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Abstract: Pollution caused by marine oil spills can lead to persistent ecological disasters and severe
social and economic damages. Numerical simulations are useful and essential tools for accurate
decision making during emergencies and planning response actions. In this study, we applied the
Princeton Ocean Model (POM) to determine current data, including seawater velocity, salinity, and
temperature, and we obtained the fate and trajectory of spilled oil using OpenOil. Several probable
oil slicks around Taiwan were simulated over time (12 months) and space (four spill locations in the
marine area of each coastal city or county) using the model. The percentage risk under the effect
of an oil spill is estimated. The risk zone of the coastal waters of Taiwan was identified based on
the frequency of simulated oil slicks hitting the coast and sensitive resources. This information not
only helps authorities guide the preparation of effective plans to minimise the impacts of oil spill
incidents but could also be used to improve regulations related to shipping and vessel navigation in
regional seas.

Keywords: oil spill modelling; risk zone; environment; POM; OpenOil

1. Introduction

Being an island nation, Taiwan began its industrial development in the 1960s. However,
the lack of petrochemical energy sources in the country has resulted in the import of crude
oil from oil-producing regions for the oil refining and petrochemical industries. Therefore,
shipping transportation activities flourished. Owing to its unique geographical location,
Taiwan is not only a crucial way-point for the West Coast of the United States and Asia
Pacific routes for the international maritime transport system but also a transit centre for
distant and near-sea shipping transport in East Asia, as shown in Figure 1. The increasing
maritime traffic around Taiwan owing to recent economic growth in China and southeast
Asia and the development of the greater East Asian trade system promotes industrial
development, accompanied by frequent reports of accidents involving stranded ships or
even sinking and collisions that may cause serious marine pollutions. The more booming
the growth of technology in Taiwan, the more attention and awareness are being given
to marine resources. To reduce the effects of pollution incidents on Taiwan’s aquatic
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ecosystem, implementing aggressive methods to prevent and control marine pollution and
enhancing the prevention of marine pollution incidents and response capabilities is vital
for the authorities. Assessments of oil slick risk not only help to better manage emergency
plans, minimise economic loss [1,2], and mitigate the impacts of oil spills [3,4] but also
support the formulation of emergency plans and the identification of mitigation policies [5].
However, for oil spills that occur in the water adjacent to Taiwan, most research has focused
on using different numerical models to hinder particular events [6–12], analysing marine
pollution management [13,14], and satellite observations [15]. Other efforts for better
understanding the assessments of oil spills along the Eastern Mediterranean coasts can be
found [16,17].

In this study, several probable oil slicks in Taiwan were simulated over time (12 months)
and space (four spill locations in the marine area of each coastal city or county) using an in-
tegrated model. The integrated model included the Princeton Ocean Model (POM) [6,8,18]
to determine three-dimensional current data and OpenOil (v1.1) [19] to obtain the fate
and trajectory of the spilled oil. The percentage risks under the effect of an oil spill were
then estimated. The risk zone of the coastal waters of Taiwan was identified based on the
frequency of simulated oil slicks hitting the coast and sensitive resources.
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2. Material and Method
2.1. Study Area

According to the Fisheries Agency of Taiwan, Taiwan’s Marine Protected Areas is “An
area extending seaward from mean high tide line to a certain range, with special natural
features, important cultural heritages and sustainable use of ecological resources, protected
by law or other effective means”. The study area is placed along the coastline of the main
island of Taiwan, which is about 1560 km (973.3 mi) long [21], covering 14 counties and
cities, between 21◦54′ and 25◦18′ N latitude and 120◦2′ and 122◦ E longitude, as illustrated
in Figure 2. The authors used geographic information system (GIS) to create a boundary
for the marine area within a 40 m radius extending seaward from the coast. Four sequential
10 km radial layers were created for the marine area of each county/city.
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2.2. Methods

In this study, the risk magnitude of each zone under the effect of oil spills was de-
termined based on the frequencies of modelled oil slicks hitting the coast and sensitive
resources (i.e., coral reefs, marine/national parks, mangrove areas, scenic areas, artificial
reefs, aquaculture, seagrass, wildlife refuges, sea turtles, sharks and dolphins). The distri-
bution of these resources, as shown in Figure 3, is available online on the government’s
public website, including the National Parks of Taiwan, the Fisheries Agency of Taiwan,
ReefBase—The database of the Global Coral Reef Monitoring Network (GCRMN), and the
International Coral Reef Action Network (ICRAN), or obtained from references [22]. The
migratory routes of sea turtles and sharks were provided by Cheng [23] and Wang and Hsu
et al. [24], respectively. The distribution of Taiwanese dolphins was based on that described
by Wang et al. [25].

This work is based on two assumptions:

- Coastal activities and sensitive resources are higher in number and diversity in shal-
low (closer to the shore) than in deep waters; therefore, the weights are different
between layers.
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- Eleven sensitive resources have equal significance. Therefore, the weights are similar
for different resources.

Percentage of risk caused by oil slicks hitting the coast and sensitive resources can be
calculated as follows [26]:

PR =

[(
m

∑
i=1

n

∑
j=1

wij × N f rij

)
+

(
m

∑
i=1

n

∑
j=1

wij × N f cij

)]
× 100

m
∑

i=1

n
∑

j=1
wij × NFRCij

(1)

where wij are the weights given to an area in layer i =1, 2, 3, and 4 from a spill location
in layer j = 1, 2, 3, and 4 in a city/county each month: 1, 0.5, 0.25, and 0.125, respectively;
N f rij and N f cij are the normalised values (between 0 and 1) equal to the accumulative
frequencies of simulated oil slicks hitting the coast (fcij) and sensitive resources (frij) divided
by the highest accumulative frequencies of simulated oil slicks hitting the coast (FCij) and
sensitive resources (FRij) at one of the four layers in the city/county of interest monthly.
NFRCij is the normalised value (between 0 and 1) of FRij plus FCij.
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2.3. Ocean Current Modelling

The Princeton Ocean Model (POM) [6,8,18,27] is a baroclinic model that uses a curvi-
linear orthogonal grid for the horizontal coordinate (x, y) and a vertical grid for the sigma
coordinate, σ. The governing equations of the models are

∂DU
∂x

+
∂DV

∂y
+

∂ω

∂σ
+

∂η

∂t
= 0 (2)

∂UD
∂t + ∂U2D

∂x + ∂UVD
∂y + ∂Uω

∂σ − f VD + gD ∂η
∂x

= ∂
∂σ

[
KM
D

∂U
∂σ

]
+ ∂

∂x

[
2AMD ∂U

∂x

]
+ ∂

∂y

[
AMD

(
∂U
∂y + ∂V

∂x

)] (3)

∂VD
∂t + ∂UVD

∂x + ∂V2D
∂y + ∂Vω

∂σ + f UD + gD ∂η
∂y

= ∂
∂σ

[
KM
D

∂V
∂σ

]
+ ∂

∂y

[
2AMD ∂V

∂y

]
+ ∂

∂x

[
AMD

(
∂U
∂y + ∂V

∂x

)] (4)

where U and V are the horizontal velocity components; ω is the velocity component normal
to sigma surfaces; D is the total water depth; η is the total water depth; f is the Coriolis
frequency; g is the gravitational acceleration; AM is the horizontal diffusivity; and KM is
turbulent closure parameter. Details can be found in Mellor [18].

In this study, the POM was used to simulate the ocean current around Taiwan with a
horizontal grid resolution of 0.02◦ and 41 sigma layers over the entire year of 2018. The
computational domain with bathymetry is illustrated in Figure 4.
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The initial and boundary conditions’ driving forces of the surface elevation, temper-
ature, and salinity are obtained from the Global Hybrid Coordinate Ocean Model [28],
whose spatial and time resolution are about 1/12 degree and 1 day, respectively. And
the atmosphere forcing is from the Weather Research and Forecasting model [29], which
is operationally used to forecast the regional wind and weather by the Central Weather
Bureau of Taiwan. In this study, the wind dataset covers a domain at 10◦ E to 35◦ E and
110◦ N to 137◦ N, and it has the spatial and temporal resolutions of 0.2 degree and 3 h,
respectively. More detailed information can be found in the literature [6–8].
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To validate the ocean currents, sea surface elevation was collected from six stations
around Taiwan, and the data were compared with the sea surface elevation predicted by
POM. These stations include Tamsui, Taichung Port, Donggang, Houbihu, Chenggong, and
Hualien. Table 1 and Figure 5 show the station positions.

Table 1. Stations of validation.

No Station Longitude Latitude

1 Tamsui 25◦10′33′′ N 121◦25′29′′ E

2 Taichung Port 24◦17′16′′ N 120◦31′59′′ E

3 Donggang 22◦27′54′′ N 120◦26′18′′ E

4 Houbihu 21◦56′45′′ N 120◦44′43′′ E

5 Chenggong 23◦05′50′′ N 121◦22′49′′ E

6 Hualien 23◦58′50′′ N 121◦37′25′′ E
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2.4. Oil Spill Modelling

The oil slick is simulated using OpenOil [19]. In the model, the spilled oil drifts as a
consequence of the combined action of wind, current and waves. Based on Zhang et al. [30],
the drift velocity can be written as:

u = αwYuw + αcuc + uwave, v = αwYvw + αcvc + uwave, w = wc (5)

where uw and vw are the wind velocities at 10 m above the water surface; uc, vc and wc
are the surface water current velocities, which can be obtained from the POM; uwave is the
wave-induced velocity, αw is the wind drift factor, usually taken as 0.03 [31]; and αc is the
factor that accounts for the contribution of the drift of the oil slick on the water surface due
to the current, and Y is the transformation matrix of the wind angle [30].
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For the rate of oil entrainment from the slick to the mixing layer, we refer to [9,32],
which includes information on the relative importance of the inertial forces and oil–water
interfacial tension and the ratio of viscous forces to the inertial and surface tension forces.
In addition, the oil droplet size distribution can be expressed either as a number-based or a
volume-based particle size distribution [33].

Other necessary data for the oil spill model are listed as follows:
Spill locations: For each county/city of interest, four locations with distances of 10,

20, 30, and 40 km to the coastline extending seaward at the boundaries of the four layers
mentioned in Section 2.1. In this study, we used 56 spill locations, as illustrated in Figure 6.

Simulated periods: Five days/month/location during spring tide from January to
December 2018.

Oil type and amount: Ten tons (10,000 particles) of heavy crude oil were used for every
spill location.

Three-dimensional sea temperature and salinity: obtained from the POM model.
Wind: The magnitude and direction of wind during the simulated length of time 10 m

above the land surface were obtained from the Global Forecast System (GFS) data of the
National Centers for Environmental Prediction (NCEP).

The details of the three-dimensional hydrodynamic model (POM) combined with the
OpenOil module were provided in the authors’ previous studies through the contents of
the ocean circulation modelling and the hindcast of the oil spills [6–9].
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3. Results
3.1. Tidal Current Validation

To validate ocean currents, we selected four months representing different seasons in
Taiwan for each station. The time-history records of the water surface elevation simulated
using POM were compared with data from the tide tables at four stations of the Water
Resources Department of the Ministry of Economic Affairs from Figures 7–10.
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The calendar diagrams of the water elevation are shown in Figures 7–10, where the
red dotted line represents the numerical model simulation results, and the black solid line
represents the actual measured values. The root mean square error (RMSE) used to estimate
the simulation numerical error is defined as follows:

RMSE =

√√√√ 1
N

N

∑
1
(XObs − XSim)

2 (6)
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where Xobs is the observed value, and Xsim is the model simulation value. According to
Equation (6), the RMSE values ranged from 0.048 to 0.063 m. In general, the elevations
produced by the numerical model were in correlation with the observed elevations. The
validations of the simulated current data from the POM model were intensively reported
in previous studies [6–9] and therefore are neglected here.
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Figure 10. Tidal current validation at Hualien station (23◦58′50′′ N, 121◦37′25′′ E) in the east coast of
Taiwan for (a) winter and (b) summer.

3.2. Percentage Risk (PR) Caused by Oil Slicks Hitting the Coast and Sensitive Resources

The length of the coast and the number of sensitive resources dispersed by the simu-
lated oil slicks from different release locations are shown in Figures 11–19. The percentage
of the risks of being influenced by oil spills is shown in Figure 20, the details of which will
be discussed in the following sections.

In the northern part, including the marine area of New Taipei (Figure 11a), during
winter (from October to March), the affected coast length (ACL) was mainly in the 10
and 20 m radii. Within a radius of 10 km, the value of the ACL varied from 35 km to
approximately 120 km, and this fluctuation was 15–98 km within a radius of 20 km. The
area had a radius of 30 km in October, the value of the ACL was approximately 40 km, and
the value of the ACL in other months was insignificantly low. In contrast to winter, the ACL
value was lower in summer (April to September), and it was no more than 22 km in a radius
of 10 km (from a radius of 20 km onwards, almost unaffected). Compared to the monthly
average ACL value in summer (9 km), the value in winter (approximately 72 km) was eight
times larger. Regarding the number of sensitive resources, in winter, these values were
37 and 13, respectively, for two areas with radii of 10 and 20 km, respectively; in summer,
this value was 15 (for a 10 km radius) and 1 (for a 20 km radius) (Figure 11b). It can be
seen that the northern coastline was affected by the oil spill much more during winter
(from October to March) than summer (from April to September). The surface currents
in this area are approximately parallel to the coastline [34]. In winter, the northeasterly
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monsoon dominates the wind. Northerly wind forcing is one of the main reasons oil slicks
hit the coastline.
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Figure 11. (a) The length of the coast and (b) number of sensitive resources that the simulated oil
slicks dispersing at N. Taipei area (yellow, green, blue, and purple bars represent the risk assessment
zones with radii of 10, 20, 30, and 40 km, respectively).

The eastern part of the coast, including the Yilan, Hualien and Taitung areas, was
the least affected by the oil spill. For Yilan, with a radius of 10 km (Figure 12a), the ACL
value was highly affected in January, February, and June, with corresponding values of 54,
22, and 26 km, respectively. Its monthly average value is 9 km, which is approximately
8.2 times lower than that of the N. Taipei area (during winter). This is also evidenced by
the number of sensitive resources: 26 and 4 for the 10 and 20 km radius areas, respectively,
throughout the year. There was hardly any impact from the oil spill in the 30 and 40 km
radius areas (Figure 12b).
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Figure 12. (a) The length of the coast and (b) number of sensitive resources that the simulated oil
slicks dispersed at Yilan area (yellow, green, blue, and purple bars represent the risk assessment
zones with radii of 10, 20, 30, and 40 km, respectively).

In the Hualien area (Figure 13), throughout the year, the number of sensitive resources
was seven and three for two areas with radii of 20 and 30 km, respectively. The calculation
results showed that the impact of the oil spill only occurred in a radius of 10 m (with
22 sensitive resources), except for high ACL values in winter, falling in January, February,
and October; the monthly ACL values in the Hualien area were low, less than 17 km.
During winter, the average monthly ACL was approximately 6.3 km (10 times lower than
that in the N. Taipei area).
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Figure 13. (a) The length of the coast and (b) number of sensitive resources that the simulated oil
slicks dispersed in the Hualien area (yellow, green, blue, and purple bars represent the risk assessment
zones with radii of 10, 20, 30, and 40 km, respectively).

In the Taitung area (Figure 14), compared to the areas at 10, 20, and 30 km, the number
of sensitive resources in the 40 km area was the lowest, with a value of 5 for the whole year
(occurring in January and February), whereas this number was 38, 26, and 23 for the whole
year for the three areas closer to the shore (10, 20, and 30 km). However, compared to other
regions (20 and 30 km radius areas), in the 10 km radius area, the monthly average ACL
value was 18.5 km (nearly four times lower than that of the N. Taipei area). Notably, these
impacts occurred during the first months of the year (January and February). Compared to
other parts of Taiwan, the east coast, including the marine counties in Taitung, Hualien,
and Yilan, had a low risk throughout the year. This may be due to the impact of a branch of
the Kuroshio intrusion into the South China Sea, which dominates the area.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 13 of 22 
 

 

  
(a) (b) 

Figure 14. (a) The length of the coast and (b) number of sensitive resources that the simulated oil 
slicks dispersed at Taitung area (yellow, green, blue, and purple bars represent the risk assessment 
zones with radii of 10, 20, 30, and 40 km, respectively). 

In the Taitung area (Figure 14), compared to the areas at 10, 20, and 30 km, the num-
ber of sensitive resources in the 40 km area was the lowest, with a value of 5 for the whole 
year (occurring in January and February), whereas this number was 38, 26, and 23 for the 
whole year for the three areas closer to the shore (10, 20, and 30 km). However, compared 
to other regions (20 and 30 km radius areas), in the 10 km radius area, the monthly average 
ACL value was 18.5 km (nearly four times lower than that of the N. Taipei area). Notably, 
these impacts occurred during the first months of the year (January and February). Com-
pared to other parts of Taiwan, the east coast, including the marine counties in Taitung, 
Hualien, and Yilan, had a low risk throughout the year. This may be due to the impact of 
a branch of the Kuroshio intrusion into the South China Sea, which dominates the area. 

Meanwhile, in the southern region, including the coasts of Kaohsiung and Pingtung, 
almost all four areas (radii of 10, 20, 30, and 40 km) were affected by the oil spill. In the 
Kaohsiung area (Figure 15), this phenomenon occurred mostly in summer, from April to 
September (in contrast to the northern area, the N. Taipei Sea area, where the phenomenon 
mainly occurred in winter). During this period, the monthly average ACL was 43.5 km 
(for an area with a radius of 20 km), which was followed by 38.5 km (for a radius of 10 
km) and approximately 30 km for the remaining two regions (radii of 30 and 40 km areas). 
In addition, the monthly average number of sensitive resources in all four areas (radius 
10–40 km) ranged from 39 to 60, which showed that the oil spill phenomenon not only 
focused on one or two months but also affected all months throughout the summer. 

  
(a) (b) 

Figure 14. (a) The length of the coast and (b) number of sensitive resources that the simulated oil
slicks dispersed at Taitung area (yellow, green, blue, and purple bars represent the risk assessment
zones with radii of 10, 20, 30, and 40 km, respectively).

Meanwhile, in the southern region, including the coasts of Kaohsiung and Pingtung,
almost all four areas (radii of 10, 20, 30, and 40 km) were affected by the oil spill. In the
Kaohsiung area (Figure 15), this phenomenon occurred mostly in summer, from April to
September (in contrast to the northern area, the N. Taipei Sea area, where the phenomenon
mainly occurred in winter). During this period, the monthly average ACL was 43.5 km
(for an area with a radius of 20 km), which was followed by 38.5 km (for a radius of 10 km)
and approximately 30 km for the remaining two regions (radii of 30 and 40 km areas).
In addition, the monthly average number of sensitive resources in all four areas (radius
10–40 km) ranged from 39 to 60, which showed that the oil spill phenomenon not only
focused on one or two months but also affected all months throughout the summer.
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Figure 15. (a) The length of the coast and (b) number of sensitive resources (b) that the simulated
oil slicks dispersed in the Kaohsiung area (yellow, green, blue, and purple bars represent the risk
assessment zones with radii of 10, 20, 30, and 40 km, respectively).

In the Pingtung area (Figure 16), the impact of oil spills on coastal areas tended to
gradually increase from February to March (winter), was strongest in June, July, and August
(summer), and then gradually decreased. Simulations show that in July alone, although the
number of sensitive resources for all four ranges (radii 10–40 km) was between 12 and 17,
the ACL value was very large compared to other areas, ranging from 65 to 95 km. Therefore,
the southern coast, including the coastlines of Kaohsiung and Pingtung, was affected by
most of the simulated oil slicks dispersed from spill locations at different distances during
the summer, whereas for the other counties/cities, this occurred in one or two months. This
is due to the seasonal reversal of the monsoon wind, which shows opposite wind directions
in summer and winter.
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Figure 16. (a) The length of the coast and (b) number of sensitive resources that the simulated
oil slicks dispersed in the Pingtung area (yellow, green, blue, and purple bars represent the risk
assessment zones with radii of 10, 20, 30, and 40 km, respectively).

In the western region, from Taoyuan through Taichung to Tainan, we can see that
in the central–western region, the impact of oil spills was greatest in the Taichung area
(Figure 17). The number of sensitive resources was 46 in winter and 37 in summer, in which
the ACL had a larger value in the 10 km radius region than in the 20, 30 and 40 km radius
regions. January and February were the two months with the highest ACL values of 129
and 77 km, respectively (at a radius of 10 km), which were followed by a gradual decrease
in the following months. The monthly average value in winter was higher than that in
summer (46 km and 29 km, respectively).
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Figure 17. (a) The length of the coast and (b) number of sensitive resources that the simulated
oil slicks dispersed in the Taichung area (yellow, green, blue, and purple bars represent the risk
assessment zones with radii of 10, 20, 30, and 40 km, respectively).

Compared with the Taichung area, the number of sensitive resources was lower
in Taoyuan, with values of 17 and 25 in winter and summer, respectively (Figure 18).
Regarding the trend, similar to the Taoyuan area, the coastal area with a radius of 10 km
was the most affected compared to areas with other radii. The ACL was highest at 71 km
(in a 10 km radius area) in May; however, its monthly average value was not high: less
than 10 km in winter and less than 30 km in summer.
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Figure 18. (a) The length of the coast and (b) number of sensitive resources that the simulated oil slicks
dispersed in the Taoyuan area (yellow, green, blue, and purple bars represent the risk assessment
zones with radii of 10, 20, 30, and 40 km, respectively).

The Tainan area (Figure 19) was the least affected area on the west coast. Coastal areas
were only affected by oil spills in May. The values of the number of sensitive resources
were 7, 14, and 14, corresponding to three areas with radii of 10, 20, and 30 km. Therefore,
this phenomenon affected areas with radii of 10, 20, and 30 km, whereas areas with radii of
40 km were rarely affected. In May, the ACL values in these regions were 16, 86, and 51 km,
respectively. Thus, for Tainan, during the summer, especially in May, two areas with radii
of 20 and 30 km were affected by oil spills more than other areas and times of the year.
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J. Mar. Sci. Eng. 2024, 12, 155 16 of 21

4. Discussion

Based on the analysis of the ACL and the number of affected sensitive resources
(NASR), the cumulative frequencies of oil slicks hitting the coast were calculated. The
calculation results showed that high risks of oil spills mainly appeared in the 10 m radius
area for all observation areas around Taiwan Island during the year (Figure 20), except
for the Hualien area, and the Tainan area. The Hualien area was not affected in June and
December (Figure 20a), and the Tainan area was not affected in October and December
(Figure 20c). Meanwhile, the Yilan area was only affected in (focused on) October, January,
February, and March in winter and July in summer (Figure 20b).

Compared to the 10 km radius area, the 20 km radius area has a risk of intermittent
oil spills throughout the year. The level of oil spill risk gradually decreased for areas with
radii of 30 and 40 km. Within a radius of 40 km, the Hualien, Yilan, Tai-nan, N. Taipei, and
Taoyuan areas had almost no risk of oil spills (Figure 20a–e).

Significant difference in oil spill risk can be observed between the southern and
northern regions. While in the north (Figure 20d), the risk of oil spills only focuses on the
10 km area in both seasons, in Kaoshiung (south) (Figure 20f), the risk of oil spills affects
all four areas (radii 10 to 40 km), and high risk occurs during the summer. In particular,
the area with the highest risk was the area with a radius of 20 km, which was followed by
areas with radii of 10, 30, and 40 km.

Another area in the south, Pingtung (Figure 20g), also had a high level of oil spill
risk, similar to Kaoshiung, in the summer. The most notable was the high risk of oil spills
occurring in May and July (within a radius of 20 km), which also occurred in areas with
radii of 30 and 40 km (only in July). Another difference compared to all other areas is that
in Pingtung, the risk level of oil spills not only occurs in summer but also in winter for all
areas from a radius of 10 m to up to 40 km.

It should be noted that the difference in the simulated results among several marine
continual/critical areas may be because of a variety of factors shaping the oil dispersion and
fate patterns in those areas. Korotenko (2000) [35] highlighted that while the spill location,
quantity and type of oil spilled, water currents, and local wind conditions influence oil
dispersion and trajectory patterns in the sea, the meteorology of the area, properties of
the spilled oil, and some physicochemical and biological processes, such as evaporation,
emulsification, dissolution, oxidation, and biodegradation, affect the fate of oil slicks.

This information could support government officials, decision-makers, and local
communities in limiting or avoiding oil-related activities in sensitive zones. More associated
data related to the country’s coastline are needed, such as (1) the number of ports, frequency
of oil spill incidents, number of ships, and coastal settlements; (2) local and international
shipping routes; (3) oil seep locations; and (4) coastal settlements. This map allows for
seasonally adjusted response measures and recommends that authorities alter traffic for
shipping lanes that pass through sensitive areas.

The risk zone classification can be enhanced with more improvements to aid drawing
up the sensitivity maps as depicted in Figures 21–23 for the winter, summer, and whole
year, respectively. In the figure, the significant accumulative frequencies are obtained by the
average values of the larger one-third parts in Figure 20. In these figures, some conclusions
can be drawn, as shown in the next section.
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5. Conclusions

In this study, an integrated model based on POM for hydrodynamic simulation and
OpenOil for oil spill prediction was applied to simulate oil slicks around the coastal
waters of Taiwan over both space and time. Overall, high local risks occurred within
a radius of 10 km in most counties/cities (except for Pingtung and Kaohsiung in some
months). Because of the seasonal reversal of monsoon winds, while the northern coastline
of Taiwan faces a much higher risk of oil spills during winter than summer, the southern
coast was affected by most of the simulated oil slicks during summer. Compared to other
parts of Taiwan, the east coast has a lower risk throughout the year. This information
supports authorities in managing emergency plans, mitigating the impacts of oil spills,
and improving shipping navigation regulations in regional seas. The sensitivity maps
under the oil spill are drawn up using the significant frequency of simulated oil slicks
hitting the coast and sensitive resources. More associated data related to the country’s
coastline, such as the number of ports, frequency of oil spill accidents in the past, number
of ships, coastal settlements, and local and international shipping routes, will be useful for
future researchers.
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