservoirs is nearly unaffected by downstream water bodies,
while nearshore water bodies are not only influenced by shore discharge but also by ocean
water bodies due to tides and storms [150,151]. Pollutants may be mixed and washed by
seawater, making the changes in water quality more complex. Therefore, it is necessary to
combine models with hydrodynamic factors to predict changes in ocean water quality.

Currently, hydrodynamic factor prediction has made outstanding progress [152–154],
and simulation of hydrodynamic processes can yield relatively accurate results. Kai Fei
et al. [155] established a numerical simulation model for storm surges coupled with hydrol-
ogy and hydrodynamics, successfully calculating the relative contributions of each driving
factor to water level using Extreme Gradient Boosting. Shamshirband et al. [156] proposed
a nested grid numerical model that utilizes water depth and surface wind field data for
wave height modeling. The combination of hydrodynamic models and machine learning
can improve analysis reliability and computational efficiency [157,158]. For example, his-
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torical data or simulated data from hydrodynamic models can be used to train machine
learning models to predict wave heights [159,160], hurricane storm surge hazards [161,162],
floods [163], erosion [164], and water level characteristics of storm surges [155]. Notably, a
nearshore wave and hydrodynamic prediction model by Wei and Davison [165] based on
Convolutional Neural Networks can accurately predict the propagation and fragmentation
of waves on nearshore slopes, including detailed wave peak bending and separation. Riaz
et al. [166] achieved the prediction of near-bottom hydrodynamic conditions in rapidly
changing water flows. This detailed simulation provides a reference for future analyses of
water quality changes.

Based on the results of hydrodynamic prediction, it is possible to predict the water
quality status of coastal areas through hydrodynamic coupling hydrology. Hung Vuong
Pham et al. [167] has designed a coastal risk assessment model based on Bayesian networks,
predicting the water quality parameters of seawater. This method proposes a multi-model
chain approach, integrating regional and global climate models with machine learning and
satellite images. It combines ocean fluid dynamics, wave fields, and coastline extraction
models to predict suspended particulate matter. Importantly, this method has the poten-
tial to integrate climate and risk data, enabling more accurate predictions in the future.
Bayesian [168] is a probability-based method that combines prior information about un-
known parameters with sample information, using the Bayesian formula to obtain posterior
information. Based on the posterior information, unknown parameters can be inferred,
yielding good results in small samples. Therefore, it can be used in situations where coastal
data are relatively insufficient. Cebe and Balas [169] studied the prediction of nitrite, ni-
trate, and dissolved oxygen concentrations using water quality coupled three-dimensional
hydrodynamic methods. The hydrodynamic model simulates wind-driven nearshore water
flow, cycling of nitrogen, phosphorus, and oxygen in ecological sub-models, as well as
dominant aquatic organisms such as phytoplankton, zooplankton, and planktonic bacteria.

4. Discussion

This paper presents a comprehensive exploration of the challenges and advancements
in predicting water quality in coastal areas, with an emphasis on the integration of machine
learning into water quality parameter simulations. The identified challenges, including the
impact of urbanization, industrialization, coastal reclamation, and environmental events
such as erosion, hurricanes, and flooding, underscore the importance of accurate predictive
models for maintaining and safeguarding coastal ecosystems.

This review rightly emphasizes the significant role of machine learning in overcom-
ing the limitations of numerical models. Traditional models face challenges related to
parameter selection, adaptability, and computational efficiency. The integration of machine
learning, enabled by recent progress in satellite remote sensing and unmanned aerial vehi-
cle observation, offers a promising solution. The ability to process large datasets and extract
meaningful correlations between water quality metrics and satellite imagery represents a
substantial leap forward. The review of water quality data acquisition methods highlights
the pivotal role of remote sensing, particularly satellite technology. The exploration of
optical features and the establishment of spectral reference libraries demonstrate innovative
approaches to derive water quality information. Machine learning models trained on opti-
cal features prove effective in predicting water quality parameters, overcoming challenges
associated with non-optical indicators. The presented steps for inverting water quality data
from remote sensing maps provide a clear framework for researchers and practitioners.

This paper also provides a comprehensive overview of machine learning applications
in predicting specific water quality parameters such as chlorophyll-a, salinity, and dissolved
oxygen. We provide a thorough examination of various machine learning algorithms’
performance in predicting these parameters. Noteworthy is the recognition that the choice
of the appropriate algorithm depends on data characteristics and local conditions. The
inclusion of studies comparing different algorithms for specific parameters adds valuable
insights for researchers seeking optimal prediction models.
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Different machine learning algorithms can be selected based on the simulated water
quality parameters. The Classification and Regression Tree method can accurately identify
macroscopic bloom locations [71]. Decision Forest, Decision Jungle, and Boosted Decision
Tree can be used to predict Escherichia Coli and enterococci levels [47]. Extreme Gradient
Boosting, combined with the single model Support Vector Regression and Long Short-
Term Memory Long Short-Term Memory is better when estimating Chl-a concentrations.
Artificial Neural Network, Gaussian Process, and Support Vector Regression can be used
in predicting salinity concentrations. Random Forest performing slightly better than
Support Vector Machine in the prediction of dissolved oxygen. Support Vector Regression,
Extreme Gradient Boost, and Random Forest can be use in predicting multiple water quality
parameters, and ensemble machine learning model is also a good choice. Random Forests,
Extreme Gradient Boosting, Multi-layer Perceptron, Convolutional Neural Network, and
Short-term Memory are all models which have shown good performance in predicting
WQI, while the Random Forest algorithm can effectively select key water quality indicators.
The Deep Neural Network algorithm predicts a subset more accurately.

The water quality index (WQI) is a crucial tool for assessing overall water quality, and
this paper addresses the uncertainties associated with traditional WQI models. Machine
learning algorithms, including Random Forest, Support Vector Machine, and Decision
Tree, have been successfully applied to enhance WQI prediction. However, we point
out that while these methods achieve effective results, they fall short of fundamentally
improving WQI. Our discussion on ongoing efforts to reduce model uncertainty and
improve architecture adds depth to the exploration of WQI prediction.

The integration of hydrodynamics with water quality prediction is a key focus of
the current paper. The challenges posed by nearshore waters, influenced by both shore
discharge and oceanic forces, necessitate a holistic approach. The success of hydrodynamic
prediction models, coupled with machine learning, is evident in accurately simulating
storm surges, wave heights, and other dynamic factors. Our discussion on the potential of
Bayesian networks in coastal risk assessment, integrating climate and risk data, presents a
forward-looking perspective on predicting water quality in coastal regions.

The presented research underscores the transformative impact of machine learning on
water quality prediction in coastal areas. Our review on the limitations of current models,
the need for diverse datasets, and the consideration of evolving environmental conditions
points to avenues for future research.

5. Conclusions

This review provides a comprehensive overview of the recent advancements in ma-
chine learning applied to water quality prediction. Despite an extensive survey and
comparison of existing literature, establishing a singular best-performing machine learn-
ing approach proves challenging. The efficacy of machine learning models tends to vary
significantly across different parameters and regions. A promising avenue for further
exploration involves a deeper analysis of water quality parameter characteristics, aiming to
propose more universally applicable methodologies. Generalizing results for the intricate
prediction of coastal water quality remains challenging when solely relying on machine
learning models trained on data devoid of consideration for physical and chemical pro-
cesses. Models with regional characteristics may lack the capacity to predict processes
involving key factors beyond the training dataset. To enhance the prediction accuracy of
machine learning, the following aspects can be addressed: (a) diversifying data sources
and increasing data volume, where remote sensing satellite maps can serve as a reference
for inverting optical characteristic parameters, necessitating further research for rapid
and effective data acquisition on non-optical water quality parameters in coastal areas;
(b) addressing missing data through interpolation methods such as univariate input, k-
nearest neighbors’ input, and multiple-input denoising techniques. This paper offers an
exploration of the complexities and advancements in predicting water quality in coastal
regions, providing a valuable resource for researchers, practitioners, and policymakers
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involved in environmental management and conservation. The integration of machine
learning into numerical simulations emerges as a promising paradigm shift, offering
more accurate and adaptable predictive models for safeguarding the delicate balance of
coastal ecosystems.
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